首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An investigation of the mechanism and quantitative contribution of the pentose phosphate pathway in the glucose metabolism of Morris Hepatoma 5123C is reported. Morris Hepatoma 5123C has an active non-oxidative segment of pentose pathway as judged by its ability to convert ribose 5-P to hexose 6-P in a standard assay. Based on compliance with qualitative and quantitative criteria, the cells exhibit the L-type pentose pathway reaction sequence rather than the F-type pathway. This compliance included the formation of intermediates characteristic of the L-type pathway, namely arabinose 5-P, octulose mono- and bisphosphates and sedoheptulose 1,7-bisphosphate, during the dissimilation of ribose 5-P to hexose 6-P. The intermediary role of arabinose 5-P was suggested by the incorporation of its carbon into various intermediates and products of the pentose pathway. Intermediary roles for ido octulose mono- and bisphosphates were supported by their participation in the reaction catalyzed by the phosphotransferase enzyme of the L-type pentose pathway. Presence of L-type PP reactions was further affirmed by 14C-prediction labelling experiments using [5-14C]- and [2-14C]glucose as specifically labelled substrates. Using two methods of measurement, the F-type pentose cycle made a negligibly small contribution to glucose metabolism, while the measured value of the L-type pentose pathway accounted for 30% (approx.) of the total glucose metabolism of these cells, a value consistent with the high activity of the enzymes of the L-type pentose pathway in Morris Hepatoma 5123C cells and the very high activity of the non-oxidative segment of the pathway in vitro. The findings validate the proposal that the L-type pentose pathway reactions constitute the non-oxidative segment of the pathway in Morris Hepatoma 5123C cells. Reasons involving pyruvate recycling reactions show why there is low incorporation of 14C-isotope in C-1 of glucose 6-P, when [4,5,6-14C]glucose and [6-14C]glucose are L-type PP test substrates in intact cells.  相似文献   

2.
An immunochemical procedure involving the reaction of liver aldolase antibody and rat liver enzyme preparation shows that conversion of ribose 5-P to hexose 6-P by reactions of the non-oxidative pentose pathway fails to occur in the absence of aldolase activity. Radioautography of pentose pathway products formed by liver enzyme catalysis of [U-14C] arabinose 5-P and unlabelled ribose 5-P illustrates the incorporation of 14C into ketopentose, sedoheptulose, fructose and glucose phosphates. There is approximate congruity of the mole specific radioactivity of the pentose and hexose phosphates. These findings are consistent with the proposal that L-pentose pathway reactions constitute the non-oxidative segment of the pathway in liver.  相似文献   

3.
The complete reaction sequence of the pentose pathway in vitro was studied by incubating [1-14C] ribose 5-phosphate with rat liver enzyme preparation and assessed by both the rate and extent of formation of the glucose 6-P product. The reactions formed, as intermediates, the 1,8-bisphosphates of D-glycero D-ido octulose (D-g D-i Oct) and D-glycero D-altro octulose, both heavily labelled at C-4 with 14C isotope during the 12h incubation. The formation of the octulose phosphates and the specificity of their isotopic labelling confirms an important prediction of, and contribution by reactions of the L-type pentose phosphate pathway (L-PP) in liver in vitro. Infusion in situ of [6-14C] glucose into the liver of the anaesthetized rabbit resulted in the formation of high specific activity [8-14C] D-g D-i Oct 1,8-P2. The specificity of labelling indicates that the octulose intermediate is formed according to the options of the L-PP mechanism of glucose metabolism in intact liver.  相似文献   

4.
The phenomenon of "pyruvate recycling" is demonstrated in perfused rat liver, rabbit liver in situ and in Morris Hepatoma 5123TC cells and quantitatively measured using [2-14C]pyruvate and the method of Friedmann et al. (1971). Various metabolites, viz. lactate, DHAP, glucose, glucose 6-P and fructose 6-P were isolated and degraded following the metabolism of [2-14C]pyruvate and [2-14C]glycerol in order to assess the 14C-distributions imparted by "pyruvate recycling" reactions. The labelling of DHAP, lactate, glucose and glucose 6-P showed 14C randomizations consistent with the operation and the quantitative extent of "pyruvate recycling". These findings support the proposal that the actions of "pyruvate recycling" may account for the failure to find significant levels of 14C isotope at C-1 of glucose 6-P following the metabolism of [4,5,6-14C]- or [6-14C]glucose by L-type pentose pathway metabolism in aerobic intact tissues. "Pyruvate recycling" diminishes the measured value of the L-type pentose cycle in intact tissues and qualifies one of the mechanistic predictions of the L-type pentose pathway which was unravelled by tracing its reactions with labelled ribose 5-P and liver enzymes (Horecker et al., 1954; Williams et al., 1978a,b) in vitro. The demonstration of an association of L-type pentose pathway reactions with "pyruvate recycling" by way of the common reactions of their triose-P intermediates qualifies the superficial acceptance of the predictions of the L-type pathway in vitro for the distribution of isotopic labels by aerobic tissues in vivo.  相似文献   

5.
Plastids are the site of the reductive and the oxidative pentose phosphate pathways, which both generate pentose phosphates as intermediates. A plastidic transporter from Arabidopsis has been identified that is able to transport, in exchange with inorganic phosphate or triose phosphates, xylulose 5-phosphate (Xul-5-P) and, to a lesser extent, also ribulose 5-phosphate, but does not accept ribose 5-phosphate or hexose phosphates as substrates. Under physiological conditions, Xul-5-P would be the preferred substrate. Therefore, the translocator was named Xul-5-P/phosphate translocator (XPT). The XPT shares only approximately 35% to 40% sequence identity with members of both the triose phosphate translocator and the phosphoenolpyruvate/phosphate translocator classes, but a higher identity of approximately 50% to glucose 6-phosphate/phosphate translocators. Therefore, it represents a fourth group of plastidic phosphate translocators. Database analysis revealed that plant cells contain, in addition to enzymes of the oxidative branch of the oxidative pentose phosphate pathway, ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase in both the cytosol and the plastids, whereas the transketolase and transaldolase converting the produced pentose phosphates to triose phosphates and hexose phosphates are probably solely confined to plastids. It is assumed that the XPT function is to provide the plastidic pentose phosphate pathways with cytosolic carbon skeletons in the form of Xul-5-P, especially under conditions of a high demand for intermediates of the cycles.  相似文献   

6.
1. Ribose 5-phosphate was non-oxidatively synthesized from glucose 6-phosphate and triose phosphate by an enzyme extract prepared from rat liver (RLEP). Analysis of the intermediates by GLC, ion-exchange chromatography and specific enzymatic analysis, revealed the presence of the following intermediates of the L-type pentose pathway: altro-heptulose 1,7-bisphosphate, arabinose 5-phosphate and D-glycero D-ido octulose 8-phosphate. 2. With either [1-14C] or [2-14C]glucose 6-phosphate as diagnostic substrates, the distribution of 14C in ribose 5-phosphate was determined. At early time intervals (0.5-8 hr), [1-14C]glucose 6-phosphate introduced 14C into C-1, C-3 and C-5 of ribose 5-phosphate, at 17 hr 14C was confined to C-1. With [2-14C]glucose 6-phosphate as substrate, 14C was confined to C-2, C-3 and C-5 of ribose 5-phosphate during early times (0.5-8 hr), while at 17 hr 14C was located in C-2. 3. The transketolase exchange reaction, [14C]ribose 5-phosphate + altro-heptulose 7-phosphate in equilibrium ribose 5-phosphate + [14C]altro-heptulose 7-phosphate, was demonstrated for the first time using purified transketolase, its activity was measured and it is proposed to play a major role in the relocation of 14C into C-3 and C-5 or ribose 5-phosphate during the prediction labelling experiments. 4. The coupled transketolase-transaldolase reactions, 2 fructose 6-phosphate in equilibrium altro-heptulose 7-phosphate + xylulose 5-phosphate and 2 altro-heptulose 7-phosphate in equilibrium fructose 6-phosphate + D-glycero D-altro octulose 8-phosphate were demonstrated with purified enzymes, but are concluded to play a minor role in the non-oxidative synthesis of pentose 5-phosphate and octulose phosphate by (RLEP). 5. The formation of gem diol and dimers of erythrose 4-phosphate is proposed to account in part for the failure to detect monomeric erythrose 4-phosphate in the carbon balance studies. 6. The equilibrium value for the pentose pathway acting by the reverse mode in vitro was measured and contrasted with the value for the pathway acting in the forward direction. The initial specific rates of the pentose pathway reactions in vitro for the reverse and forward directions are measured. 7. The study which includes carbon balance, time course changes and 14C prediction labelling experiments reports a comprehensive investigation of the mechanism of the pentose pathway acting reversibly.  相似文献   

7.
1. The reactions of the pentose phosphate cycle were investigated by the intraportal infusion of specifically labelled [(14)C]glucose or [(14)C]ribose into the liver of the anaesthetized rabbit. The sugars were confined in the liver by haemostasis and metabolism was allowed to proceed for periods up to 5min. Metabolism was assessed by measuring the rate of change of the specific radioactivity of CO(2), the carbon atoms of glucose 6-phosphate, fructose 6-phosphate and tissue glucose. 2. The quotient oxidation of [1-(14)C]glucose/oxidation of [6-(14)C]glucose as measured by the incorporation into respiratory CO(2) was greater than 1.0 during most of the time-course and increased to a maximum of 3.1 but was found to decrease markedly upon application of a glucose load. 3. The estimate of the pentose phosphate cycle from C-1/C-2 ratios generally increased during the time-course, whereas the estimate of the pentose phosphate cycle from C-3/C-2 ratios varied depending on whether the ratios were measured in glucose or hexose 6-phosphates. 4. The distribution of (14)C in hexose 6-phosphate after the metabolism of [1-(14)C]ribose showed that 65-95% of the label was in C-1 and was concluded to have been the result of a rapidly acting transketolase exchange reaction. 5. Transaldolase exchange reactions catalysed extensive transfer of (14)C from [2-(14)C]glucose into C-5 of the hexose 6-phosphates during the entire time-course. The high concentration of label in C-4, C-5 and C-6 of the hexose 6-phosphates was not seen in tissue glucose in spite of an unchanging rate of glucose production during the time-course. 6. It is concluded that the reaction sequences catalysed by the pentose phosphate pathway enzymes do not constitute a formal metabolic cycle in intact liver, neither do they allow the definition of a fixed stoicheiometry for the dissimilation of glucose.  相似文献   

8.
Cells were grown in batch culture on a mixture of 50 mM glucose and fructose as the carbon source; either the glucose or the fructose was [1-13C]-labelled. In order to investigate the uptake and conversion of glucose and fructose during long-term labelling experiments in cell suspensions of Daucus carota L., samples were taken every 2 d during a 2 week culture period and sucrose and starch were assayed by means of HPLC and 13C-nuclear magnetic resonance. The fructose moieties of sucrose had a lower labelling percentage than the glucose moieties. Oxidative pentose phosphate pathway activity in the cytosol is suggested to be responsible for this loss of label of especially C-1 carbons. A combination of oxidative pentose phosphate pathway activity, a relatively high activity of pathway to sucrose synthesis and a slow equilibration between glucose-6-phosphate and fructose-6-phosphate could explain these results. Starch contained glucose units with a much lower labelling percentage than glucose moieties of sucrose: it was concluded that a second, plastid-localized, oxidative pentose phosphate pathway was responsible for removal of C-1 carbons of the glucosyl units used for synthesis of starch. Redistribution of label from [1-13C]-hexoses to [6-13C]-hexoses also occurred: 18-45% of the label was found at the C-6 carbons. This is a consequence of cycling between hexose phosphates and those phosphates in the cytosol catalysed by PFP. The results indicate that independent (oxidative pentose phosphate pathway mediated) sugar converting cycles exist in the cytosol and plastid.Key words: Daucus carotaL., cell suspensions, carbon-13 nuclear magnetic resonance, 13C-NMR, carbohydrate cycling, oxidative pentose phosphate pathway, plastid.   相似文献   

9.
Rat liver cytosolic enzyme preparation catalyses the formation of sedoheptulose 1,7-P2 (60% of total heptulose-P formed) from hexose 6-P and triose 3-P (reverse mode of pentose pathway operation). Smaller amounts of sedoheptulose 1,7-P2 are also formed from ribose 5-P during the non-oxidative synthesis of hexose 6-P (forward pentose pathway operation). The apparent absence of erythrose 4-P in biological systems may be explained by its contribution to carbons 4,5,6 and 7 of sedoheptulose 1,7-P2 as well as its pronounced ability to exist in dimeric form. Apart from the aldolase catalyzed formation of sedoheptulose 1,7-P2, 6-phosphofructokinase also catalyses its formation from sedoheptulose 7-P and fructose 1,6-bisphosphatase catalyses its dephosphorylation. These three enzymes may contribute to the regulation of carbon flux through the near equilibrium reactions of the non-oxidative pentose phosphate pathway in vivo. The phosphotransferase enzyme of the L-type pentose pathway is also able to catalyse the interconversion of sedoheptulose mono and bisphosphates via D-glycero D-ido octulose-P.  相似文献   

10.
11.
Heath RL 《Plant physiology》1984,75(4):964-967
Using differentially labeled glucose as a substrate to probe the operation of the hexose monophosphate shunt (pentose cycle) in Chlorella sorokiniana, we found that the labeling patterns for the release of 14CO2 over the first 5 minutes are compatible with the operation of the recently described L-type pentose shunt. Experimentally, this L-type differs from the F-type or `textbook' variety in that no radioactivity is obtained from C-2 labeled glucose, and the small amount derived from C-6 labeled glucose is due to a second pass of the glucose molecule (derived from the pentose cycle) through the pentose cycle.  相似文献   

12.
The controversial dissension concerning the nature of the pentose cycle in liver is investigated. The metabolism of [2-14C]Glc and [1-14C]Rib in chronically perfused normal and regenerating rabbit liver and acutely perfused rat liver are used to test the mechanistic predictions and contribution of the F-type pentose cycle. 14C was traced in Glc, Glc 6-P, Fru 6-P, glycogen and Rib 5-P. None of the data complied with the critical theoretical limits set for the C-1/C-3 ratio (the identity badge of the F-type pentose cycle or pathway) for all values of F-type PC from 0-100%. Thus apparent F-type PC measurements using the Katz & Wood method gave a wide scatter of calculated values. The 14C distributions in Rib 5-P do not conform with the predictions of the F-type PC but are in agreement with the many previous results of similar experiments reported by Hiatt and co-workers. In perfused rat liver the C-1/C-3 constants in Glc 6-P and glycogen also failed to conform with F-PC theory following the metabolism of [2-14C]Glc. The metabolism of [5-14C]Glc and distribution of 14C in Glc 6-P and glycogen showed that L-type PC was 18%, in close agreement with a previous published value of 22% for rat hepatocytes. Metabolism of [6-14C]Glc and [4-14C]Glc (as [4,5,6-14C]Glc) showed that Pyruvate Recycling was active in perfused rat liver. None of the data from these comprehensive investigations can confirm the results of the recent study reported by the Landau laboratory on the pentose pathway metabolism of Glc and Rib in perfused rat liver.  相似文献   

13.
1. Glucose 6-phosphate, fructose 6-phosphate and altroheptulose 7-phosphate are the major products formed non-oxidatively from ribose 5-phosphate by rat epididymal fat pad enzymes. 2. Arabinose 5-phosphate was detected among the reaction products and significant activity of the new enzyme of the L-type pentose pathway, D-glycero D-ido octulose 1,8-bisphosphate: D-altroheptulose 7-phosphotransferase was found. 3. The glucose moieties of glucose 1-phosphate, glucose 6-phosphate and glucose 1,6-bisphosphate were degraded and showed that epididymal fat pad enzymes relocate 14C from [2-14C]glucose into C-1, C-2, and C-3 of each hexose-phosphate. 4. The 14C-distribution patterns in the hexose-phosphates revealed that these intermediates were not in isotopic equilibrium and the rate of the transaldolase exchange reaction was relatively small. 5. The 14C-distribution data suggest that glucose 1-phosphate, rather than glucose 6-phosphate, is the first intermediate in the path of glycogen synthesis from glucose in this tissue. 6. The data provide the first proof of the mechanism of the pentose pathway in adipose tissue.  相似文献   

14.
1. Reactions leading to the formation of 14C-labelled volatile compounds and compounds volatile under acid conditions were investigated in a system actively synthesizing hexose 6-phosphates from [U-14C]ribose 5-phosphate by reactions catalysed by enzymes prepared from acetone-dried powder of rat liver; no reactions involving 14C-labelled volatile compounds were detected. Similarly the fixation of 14C-labelled volatile compounds into hexose 6-phosphate could not be detected. 2. A complete carbon balance was made for the reactants, intermediates and products of the reactions involved in the conversion of ribose 5-phosphate into hexose 6-phosphate by enzymes of rat liver. Five additional intermediates of pentose 5-phosphate metabolism in liver were detected, namely D-manno-heptulose 7-phosphate, D-altro-heptulose 1,7-bisphosphate, D-glycero-D-ido-octulose 1,8-bisphosphate, D-glycero-D-altro-octulose 1,8-bisphosphate and D-arabinose 5-phosphate. 3. D-Arabinose 5-phosphate was found to be utilized by a rat liver enzyme preparation to produce both hexose 6-phosphate and triose phosphate. 4. D-Arabinose 5-phosphate was reversibly converted into other pentose 5-phosphates. Paper chromatographic and enzymic evidence indicated that the conversion involved an enzyme tentatively named arabinose phosphate 2-epimerase, which catalyses the following reaction: D-arabinose 5-P in equilibrium D-ribose-5-P. 5. A variety of rat tissues also utilized D-arabinose 5-phosphate to produce both hexose 6-phosphate and triose phosphate and at a rate comparable with that obtained with D-ribose 5-phosphate. 6. A new reaction sequence for the non-oxidative pentose phosphate pathway in liver is proposed.  相似文献   

15.
Isolated rat hepatocytes were incubated with [3-(14)C]xylitol or d-[3-(14)C]xylulose plus xylitol or glucose at substrate concentrations. The glucose formed was isolated and degraded to give the relative specific radioactivities in each carbon atom. C-4 of glucose had the highest specific radioactivity, followed by C-3, with half to one-fifth that of C-4. Only about 1% of the total radioactivity was in C-1. The data are compared with the predictions of the classical pentose phosphate cycle [Horecker, Gibbs, Klenow & Smyrniotis (1954) J. Biol. Chem.207, 393-403], and the proposed new version of the pentose phosphate cycle in liver [Longenecker & Williams (1980) Biochem. J.188, 847-857], which they denoted as the ;L-type pentose cycle'. The Williams pathway predicts that the specific radioactivity of C-1 of glucose should be half that of C-4 (after correction for approximately equal labelling on C-3 and C-4 of hexose phosphate in the pathway involving fructose 1,6-bisphosphatase). The actual labelling in C-1 is 20-350-fold less than this. When the hepatocytes are incubated with phenazine methosulphate, to stimulate the oxidative branch of the pentose phosphate cycle, the predicted relationship between (C-2/C-3) and (C-1/C-3) ratios of specific radio-activities is nearly exactly in accord with the classical pentose phosphate cycle. Glucose and glucose 6-phosphate were isolated and degraded from an incubation of hepatocytes from starved/re-fed rats with [3-(14)C]xylitol. Although the patterns were of the classical type, there was more randomization of (14)C into C-2 and C-1 in the glucose 6-phosphate isolated at the end of the incubation than in the glucose which was continuously produced.  相似文献   

16.
1. Expressions are derived for the steady-state measurement of the quantitative contribution of the liver-type pentose phosphate cycle to glucose metabolism by tissues. One method requires the metabolism of [5-14C]glucose followed by the isolation and degradation of glucose 6-phosphate. The second procedure involves the metabolism of [2-14C]glucose and the isolation and degradation of a triose phosphate derivative, usually lactate or glycerol. 2. Measurements of 14C in C-2 and C-5 of glucose 6-phosphate are required and the values of the C-2/C-5 ratios can be used to calculate the quantitative contribution of the L-type pentose cycle in all tissues. 3. The measurement of 14C in C-1, C-2 and C-3 of triose phosphate derivatives can be used to calculate the quantitative contribution of the L-type pentose cycle relative to glycolysis. 4. The effect of transaldolase and transketolase exchange reactions, reactions of gluconeogenesis and non-oxidative formation of pentose 5-phosphate, isotopic equilibration of triose phosphate pools and isotopic equilibration of fructose 6-phosphate and glucose 6-phosphate, which could interfere with a clear interpretation of the data using [2-14C]- and [5-14C]glucose are discussed.  相似文献   

17.
Hepatocytes were isolated from the livers of fed rats and incubated with a mixture of glucose (10 mM), ribose (1 mM), mannose (4 mM), glycerol (3 mM), acetate (1.25 mM), and ethanol (5 mM) with one substrate labelled with 14C in any given incubation. Incorporation of label into CO2, glucose, glycogen, lipid glycerol and fatty acids, acetate and C-1 of glucose was measured at 20 and 40 min after the start of the incubation. The data (about 48 measurements for each interval) were used in conjunction with a single-compartment model of the reactions of the gluconeogenic, glycolytic and pentose phosphate pathways and a simplified model of the relevant mitochondrial reactions. An improved method of computer analysis of the equations describing the flow of label through each carbon atom of each metabolite under steady-state conditions was used to compute values for the 34 independent flux parameters in this model. A good fit to the data was obtained, thereby permitting good estimates of most of the fluxes in the pathways under consideration. The data show that: net flux above the level of the triose phosphates is gluconeogenic; label in the hexose phosphates is fully equilibrated by the second 20 min interval; the triose phosphate isomerase step does not equilibrate label between the triose phosphates; substrate cycles are operating at the glucose-glucose 6-phosphate, fructose 6-phosphate-fructose 1,6-bisphosphate and phosphoenolpyruvate-pyruvate-oxaloacetate cycles; and, although net flux through the enzymes catalysing the non-oxidative steps of the pentose phosphate pathway is small, bidirectional fluxes are large.  相似文献   

18.
Metabolism of arabinose 5-P, ribose 5-P and glucose 6-P in permeabilized and resealed Morris hepatoma 5123TC cells was investigated by measuring the contribution of these compounds to nucleic acid biosynthesis. The level of [14C]-arabinose (non-phosphorylated) incorporation into nucleic acids was slight, presumably due to the low activity of the transport system or the absence or low activity of a specific 'kinase' enzyme. The permeabilizing procedure involved the brief treatment of Morris hepatoma 5123TC cells with lysolecithin and resulted in a cell population which was permeable to charged compounds i.e. sugar phosphates and nucleotides, that otherwise could not cross the plasma membrane. The permeabilized (and resealed cells) retained normal cellular morphology and intactness of specific organelles as judged by the maintenance of functional properties. Following permeabilization, these cells resealed when transferred back to normal growth medium, and continued to divide and increase at the same rates as control non-permeabilized cell cultures. The permeabilized cells incorporated deoxyribonucleotides ([methyl -3H]-TTP) into DNA at a linear rate of 0.047 nmol per 10(7) cells min-1, representing 90-100 per cent of the DNA synthesis rate in vivo. The permeabilization technique, when coupled with procedures to establish cell synchrony, permitted the comparative estimate of the contributions of [14C]-labelled arabinose 5-P, ribose 5-P and glucose 6-P to RNA, DNA, amino acids, CO2, lactate and sugar mono- and bisphosphates. The percentage of [14C]-isotope incorporated into total nucleic acids by these three labelled sugar phosphates were 2.3, 4.9 and 6.3 respectively. Possible reasons for the lower incorporation of 14C from arabinose 5-P are given. The results are consistent with the proposal that arabinose 5-P, an intermediate of the L-type pentose pathway activity of 5123TC cells, was incorporated into nucleic acids by its interconversion with ribulose 5-P and ribose 5-P and thus into PRPP. This study represents the first report of sugar phosphate as opposed to free sugar metabolism by tumour cells in culture.  相似文献   

19.
1. Glucose 5-phosphate was synthesized from ribose 5-phosphate by an enzyme extract prepared from an acetone-dried powder of rat liver. Three rates of ribose 5-phosphate utilization were observed during incubation for 17 h. An analysis of intermediates and products formed throughout the incubation revealed that as much as 20% of the substrate carbon could not be accounted for. 2. With [1-14C]ribose 5-phosphate as substrate, the specific radioactivity of [14C]glucose 6-phosphate formed was determined at 1, 2, 5 and 30 min and 3, 8 and 17 h. It increased rapidly to 1.9-fold the initial specific radioactivity of [1-14C]ribose 5-phosphate at 3 h and then decreased to a value approximately equal to that of the substrate at 6 h, and finally at 17 h reached a value 0.8-fold that of the initial substrate [1-14C]ribose 5-phosphate. 3. The specific radioactivity of [14C]ribose 5-phosphate decreased to approx. 50% of its inital value during the first 3 h of the incubation and thereafter remained unchanged. 4. The distribution of 14C in the six carbon atoms of [14C]glucose 6-phosphate formed from [1-14C]ribose 5-phosphate at 1, 2, 5 and 30 min and 3, 8 and 17 h was determined. The early time intervals (1--30 min) were characterized by large amounts of 14C in C-2 and in C-6 and with C-1 and C-3 being unlabelled. In contrast, the later time intervals (3--17 h) were characterized by the appearance of 14C in C-1 and C-3 and decreasing amounts of 14C in C-2 and C-6. 5. It is concluded that neither the currently accepted reaction sequence for the non-oxidative pentose phosphate pathway nor the 'defined' pentose phosphate-cycle mechanism can be reconciled with the labelling patterns observed in glucose 6-phosphate formed during the inital 3 h of the incubation.  相似文献   

20.
Clostridial fermentation of cellulose and hemicellulose relies on the cellular physiology controlling the metabolism of the cellulosic hexose sugar (glucose) with respect to the hemicellulosic pentose sugars (xylose and arabinose) and the hemicellulosic hexose sugars (galactose and mannose). Here, liquid chromatography–mass spectrometry and stable isotope tracers in Clostridium acetobutylicum were applied to investigate the metabolic hierarchy of glucose relative to the different hemicellulosic sugars towards two important biofuel precursors, acetyl‐coenzyme A and butyryl‐coenzyme A. The findings revealed constitutive metabolic hierarchies in C. acetobutylicum that facilitate (i) selective investment of hemicellulosic pentoses towards ribonucleotide biosynthesis without substantial investment into biofuel production and (ii) selective contribution of hemicellulosic hexoses through the glycolytic pathway towards biofuel precursors. Long‐term isotopic enrichment demonstrated incorporation of both pentose sugars into pentose‐phosphates and ribonucleotides in the presence of glucose. Kinetic labelling data, however, showed that xylose was not routed towards the biofuel precursors but there was minor contribution from arabinose. Glucose hierarchy over the hemicellulosic hexoses was substrate‐dependent. Kinetic labelling of hexose‐phosphates and triose‐phosphates indicated that mannose was assimilated but not galactose. Labelling of both biofuel precursors confirmed this metabolic preference. These results highlight important metabolic considerations in the accounting of clostridial mixed‐sugar utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号