首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MthK is a Ca2+-gated K+ channel from Methanobacterium autotrophicum. The crystal structure of the MthK channel in a Ca2+-bound open state was previously determined at 3.3 A and revealed an octameric gating ring composed of eight intracellular ligand-binding RCK (regulate the conductance of K+) domains. It was suggested that Ca2+ binding regulates the gating ring conformation, which in turn leads to the opening and closing of the channel. However, at 3.3 AA resolution, the molecular details of the structure are not well defined, and many of the conclusions drawn from that structure were hypothetical. Here we have presented high resolution structures of the MthK RCK domain with and without Ca2+ bound from three different crystals. These structures revealed a dimeric architecture of the RCK domain and allowed us to visualize the Ca2+ binding and protein-protein contacts at atomic detail. The dimerization of RCK domains is also conserved in other RCK-regulated K+ channels and transporters, suggesting that the RCK dimer serves as a basic unit in the gating ring assembly. A comparison of these dimer structures confirmed that the dimer interface is indeed flexible as suggested previously. However, the conformational change at the flexible interface is of an extent smaller than the previously hypothesized gating ring movement, and a reconstruction of these dimers into octamers by applying protein-protein contacts at the fixed interface did not generate enclosed gating rings. This indicated that there is a high probability that the previously defined fixed interface may not be fixed during channel gating. In addition to the structural studies, we have also carried out biochemical analyses and have shown that near physiological pH, isolated RCK domains form a stable octamer in solution, supporting the notion that the formation of octameric gating ring is a functionally relevant event in MthK gating. Additionally, our stability studies indicated that Ca2+ binding stabilizes the RCK domains in this octameric state.  相似文献   

2.
Large conductance, voltage- and Ca2+-activated K+ (BK(Ca)) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four alpha subunits of BK(Ca) may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the MthK channel suggests that the RCK domains reorient with one another upon Ca2+ binding to change the gating ring conformation and open the activation gate. Here we report that the conformational changes of the NH2 terminus of RCK1 (AC region) modulate BK(Ca) gating. Such modulation depends on Ca2+ occupancy and activation states, but is not directly related to the Ca2+ binding sites. These results demonstrate that AC region is important in the allosteric coupling between Ca2+ binding and channel opening. Thus, the conformational changes of the AC region within each RCK domain is likely to be an important step in addition to the reorientation of RCK domains leading to the opening of the BK(Ca) activation gate. Our observations are consistent with a mechanism for Ca2+-dependent activation of BK(Ca) channels such that the AC region inhibits channel activation when the channel is at the closed state in the absence of Ca2+; Ca2+ binding and depolarization relieve this inhibition.  相似文献   

3.
MthK is a calcium-gated, inwardly rectifying, prokaryotic potassium channel. Although little functional information is available for MthK, its high-resolution structure is used as a model for eukaryotic Ca(2+)-dependent potassium channels. Here we characterize in detail the main gating characteristics of MthK at the single-channel level with special focus on the mechanism of Ca(2+) activation. MthK has two distinct gating modes: slow gating affected mainly by Ca(2+) and fast gating affected by voltage. Millimolar Ca(2+) increases MthK open probability over 100-fold by mainly increasing the frequency of channel opening while leaving the opening durations unchanged. The Ca(2+) dose-response curve displays an unusually high Hill coefficient (n = approximately 8), suggesting strong coupling between Ca(2+) binding and channel opening. Depolarization affects both the fast gate by dramatically reducing the fast flickers, and to a lesser extent, the slow gate, by increasing MthK open probability. We were able to capture the mechanistic features of MthK with a modified MWC model.  相似文献   

4.
In MthK, a Ca2+-gated K+ channel from Methanobacterium thermoautotrophicum, eight cytoplasmic RCK domains form an octameric gating ring that controls the intracellular gate of the ion conduction pore. The binding of Ca2+ ions to the RCK domains alters the conformation of the gating ring, thereby opening the gate. In the present study, we examined the Ca2+- and pH-regulated gating and the rectifying conduction properties of MthK at the single-channel level. The open probability (Po) of MthK exhibits a sigmoidal relationship with intracellular [Ca2+], and a Hill coefficient >1 is required to describe the dependence of Po on [Ca2+], suggesting cooperative Ca2+ activation of the channel. Additionally, intracellular Ca2+ also blocks the MthK pore in a voltage-dependent manner, rendering an apparently inwardly rectifying I-V relation. Intracellular pH has a dual effect on MthK gating. Below pH 7.5, the channel becomes insensitive to Ca2+. This occurs because the gating ring is structurally unstable at this pH and tends to disassemble (Ye, S., Y. Li, L. Chen, and Y. Jiang. 2006. Cell. 126:1161-1173). In contrast, above pH 7.5, a further increase in pH shifts the Po-[Ca2+] relation towards a lower Ca2+ concentration, augments Po at saturating [Ca2+], and activates the channel even in the absence of Ca2+. Channel activity is marked by bursts of rapid openings and closings separated by relatively longer interburst closings. The duration of interburst closing and the burst length are highly Ca2+ and pH dependent, whereas the kinetics of intraburst events is Ca2+ and pH independent. The rapid intraburst openings and closings are also observed with the isolated MthK pore lacking the attached intracellular gating ring. The fast kinetic events, independent of both Ca2+ and pH, therefore appear to be determined by processes occurring within the ion conduction pore, whereas the slow events reflect the gating process controlled by Ca2+ and pH through the gating ring.  相似文献   

5.
Voltage-dependent K(+) channels can undergo a gating process known as C-type inactivation, which involves entry into a nonconducting state through conformational changes near the channel's selectivity filter. C-type inactivation may involve movements of transmembrane voltage sensor domains, although the mechanisms underlying this form of inactivation may be heterogeneous and are often unclear. Here, we report on a form of voltage-dependent inactivation gating observed in MthK, a prokaryotic K(+) channel that lacks a canonical voltage sensor and may thus provide a reduced system to inform on mechanism. In single-channel recordings, we observe that Po decreases with depolarization, with a half-maximal voltage of 96 ± 3 mV. This gating is kinetically distinct from blockade by internal Ca(2+) or Ba(2+), suggesting that it may arise from an intrinsic inactivation mechanism. Inactivation gating was shifted toward more positive voltages by increasing external [K(+)] (47 mV per 10-fold increase in [K(+)]), suggesting that K(+) binding at the extracellular side of the channel stabilizes the open-conductive state. The open-conductive state was stabilized by other external cations, and selectivity of the stabilizing site followed the sequence: K(+) ≈ Rb(+) > Cs(+) > Na(+) > Li(+) ≈ NMG(+). Selectivity of the stabilizing site is weaker than that of sites that determine permeability of these ions, suggesting that the site may lie toward the external end of the MthK selectivity filter. We could describe MthK gating over a wide range of positive voltages and external [K(+)] using kinetic schemes in which the open-conductive state is stabilized by K(+) binding to a site that is not deep within the electric field, with the voltage dependence of inactivation arising from both voltage-dependent K(+) dissociation and transitions between nonconducting (inactivated) states. These results provide a quantitative working hypothesis for voltage-dependent, K(+)-sensitive inactivation gating, a property that may be common to other K(+) channels.  相似文献   

6.
Candidate amino acids involved in H+ gating of acid-sensing ion channel 1a   总被引:1,自引:0,他引:1  
Acid-sensing ion channels are ligand-gated cation channels, gated by extracellular H(+). H(+) is the simplest ligand possible, and whereas for larger ligands that gate ion channels complex binding sites in the three-dimensional structure of the proteins have to be assumed, H(+) could in principle gate a channel by titration of a single amino acid. Experimental evidence suggests a more complex situation, however. For example, it has been shown that extracellular Ca(2+) ions compete with H(+); probably Ca(2+) ions bound to the extracellular loop of ASICs stabilize the closed state of the channel and have to be displaced before the channel can open. In such a scheme, amino acids contributing to Ca(2+) binding would also be candidates contributing to H(+) gating. In this study we systematically screened more than 40 conserved, charged amino acids in the extracellular region of ASIC1a for a possible contribution to H(+) gating. We identified four amino acids where substitution strongly affects H(+) gating: Glu(63), His(72)/His(73), and Asp(78). These amino acids are highly conserved among H(+)-sensitive ASICs and are candidates for the "H(+) sensor" of ASICs.  相似文献   

7.
Large-conductance Ca(2+)-activated K(+) channels can be activated by membrane voltage in the absence of Ca(2+) binding, indicating that these channels contain an intrinsic voltage sensor. The properties of this voltage sensor and its relationship to channel activation were examined by studying gating charge movement from mSlo Ca(2+)-activated K(+) channels in the virtual absence of Ca(2+) (<1 nM). Charge movement was measured in response to voltage steps or sinusoidal voltage commands. The charge-voltage relationship (Q-V) is shallower and shifted to more negative voltages than the voltage-dependent open probability (G-V). Both ON and OFF gating currents evoked by brief (0.5-ms) voltage pulses appear to decay rapidly (tau(ON) = 60 microseconds at +200 mV, tau(OFF) = 16 microseconds at -80 mV). However, Q(OFF) increases slowly with pulse duration, indicating that a large fraction of ON charge develops with a time course comparable to that of I(K) activation. The slow onset of this gating charge prevents its detection as a component of I(gON), although it represents approximately 40% of the total charge moved at +140 mV. The decay of I(gOFF) is slowed after depolarizations that open mSlo channels. Yet, the majority of open channel charge relaxation is too rapid to be limited by channel closing. These results can be understood in terms of the allosteric voltage-gating scheme developed in the preceding paper (Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277-304). The model contains five open (O) and five closed (C) states arranged in parallel, and the kinetic and steady-state properties of mSlo gating currents exhibit multiple components associated with C-C, O-O, and C-O transitions.  相似文献   

8.
It has been suggested that the large conductance Ca(2)+-activated K(+) channel contains one or more domains known as regulators of K(+) conductance (RCK) in its cytosolic C terminus. Here, we show that the second RCK domain (RCK2) is functionally important and that it forms a heterodimer with RCK1 via a hydrophobic interface. Mutant channels lacking RCK2 are nonfunctional despite their tetramerization and surface expression. The hydrophobic residues that are expected to form an interface between RCK1 and RCK2, based on the crystal structure of the bacterial MthK channel, are well conserved, and the interactions of these residues were confirmed by mutant cycle analysis. The hydrophobic interaction appears to be critical for the Ca(2+)-dependent gating of the large conductance Ca(2+)-activated K(+) channel.  相似文献   

9.
The gating modifier toxins are a large family of protein toxins that modify either activation or inactivation of voltage-gated ion channels. omega-Aga-IVA is a gating modifier toxin from spider venom that inhibits voltage-gated Ca(2+) channels by shifting activation to more depolarized voltages. We identified two Glu residues near the COOH-terminal edge of S3 in the alpha(1A) Ca(2+) channel (one in repeat I and the other in repeat IV) that align with Glu residues previously implicated in forming the binding sites for gating modifier toxins on K(+) and Na(+) channels. We found that mutation of the Glu residue in repeat I of the Ca(2+) channel had no significant effect on inhibition by omega-Aga-IVA, whereas the equivalent mutation of the Glu in repeat IV disrupted inhibition by the toxin. These results suggest that the COOH-terminal end of S3 within repeat IV contributes to forming a receptor for omega-Aga-IVA. The strong predictive value of previous mapping studies for K(+) and Na(+) channel toxins argues for a conserved binding motif for gating modifier toxins within the voltage-sensing domains of voltage-gated ion channels.  相似文献   

10.
We used a bacterial complementation screen with the LB2003 K(+) uptake-deficient strain of Escherichia coli to analyze residues that are critical to Methanobacterium thermoautotrophicum potassium channel (MthK) function. Channel expression and relative structural integrity of mutants were analyzed by SDS-PAGE and Western blot, and mechanisms underlying altered mutant channel function were analyzed using single-channel recording. We observed that wild-type MthK expression complements K(+) uptake deficiency. Although MthK function was previously thought to require Ca(2+) in the millimolar range, we demonstrate that at elevated temperatures the requirement for Ca(2+) becomes much lower. Mutations at the cytoplasmic mouth of the MthK pore can blunt complementation, indicating that those mutant channels cannot support K(+) uptake. In contrast, substitutions at the Ca(2+)-binding site in the MthK RCK domain did not decrease complementation compared with wild-type MthK. We focused on mutations to residues Glu-92 and Glu-96, which may form the narrowest part of the pore in the channel's closed state. Mutations at these residues can yield slight changes in single-channel conductance that do not necessarily correlate with effects on bacterial complementation. However, mutations at Glu-92 could also change channel open probability, and these changes correlated with complementation effects. The most striking of these mutations was E92A, which nearly eliminated bacterial complementation by decreasing the open probability of MthK. Our results suggest that the small, hydrophobic alanine side chain at the K(+) channel bundle crossing may generate an intrinsically stable structure, which in turn shifts the closed-to-open-state equilibrium toward the closed state.  相似文献   

11.
Magidovich E  Yifrach O 《Biochemistry》2004,43(42):13242-13247
Ion channels open and close their pore in a process called gating. On the basis of crystal structures of two voltage-independent K(+) channels, KcsA and MthK, a conformational change for gating has been proposed whereby the inner helix bends at a glycine hinge point (gating hinge) to open the pore and straightens to close it. Here we ask if a similar gating hinge conformational change underlies the mechanics of pore opening of two eukaryotic voltage-dependent K(+) channels, Shaker and BK channels. In the Shaker channel, substitution of the gating hinge glycine with alanine and several other amino acids prevents pore opening, but the ability to open is recovered if a secondary glycine is introduced at an adjacent position. A proline at the gating hinge favors the open state of the Shaker channel as if by preventing inner helix straightening. In BK channels, which have two adjacent glycine residues, opening is significantly hindered in a graded manner with single and double mutations to alanine. These results suggest that K(+) channels, whether ligand- or voltage-dependent, open when the inner helix bends at a conserved glycine gating hinge.  相似文献   

12.
Activation of large conductance Ca(2+)-activated K(+) channels is controlled by both cytoplasmic Ca(2+) and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca(2+)-activated K(+) currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca(2+) (<1 nM). In response to a voltage step, I(K) activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of I(K) relaxation [tau(I(K))] exhibits a complex voltage dependence that is inconsistent with models that contain a single rate limiting step. tau(I(K)) increases weakly with voltage from -500 to -20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = -0.29 e). Similarly, the steady state G(K)-V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z congruent with 0.4 e) at more negative voltages, where P(o) = 10(-5)-10(-6). These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca(2+), this allosteric mechanism results in a gating scheme with five closed (C) and five open (O) states, where the majority of the channel's voltage dependence results from rapid C-C and O-O transitions, whereas the C-O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca(2+)-activated K(+) channel voltage gating, but also have important implications for understanding the mechanism of Ca(2+) sensitivity.  相似文献   

13.
RCK (regulator of conductance of potassium) domains form a family of ligand-binding domains found in many prokaryotic K+ channels and transport proteins. Although many RCK domains contain an apparent nucleotide binding motif, some are known instead to bind Ca2+, which can then facilitate channel opening. Here we report on the molecular architecture and ligand activation properties of an RCK-containing potassium channel cloned from the prokaryote Thermoplasma volcanium. This channel, called TvoK, is of an apparent molecular mass and subunit composition that is consistent with the hetero-octameric configuration hypothesized for the related MthK (Methanobacterium thermoautotrophicum potassium) channel, in which four channel-tethered RCK domains coassemble with four soluble (untethered) RCK domains. The expression of soluble TvoK RCK subunits arises from an unconventional UUG start codon within the TvoK gene; silent mutagenesis of this alternative start codon abolishes expression of the soluble form of the TvoK RCK domain. Using single channel recording of purified, reconstituted TvoK, we found that the channel is activated by Ca2+ as well as Mg2+, Mn2+, and Ni2+. This non-selective divalent activation is in contrast with the activation properties of MthK, which is selectively activated by Ca2+. Transplantation of the TvoK RCK domain into MthK generates a channel that can be activated by Mg2+, illustrating that the Mg2+ binding site is likely contained within the RCK domain. We present a working hypothesis for TvoK gating in which the binding of either Ca2+ or Mg2+ can contribute approximately 5 kcal/mol toward stabilization of the open conformation of the channel.  相似文献   

14.
Large conductance, Ca(2+)- and voltage-activated K(+) (BK) channels are exquisitely regulated to suit their diverse roles in a large variety of physiological processes. BK channels are composed of pore-forming alpha subunits and a family of tissue-specific accessory beta subunits. The smooth muscle-specific beta1 subunit has an essential role in regulating smooth muscle contraction and modulates BK channel steady-state open probability and gating kinetics. Effects of beta1 on channel's gating energetics are not completely understood. One of the difficulties is that it has not yet been possible to measure the effects of beta1 on channel's intrinsic closed-to-open transition (in the absence of voltage sensor activation and Ca(2+) binding) due to the very low open probability in the presence of beta1. In this study, we used a mutation of the alpha subunit (F315Y) that increases channel openings by greater than four orders of magnitude to directly compare channels' intrinsic open probabilities in the presence and absence of the beta1 subunit. Effects of beta1 on steady-state open probabilities of both wild-type alpha and the F315Y mutation were analyzed using the dual allosteric HA model. We found that mouse beta1 has two major effects on channel's gating energetics. beta1 reduces the intrinsic closed-to-open equilibrium that underlies the inhibition of BK channel opening seen in submicromolar Ca(2+). Further, P(O) measurements at limiting slope allow us to infer that beta1 shifts open channel voltage sensor activation to negative membrane potentials, which contributes to enhanced channel opening seen at micromolar Ca(2+) concentrations. Using the F315Y alpha subunit with deletion mutants of beta1, we also demonstrate that the small N- and C-terminal intracellular domains of beta1 play important roles in altering channel's intrinsic opening and voltage sensor activation. In summary, these results demonstrate that beta1 has distinct effects on BK channel intrinsic gating and voltage sensor activation that can be functionally uncoupled by mutations in the intracellular domains.  相似文献   

15.
16.
The pore properties and the reciprocal interactions between permeant ions and the gating of KCNQ channels are poorly understood. Here we used external barium to investigate the permeation characteristics of homomeric KCNQ1 channels. We assessed the Ba(2+) binding kinetics and the concentration and voltage dependence of Ba(2+) steady-state block. Our results indicate that extracellular Ba(2+) exerts a series of complex effects, including a voltage-dependent pore blockade as well as unique gating alterations. External barium interacts with the permeation pathway of KCNQ1 at two discrete and nonsequential sites. (a) A slow deep Ba(2+) site that occludes the channel pore and could be simulated by a model of voltage-dependent block. (b) A fast superficial Ba(2+) site that barely contributes to channel block and mostly affects channel gating by shifting rightward the voltage dependence of activation, slowing activation, speeding up deactivation kinetics, and inhibiting channel inactivation. A model of voltage-dependent block cannot predict the complex impact of Ba(2+) on channel gating in low external K(+) solutions. Ba(2+) binding to this superficial site likely modifies the gating transitions states of KCNQ1. Both sites appear to reside in the permeation pathway as high external K(+) attenuates Ba(2+) inhibition of channel conductance and abolishes its impact on channel gating. Our data suggest that despite the high degree of homology of the pore region among the various K(+) channels, KCNQ1 channels display significant structural and functional uniqueness.  相似文献   

17.
omega-Grammotoxin SIA (GrTx) is a 36 amino acid residue protein toxin from spider venom that inhibits P/Q and N-type voltage-gated Ca(2+) channels by modifying voltage-dependent gating. We determined the three-dimensional structure of GrTx using NMR spectroscopy. The toxin adopts an "inhibitor cystine knot" motif composed of two beta-strands (Leu19-Cys21 and Cys30-Trp32) and a beta-bulge (Trp6, Gly7-Cys30) with a +2x, -1 topology, which are connected by four chain reversals. Although GrTx was originally identified as an inhibitor of voltage-gated Ca(2+) channel, it also binds to K(+) channels with lower affinity. A similar cross-reaction was observed for Hanatoxin1 (HaTx), which binds to the voltage-sensing domains of K(+) and Ca(2+) channels with different affinities. A detailed comparison of the GrTx and HaTx structures identifies a conserved face containing a large hydrophobic patch surrounded by positively charged residues. The slight differences in the surface shape, which result from the orientation of the surface aromatic residues and/or the distribution of the charged residues, may explain the differences in the binding affinity of these gating modifiers with different voltage-gated ion channels.  相似文献   

18.
19.
Small conductance calcium-gated potassium (SK) channels share an overall topology with voltage-gated potassium (K(v)) channels, but are distinct in that they are gated solely by calcium (Ca(2+)), not voltage. For K(v) channels there is strong evidence for an activation gate at the intracellular end of the pore, which was not revealed by substituted cysteine accessibility of the homologous region in SK2 channels. In this study, the divalent ions cadmium (Cd(2+)) and barium (Ba(2+)), and 2-aminoethyl methanethiosulfonate (MTSEA) were used to probe three sites in the SK2 channel pore, each intracellular to (on the selectivity filter side of) the region that forms the intracellular activation gate of voltage-gated ion channels. We report that Cd(2+) applied to the intracellular side of the membrane can modify a cysteine introduced to a site (V391C) just intracellular to the putative activation gate whether channels are open or closed. Similarly, MTSEA applied to the intracellular side of the membrane can access a cysteine residue (A384C) that, based on homology to potassium (K) channel crystal structures (i.e., the KcsA/MthK model), resides one amino acid intracellular to the glycine gating hinge. Cd(2+) and MTSEA modify with similar rates whether the channels are open or closed. In contrast, Ba(2+) applied to the intracellular side of the membrane, which is believed to block at the intracellular end of the selectivity filter, blocks open but not closed channels when applied to the cytoplasmic face of rSK2 channels. Moreover, Ba(2+) is trapped in SK2 channels when applied to open channels that are subsequently closed. Ba(2+) pre-block slows MTSEA modification of A384C in open but not in closed (Ba(2+)-trapped) channels. The findings suggest that the SK channel activation gate resides deep in the vestibule of the channel, perhaps in the selectivity filter itself.  相似文献   

20.
Biophysical properties of the Ca(2+)-activated nonselective cation channel expressed in brain capillaries were studied in inside-out patches from primary cultures of rat brain microvascular endothelial cells. At -40 mV membrane potential, open probability (P(o)) was activated by cytosolic [Ca(2+)] > 1 micro M and was half-maximal at approximately 20 micro M. Increasing [Ca(2+)] stimulated opening rate with little effect on closing rate. At constant [Ca(2+)], P(o) was voltage-dependent, and effective gating charge corresponded to 0.6 +/- 0.1 unitary charges. Depolarization accelerated opening and slowed closing, thereby increasing apparent affinity for Ca(2+). Within approximately 1 min of excision, P(o) declined to a lower steady state with decreased sensitivity toward activating Ca(2+) when studied at a fixed voltage, and toward activating voltage when studied at a fixed [Ca(2+)]. Deactivated channels opened approximately 5-fold slower and closed approximately 10-fold faster. The sulfhydryl-reducing agent dithiotreitol (1 mM) completely reversed acceleration of closing rate but failed to recover opening rate. Single-channel gating was complex; distributions of open and closed dwell times contained at least four and five exponential components, respectively. The longest component of the closed-time distribution was markedly sensitive to both [Ca(2+)] and voltage. We conclude that the biophysical properties of gating of this channel are remarkably similar to those of large-conductance Ca(2+)-activated K(+) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号