共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
K Klausen 《Journal of applied physiology》1966,21(2):609-616
4.
L C Senay 《Journal of applied physiology》1975,38(4):570-575
Five men underwent a 2-wk exercise regimen and were then exposed to 45 degrees C db, 28 degrees C wb, wind speed 1 m/s for 12 h while at rest. Body weight was maintained with 0.1% saline. One week later the exposure was repeated without rehydration. After heat acclimatization, the 12-h experiments were repeated. Frequent body weights, rectal temperatures, and venous blood samples were obtained. Results indicated that hemodilution upon acute heat exposure is partially due to protein influx into the vascular volume and the hemodilution allowed considerable loss of body water before plasma volume returned to preexposure values. Water within the vascular volume appeared to be in equilibrium with that in other body compartments before but not after acclimatization. Acclimatization altered the rate of protein transfer (and water movement) such that hemodilution was accomplished more rapidly than before acclimatization. Early hemodilution was quite labile and depended upon subject hydration during the first hour of heat exposure. 相似文献
5.
Physiological and metabolic responses to work in heat with graded hypohydration in tropical subjects
G Pichan K Sridharan R K Gauttam 《European journal of applied physiology and occupational physiology》1988,58(1-2):214-218
Studies were conducted on 25 healthy male volunteers aged 20-25 years drawn randomly from the tropical regions of India. The subjects initially underwent an 8 day heat acclimatization schedule with 2 hours moderate work in a climatic chamber at 45 degrees C DB and 30% RH. These heat acclimatized subjects were then hypohydrated to varying levels of body weight deficits, i.e. 1.3 +/- 0.03, 2.3 +/- 0.04 and 3.3 +/- 0.04%, by a combination of water restriction and moderate exercise inside the hot chamber. After 2 hours rest in a thermoneutral room (25 +/- 1 degree C) the hypohydrated subjects were tested on a bicycle ergometer at a fixed submaximal work rate (40 W, 40 min) in a hot dry condition (45 degrees C DB, 30% RH, 34 degrees C WBGT). Significant increases in exercise heart rate and oral temperature were observed in hypohydrated subjects as compared to euhydration. Sweat rate increased with 1% and 2% hypohydration as compared to euhydration, but a significant decrease was observed with 3% hypohydration. Na+ & K+ concentrations in arm sweat increased with increase in the level of hypohydration. Oxygen consumption increased significantly only when hypohydration was about 2% or more. It appears that the increased physiological strain observed in tropical subjects working in heat with graded hypohydration is not solely due to reduced sweat rates. 相似文献
6.
7.
Physiological responses in rufous-collared sparrows to thermal acclimation and seasonal acclimatization 总被引:1,自引:0,他引:1
Karin Evelyn Maldonado Grisel Cavieres Claudio Veloso Mauricio Canals Pablo Sabat 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2009,179(3):335-343
A large number of physiological acclimation studies assume that flexibility in a certain trait is both adaptive and functionally important for organisms in their natural environment; however, it is not clear how an organism’s capacity for temperature acclimation translates to the seasonal acclimatization that these organisms must accomplish. To elucidate this relationship, we measured BMR and TEWL rates in both field-acclimatized and laboratory-acclimated adult rufous-collared sparrows (Zonotrichia capensis). Measurements in field-acclimatized birds were taken during the winter and summer seasons; in the laboratory-acclimated birds, we took our measurements following 4 weeks at either 15 or 30°C. Although BMR and TEWL rates did not differ between winter and summer in the field-acclimatized birds, laboratory-acclimated birds exposed to 15°C exhibited both a higher BMR and TEWL rate when compared to the birds acclimated to 30°C and the field-acclimatized birds. Because organ masses seem to be similar between field and cold-acclimated birds whereas BMR is higher in cold-acclimated birds, the variability in BMR cannot be explained completely by adjustments in organ masses. Our findings suggest that, although rufous-collared sparrows can exhibit thermal acclimation of physiological traits, sparrows do not use this capacity to cope with minor to moderate fluctuations in environmental conditions. Our data support the hypothesis that physiological flexibility in energetic traits is a common feature of avian metabolism. 相似文献
8.
9.
10.
Mathai ML Hübschle T McKinley MJ 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,279(5):R1821-R1826
The effect of central angiotensin AT(1) receptor blockade on thermoregulation and water intake after heat exposure was investigated. Rats were placed in a chamber heated to 39 +/- 1 degrees C for 60 min and then returned to their normal cage (at 22 degrees C), and water intake was measured for 120 min. Artificial cerebrospinal fluid (5 microl) was injected intracerebroventricularly 60 min before heat exposure in five control rats. Colonic temperature increased from 37.22 +/- 0.21 to 40.68 +/- 0.31 degrees C after 60 min. In six rats injected intracerebroventricularly with 10 microg of the AT(1) antagonist losartan, colonic temperature increased from 37.41 +/- 0.27 to 41.72 +/- 0.28 degrees C after 60 min. This increase was significantly greater than controls (P < 0.03). Losartan-treated rats drank 1.1 +/- 0.4 ml of water compared with 5.9 +/- 0.77 ml (P < 0.002) drank by control animals, despite a similar body weight loss in the two groups. Central losartan did not inhibit the drinking response to intracerebroventricular carbachol in heated rats, suggesting that losartan treatment did not nonspecifically depress behavior. We conclude that central angiotensinergic mechanisms have a role in both thermoregulatory cooling in response to heat exposure and also the ensuing water intake. 相似文献
11.
12.
13.
J. Sen Gupta Y. V. Swamy G. Pichan G. P. Dimri 《International journal of biometeorology》1984,28(2):137-146
Studies have been conducted on six young healthy heat acclimatised Indians to determine the physiological changes in prolonged continuous work in thermally neutral and in hot dry and hot humid environments. Physiological responses in maximal efforts i.e. Vo2 max, VE max and Cf max were noted. In addition, duration in continuous work at three sub-maximal rate of work in three simulated environments were also noted. Physiological responses like Vo2, VE and Cf were noted every 15 minutes of work. Besides these responses, rectal temperature (Tre), mean skin temperature (Ts) and mean sweat rate were also recorded during continuous work.Results indicated a significant decrease in maximum oxygen uptake capacity (Vo2 max) in heat with no change in maximum exercise ventilation (VE max) and maximum cardiac frequency. However, the fall in Vo2 max was more severe in the hot humid environment than in the hot dry climate. Cardiac frequency at fixed oxygen consumption of 1.0, 1.5 and 2.0 l/min was distinctly higher in the hot humid environment than in the hot dry and comfortable temperature. The duration in continuous physical effort in various grades of activities decreased in hot dry environment from that in the-comfortable climate and further decreased significantly in hot humid environment. The highest rate of sweating was observed during work in humid heat. The mean skin temperature (Ts) showed a fall in all the three rates of work in comfortable and hot dry conditions whereas in hot humid environment it showed a linear rise during the progress of work. The rectal temperature on the other hand maintained a near steady state while working at 65 and 82 watts in comfortable and hot dry environments but kept on rising during work in hot humid environment. At the highest work rate of 98 watts, the rectal temperature showed a steady increase even in the hot dry condition. It was thus concluded from the study that a hot humid climate imposes more constraints on the thermoregulatory system during work than in the hot dry condition because of less effective heat dissipation so resulting in reduced tolerance to work. 相似文献
14.
James D. Cotter Mark J. Patterson Nigel A. S. Taylor 《European journal of applied physiology and occupational physiology》1997,76(2):181-186
We investigated the impact of short-term, moderate humidity heat acclimation upon sweat distribution. Eight males completed
six daily heat exposures [cycling: ambient temperature 39.5 (0.2)°C, relative humidity 59.2 (0.8)%], during which auditory
canal temperature (T
ac) was maintained 1.4°C above pre-exposure levels for 70 min by manipulating the work rate. On days 1 and 6, T
ac and local sweat rates (m˙
sw: eight sites) were monitored. The pre-exposure, resting T
ac and the T
ac sweat threshold decreased from day 1 to day 6 [36.83 (0.05)°C vs 36.62 (0.05)°C, and 36.90 (0.05)°C vs 36.75 (0.05)°C, respectively;
both P<0.05]. However, the sweat-onset time, sweat sensitivity (Δm˙
sw/ΔT
ac) and established m˙
sw were unaltered (P > 0.05). There was also no evidence of a post-acclimation redistribution in established m˙
sw between the eight skin regions, though both the sweat sensitivity and established m˙
sw for the forehead and hand were significantly greater than at the remaining sites (P<0.05). It is concluded that the 5-day heat acclimation regimen provided only a minimal stimulus for sudomotor adaptation.
Accepted: 3 March 1997 相似文献
15.
16.
17.
Fetal circulatory responses to oxygen lack. 总被引:4,自引:0,他引:4
The knowledge on fetal and neonatal circulatory physiology accumulated by basic scientists and clinicians over the years has contributed considerably to the recent decline of perinatal morbidity and mortality. This review will summarize the peculiarities of the fetal circulation, the distribution of organ blood flow during normoxemia, and that during oxygen lack caused by various experimental perturbations. Furthermore, the relation between oxygen delivery and tissue metabolism during oxygen lack as well as evidence to support a new concept will be presented along with the principal cardiovascular mechanisms involved. Finally, blood flow and oxygen delivery to the principal fetal organs will be examined and discussed in relation to organ function. The fetal circulatory response to hypoxemia and asphyxia is a centralization of blood flow in favour of the brain, heart, and adrenals and at the expense of almost all peripheral organs, particularly of the lungs, carcass, skin and scalp. This response is qualitatively similar but quantitatively different under various experimental conditions. However, at the nadir of severe acute asphyxia the circulatory centralization cannot be maintained. Then there is circulatory decentralization, and the fetus will experience severe brain damage if not expire unless immediate resuscitation occurs. Future work in this field will have to concentrate on the important questions, what factors determine this collapse of circulatory compensating mechanisms in the fetus, how does it relate to neuronal damage, and how can the fetal brain be pharmacologically protected against the adverse effects of asphyxia. 相似文献
18.
19.
Fila G Badeck FW Meyer S Cerovic Z Ghashghaie J 《Journal of experimental botany》2006,57(11):2687-2695
In vitro-cultured plants typically show a low photosynthetic activity, which is considered detrimental to subsequent ex vitro acclimatization. Studies conducted so far have approached this problem by analysing the biochemical and photochemical aspects of photosynthesis, while very little attention has been paid to the role of leaf conductance to CO(2) diffusion, which often represents an important constraint to CO(2) assimilation in naturally grown plants. Mesophyll conductance, in particular, has never been determined in in vitro plants, and no information exists as to whether it represents a limitation to carbon assimilation during in vitro growth and subsequent ex vitro acclimatization. In this study, by means of simultaneous gas exchange and chlorophyll fluorescence measurements, the stomatal and mesophyll conductance to CO(2) diffusion were assessed in in vitro-cultured plants of the grapevine rootstock '41B' (Vitis vinifera 'Chasselas'xVitis berlandieri), prior to and after ex vitro acclimatization. Their impact on electron transport rate partitioning and on limitation of potential net assimilation rate was analysed. In vitro plants had a high stomatal conductance, 155 versus 50 mmol m(-2) s(-1) in acclimatized plants, which ensured a higher CO(2) concentration in the chloroplasts, and a 7% higher electron flow to the carbon reduction pathway. The high stomatal conductance was counterbalanced by a low mesophyll conductance, 43 versus 285 mmol m(-2) s(-1), which accounted for a 14.5% estimated relative limitation to photosynthesis against 2.1% estimated in acclimatized plants. It was concluded that mesophyll conductance represents an important limitation for in vitro plant photosynthesis, and that in acclimatization studies the correct comparison of photosynthetic activity between in vitro and acclimatized plants must take into account the contribution of both stomatal and mesophyll conductance. 相似文献