首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Heat shock proteins play important roles in regulating signal transduction in cells by associating with, and stabilizing, diverse signaling molecules, including protein kinases. Previously, we have shown that heat shock protein Hsp70 associates with protein kinase C (PKC) via an interaction that is triggered by dephosphorylation at the turn phosphorylation motif. Here we have identified an invariant residue in the carboxyl terminus of PKC that mediates the binding to Hsp70. Specifically, we show that Hsp70 binds to Leu (Leu-640) immediately preceding the conserved turn motif autophosphorylation site (Thr-641) in PKC betaII. Co-immunoprecipitation experiments reveal that mutation of Leu-640 to Gly decreases the interaction of Hsp70 with PKC betaII. This weakened interaction between Hsp70 and the mutant PKCs results in accumulation of dephosphorylated PKC in the detergent-insoluble fraction of cells. In addition, the Hsp70-binding mutant is considerably more sensitive to down-regulation compared with WT PKC: disruption of Hsp70 binding leads to accelerated dephosphorylation and enhanced ubiquitination of mutant PKC upon phorbol ester treatment. Last, pulse-chase experiments demonstrate that Hsp70 preferentially binds the species of mature PKC that has become dephosphorylated compared with the newly synthesized protein that has yet to be phosphorylated. Thus, Hsp70 binds a hydrophobic residue preceding the turn motif, protecting PKC from down-regulation and sustaining the signaling lifetime of the kinase.  相似文献   

3.
Murine stress-inducible protein 1 (mSTI1) is a co-chaperone that is homologous with the human Hsp70/Hsp90-organizing protein (Hop). Guided by Hop structural data and sequence alignment analyses, we have used site-directed mutagenesis, co-precipitation assays, circular dichroism spectroscopy, steady-state fluorescence, and surface plasmon resonance spectroscopy to both qualitatively and quantitatively characterize the contacts necessary for the N-terminal tetratricopeptide repeat domain (TPR1) of mSTI1 to bind to heat shock cognate protein 70 (Hsc70) and to discriminate between Hsc70 and Hsp90. We have shown that substitutions in the first TPR motif of Lys(8) or Asn(12) did not affect binding of mSTI1 to Hsc70, whereas double substitution of these residues abrogated binding. A substitution in the second TPR motif of Asn(43) lowered but did not abrogate binding. Similarly, a deletion in the second TPR motif coupled with a substitution of Lys(8) or Asn(12) reduced but did not abrogate binding. These results suggest that mSTI1-Hsc70 interaction requires a network of interactions not only between charged residues in the TPR1 domain of mSTI1 and the EEVD motif of Hsc70 but also outside the TPR domain. We propose that the electrostatic interactions in the first TPR motif made by Lys(8) or Asn(12) define part of the minimum interactions required for successful mSTI1-Hsc70 interaction. Using a truncated derivative of mSTI1 incapable of binding to Hsp90, we substituted residues on TPR1 potentially involved in hydrophobic contacts with Hsc70. The modified protein had reduced binding to Hsc70 but now showed significant binding capacity for Hsp90. In contrast, topologically equivalent substitutions on a truncated derivative of mSTI1 incapable of binding to Hsc70 did not confer Hsc70 specificity on TPR2A. Our results suggest that binding of Hsc70 to TPR1 is more specific than binding of Hsp90 to TPR2A with serious implications for the mechanisms of mSTI1 interactions with Hsc70 and Hsp90 in vivo.  相似文献   

4.
Two HLA-B27 subtypes, B*2702 and B*2705, both associated with ankylosing spondylitis, were tested for binding affinity with a panel of polyalanine model nonapeptides carrying Arg at position 2 (P2) and a series of different amino acids at position 9 (P9). The alpha chains were isolated from BTB(B*2705), C1R/B*2702 (a B*2702 transfectant cell line) and from the NW(B*2702) cell line that has a peculiar peptide presentation behavior. Peptide binding was measured by the HLA alpha chain refolding assay. The results obtained show that: 1) Peptides with basic residues (Arg and Lys) and also aliphatic (Leu) and aromatic (Phe and Tyr) peptides at P9 have a similar high affinity in the binding to B*2705; 2) B*2702 binds well to P9 aliphatic and aromatic peptides but only very weakly to P9 basic peptides. Since both B*2702 and B*2705 are associated with AS the presumed arthritogenic peptide is hypothesized to have an aromatic or aliphatic residue at position 9. Peptides with basic residues in this position would be excluded as candidates because of their low binding affinity with B*2702.  相似文献   

5.
Recognition of self peptides bound to the class I major histocompatibility complex molecule HLA-B27 is thought to trigger proliferation of autoreactive T cells and result in autoimmune arthritic diseases. Previous work from other laboratories established that a predominant feature of endogenous peptides eluted from purified B27 is an arginine at position 2. We studied the binding of peptides containing both natural and unnatural amino acids by the subtype HLA-B*2702, with the goal of gaining insight into peptide binding by this B27 subtype that is associated with susceptibility to arthritic disease. A soluble from of B*2702 was depleted of endogenous peptides. We tested the binding of peptides substituted with cysteine, homocysteine, or an alpha-amino-epsilon-mercapto hexanoic acid side chain (Amh) instead of the naturally occurring arginine at position 2, to determine whether the peptide sulfhydryl residue could be covalently linked to cysteine 67 in the B*2702 binding cleft. Although none of the altered peptide sequences bound covalently to B*2702, the affinities of the homocysteine- and Amh-substituted peptides were close to that of the native peptide sequence. Substitutions at position 2 with other side chains, such as glutamine and methionine, also resulted in peptides that bound with only slightly reduced affinity. These results demonstrate that peptide side chains other than arginine at position 2 can be accomodated within the B*2702 peptide binding site with only minor reductions in affinity. This extended repertoire of permissible B27-binding peptides should be taken into account for a consideration of disease-associated peptide sequences.  相似文献   

6.
Chaperones of the heat shock protein 70 (Hsp70) family engage in protein–protein interactions with many cochaperones. One “hotspot” for cochaperone binding is the EEVD motif, found at the extreme C terminus of cytoplasmic Hsp70s. This motif is known to bind tetratricopeptide repeat domain cochaperones, such as the E3 ubiquitin ligase CHIP. In addition, the EEVD motif also interacts with a structurally distinct domain that is present in class B J-domain proteins, such as DnaJB4. These observations suggest that CHIP and DnaJB4 might compete for binding to Hsp70’s EEVD motif; however, the molecular determinants of such competition are not clear. Using a collection of EEVD-derived peptides, including mutations and truncations, we explored which residues are critical for binding to both CHIP and DnaJB4. These results revealed that some features, such as the C-terminal carboxylate, are important for both interactions. However, CHIP and DnaJB4 also had unique preferences, especially at the isoleucine position immediately adjacent to the EEVD. Finally, we show that competition between these cochaperones is important in vitro, as DnaJB4 limits the ubiquitination activity of the Hsp70–CHIP complex, whereas CHIP suppresses the client refolding activity of the Hsp70–DnaJB4 complex. Together, these data suggest that the EEVD motif has evolved to support diverse protein–protein interactions, such that competition between cochaperones may help guide whether Hsp70-bound proteins are folded or degraded.  相似文献   

7.
The Hsp70-Hsp90 complex is implicated in the folding and regulation of numerous signaling proteins, and Hop, the Hsp70-Hsp90 Organizing Protein, facilitates the association of this multichaperone machinery. Phosphatase treatment of mouse cell extracts reduced the number of Hop isoforms compared to untreated extracts, providing the first direct evidence that Hop was phosphorylated in vivo. Furthermore, surface plasmon resonance (SPR) spectroscopy showed that a cdc2 kinase phosphorylation mimic of Hop had reduced affinity for Hsp90 binding. Hop was predominantly cytoplasmic, but translocated to the nucleus in response to heat shock. A putative bipartite nuclear localization signal (NLS) has been identified within the Hsp90-binding domain of Hop. Although substitution of residues within the major arm of this proposed NLS abolished Hop-Hsp90 interaction as determined by SPR, this was not sufficient to prevent the nuclear accumulation of Hop under leptomycin-B treatment and heat shock conditions. These results showed for the first time that the subcellular localization of Hop was stress regulated and that the major arm of the putative NLS was not directly important for nuclear translocation but was critical for Hop-Hsp90 association in vitro. We propose a model in which the association of Hop with Hsp90 and the phosphorylated status of Hop both play a role in the mechanism of nucleo-cytoplasmic shuttling of Hop.  相似文献   

8.
Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70   总被引:1,自引:0,他引:1       下载免费PDF全文
The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions. TPR cochaperones recognize the EEVD structural motif common to both Hsp90 and Hsp70 through a highly conserved clamp domain. In the present study, we investigated in vitro the molecular interactions between CyP40 and FKBP52 and other stress-related components involved in steroid receptor assembly, namely Hsp70 and Hop. Using a binding protein-retention assay with CyP40 fused to glutathione S-transferase immobilized on glutathione-agarose, we have identified the constitutively expressed form of Hsp70, heat shock cognate (Hsc)70, as an additional target for CyP40. Deletion mapping studies showed the binding determinants to be similar to those for CyP40-Hsp90 interaction. Furthermore, a mutational analysis of CyP40 clamp domain residues confirmed the importance of this motif in CyP40-Hsc70 interaction. Additional residues thought to mediate binding specificity through hydrophobic interactions were also important for Hsc70 recognition. CyP40 was shown to have a preference for Hsp90 over Hsc70. Surprisingly, FKBP52 was unable to compete with CyP40 for Hsc70 binding, suggesting that FKBP52 discriminates between the TPR cochaperone-binding sites in Hsp90 and Hsp70. Hop, which contains multiple units of the TPR motif, was shown to be a direct competitor with CyP40 for Hsc70 binding. Similar to Hop, CyP40 was shown not to influence the adenosine triphosphatase activity of Hsc70. Our results suggest that CyP40 may have a modulating role in Hsc70 as well as Hsp90 cellular function.  相似文献   

9.
Several HLA-DR alleles are genetically associated with rheumatoid arthritis. DRB1*0401 predominates in Northern Europe and has a characteristic (70)QKRAA motif. This sequence contacts bound peptides and the TCR. Further interactions have been suggested with additional proteins during Ag loading. We explored the much stronger processing/presentation of full-length recombinant human acetylcholine receptor alpha subunit to a specific T cell clone by APC from DRB1*0401+ than *0408+ donors. Using DR*04 transfectants, we show that this difference results largely from the single Lys71<-->Arg interchange (0401<-->0408), which scarcely affects epitope binding, rather than from any other associated polymorphism. Furthermore, we proved our recombinant polypeptides to contain the Escherichia coli 70-kDa heat shock protein molecule DnaK and its requirement for efficient processing and presentation of the epitope by DRB1*0401+ cells. According to a recent report, 70-kDa heat shock protein chaperones preferentially bind to the QKRAA, rather than the QRRAA, motif. Variations between the shared epitope motifs QKRAA and QRRAA are emphasized by underlining. We propose that such interactions enhance the intracellular epitope loading of *0401 molecules. They may thus broaden immune responses to pathogens and at least partially explain the distinct contributions of DRB1*0401 and other alleles to disease predisposition.  相似文献   

10.
The 70-kDa heat shock proteins (Hsp70s) are highly conserved ATP-dependent molecular chaperones composed of an N-terminal nucleotide binding domain (NBD) and a C-terminal protein substrate binding domain (SBD) in a bilobate structure. Interdomain communication and nucleotide-dependent structural motions are critical for Hsp70 chaperone functions. Our understanding of these functions remains elusive due to insufficient structural information on intact Hsp70s that represent the different states of the chaperone cycle. We report here the crystal structures of DnaK from Geobacillus kaustophilus HTA426 bound with ADP-Mg(2+)-P(i) at 2.37A and the 70-kDa heat shock cognate protein from Rattus norvegicus bound with ADP-P(i) at 3.5A(.) The NBD and SBD in these structures are significantly separated from each other, and they might depict the ADP-bound conformation. Moreover, a Trp reporter was introduced at the potential interface region between NBD and the interdomain linker of GkDnaK to probe environmental changes. Results from fluorescence measurements support the notion that substrate binding enhances the domain-disjoining behavior of Hsp70 chaperones.  相似文献   

11.
The ubiquitous molecular chaperone 70-kDa heat shock proteins (Hsp70) play key roles in maintaining protein homeostasis. Hsp70s contain two functional domains: a nucleotide binding domain and a substrate binding domain. The two domains are connected by a highly conserved inter-domain linker, and allosteric coupling between the two domains is critical for chaperone function. The auxiliary chaperone 40-kDa heat shock proteins (Hsp40) facilitate all the biological processes associated with Hsp70s by stimulating the ATPase activity of Hsp70s. Although an overall essential role of the inter-domain linker in both allosteric coupling and Hsp40 interaction has been suggested, the molecular mechanisms remain largely unknown. Previously, we reported a crystal structure of a full-length Hsp70 homolog, in which the inter-domain linker forms a well-ordered β strand. Four highly conserved hydrophobic residues reside on the inter-domain linker. In DnaK, a well-studied Hsp70, these residues are V389, L390, L391, and L392. In this study, we biochemically dissected their roles. The inward-facing side chains of V389 and L391 form extensive hydrophobic contacts with the nucleotide binding domain, suggesting their essential roles in coupling the two functional domains, a hypothesis confirmed by mutational analysis. On the other hand, L390 and L392 face outward on the surface. Mutation of either abolishes DnaK's in vivo function, yet intrinsic biochemical properties remain largely intact. In contrast, Hsp40 interaction is severely compromised. Thus, for the first time, we separated the two essential roles of the highly conserved Hsp70 inter-domain linker: coupling the two functional domains through V389 and L391 and mediating the interaction with Hsp40 through L390 and L392.  相似文献   

12.
KIR3DL1 is a polymorphic, inhibitory NK cell receptor specific for the Bw4 epitope carried by subsets of HLA-A and HLA-B allotypes. The Bw4 epitope of HLA-B*5101 and HLA-B*1513 is determined by the NIALR sequence motif at positions 77, 80, 81, 82, and 83 in the alpha(1) helix. Mutation of these positions to the residues present in the alternative and nonfunctional Bw6 motif showed that the functional activity of the Bw4 epitopes of B*5101 and B*1513 is retained after substitution at positions 77, 80, and 81, but lost after substitution of position 83. Mutation of leucine to arginine at position 82 led to loss of function for B*5101 but not for B*1513. Further mutagenesis, in which B*1513 residues were replaced by their B*5101 counterparts, showed that polymorphisms in all three extracellular domains contribute to this functional difference. Prominent were positions 67 in the alpha(1) domain, 116 in the alpha(2) domain, and 194 in the alpha(3) domain. Lesser contributions were made by additional positions in the alpha(2) domain. These positions are not part of the Bw4 epitope and include residues shaping the B and F pockets that determine the sequence and conformation of the peptides bound by HLA class I molecules. This analysis shows how polymorphism at sites throughout the HLA class I molecule can influence the interaction of the Bw4 epitope with KIR3DL1. This influence is likely mediated by changes in the peptides bound, which alter the conformation of the Bw4 epitope.  相似文献   

13.
Heat shock protein 70 (Hsp70) binds peptide and has several functions that include protein folding, protein trafficking, and involvement with immune function. However, endogenous Hsp70-binding peptides had not previously been identified. Therefore, we eluted and identified several hundred endogenously bound peptides from Hsp70 using liquid chromatography ion trap mass spectrophotometry (LC-ITMS). Our work shows that the peptides are capable of binding Hsp70 as previously described. They are generally 8-26 amino acids in length and correspond to specific regions of many proteins. Through computationally assisted analysis of peptides eluted from Hsp70 we determined variable amino acid sequences, including a 5 amino acid core sequence that Hsp70 favorably binds. We also developed a computer algorithm that predicts Hsp70 binding within proteins. This work helps to define what peptides are bound by Hsp70 in vivo and suggests that Hsp70 facilitates peptide selection by aiding a funneling mechanism that is flexible but allows only a limited number of peptides to be processed.  相似文献   

14.
Hsp70 alternates between an ATP-bound state in which the affinity for substrate is low and an ADP-bound state in which the affinity for substrate is high, as a result Hsp70 assists the protein folding process through nucleotide-controlled cycles of substrate binding and release. In this work, we describe the cloning and purification of the human 70-kDa heat shock cognate protein, Hsc70, and the use of circular dichroism, intrinsic emission fluorescence, and isothermal titration calorimetry to characterize conformational changes induced by ADP and ATP binding. Binding of either ADP or ATP were not accompanied by a net change in secondary structure suggesting that the conformational rearrangement caused by nucleotide binding is localized. MgADP or MgATP had a greater effect in the stability at stress temperatures than ADP or ATP did. Isothermal titration calorimetry data pointed out that Hsc70 had a lower affinity for ATP (KD=710 nM) than for ADP (KD=260 nM).  相似文献   

15.
The 70-kDa heat shock proteins (Hsp70) are essential members of the cellular chaperone machinery that assists protein-folding processes. To perform their functions Hsp70 chaperones toggle between two nucleotide-controlled conformational states. ATP binding to the ATPase domain triggers the transition to the low affinity state of the substrate-binding domain, while substrate binding to the substrate-binding domain in synergism with the action of a J-domain-containing cochaperone stimulates ATP hydrolysis and thereby transition to the high affinity state. Thus, ATPase and substrate-binding domains mutually affect each other through an allosteric control mechanism, the basis of which is largely unknown. In this study we identified two positively charged, surface-exposed residues in the ATPase domain and a negatively charged residue in the linker connecting both domains that are important for interdomain communication. Furthermore, we demonstrate that the linker alone is sufficient to stimulate the ATPase activity, an ability that is lost upon amino acid replacement. The linker therefore is most likely the lever that is wielded by the substrate-binding domain and the cochaperone onto the ATPase domain to induce a conformation favorable for ATP hydrolysis. Based on our results we propose a mechanism of interdomain communication.  相似文献   

16.
The 70-kDa heat shock protein (Hsp) family in all Drosophila species includes 2 environmentally inducible family members, Hsp70 and Hsp68. Two-dimensional gel electrophoresis revealed an unusual pattern of heat shock-inducible proteins in the species of the virilis group. Trypsin fingerprinting and microsequencing of tryptic peptides using ProteinChip Array technology identified the major isoelectric variants of Hsp70 family, including Hsp68 isoforms that differ in both molecular mass and isoelectric point from those in Drosophila melanogaster. The peculiar electrophoretic mobility is consistent with the deduced amino acid sequence of corresponding hsp genes from the species of the virilis group.  相似文献   

17.
Hsp90 (heat shock protein of 90 kDa) is often found associated with functional domains of client proteins, including those for ligand binding, dimerization, DNA binding, and enzymatic activity. Although Hsp90 can maintain the conformation of functionally important domains prior to activation of the client protein, its specific binding site and the mechanism(s) of Hsp90 dissociation during activation are unknown. Here, we have identified and characterized residues involved in Hsp90 binding within the aryl hydrocarbon receptor (AhR) ligand-binding domain and demonstrate that they overlap with those involved in ligand binding. In agreement with this spatial model, ligand binding results in Hsp90 dissociation from the AhR Per-ARNT-Sim B fragment. Interestingly, whereas Hsp90-binding residues within the ligand-binding domain were not involved in Hsp90-dependent AhR protein stability, several of these residues are important for ligand-dependent AhR activation, and their mutation resulted in conversion of two AhR antagonists/partial agonists into full AhR agonists. These studies reveal co-localization of a tentative Hsp90-binding site with that for AhR ligand binding and provide the first molecular mechanism for Hsp90 dissociation in the activation of a client protein.  相似文献   

18.
We examined the cell death-inducing property of human Fas-associated factor 1 (hFAF1) in the heat shock signaling pathway. By employing co-immunoprecipitation and peptide mass fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we found that hFAF1 binds to the 70-kDa heat shock protein family (Hsc70/Hsp70). Interaction mapping indicated that the 82-180 sequence of hFAF1 directly binds to the N-terminal region containing sequence 1-120 of Hsc70/Hsp70. This binding is very tight regardless of ATP and heat shock treatment. Hsc70/Hsp70 and hFAF1 co-localized in the cytosol and nucleus and concentrated to the perinuclear region by heat shock treatment. We examined how hFAF1 regulates Hsp70 function, and found that hFAF1 inhibited the Hsp70 chaperone activity of refolding denatured protein substrates, accelerated heat shock-induced SAPK/JNK activation, and raised heat shock-induced cell death in a binding dependent manner. These results suggest that hFAF1 prevents cells from recovery after stress by binding to and inhibiting the chaperone activity of Hsp70.  相似文献   

19.
The chaperone function of the mammalian 70-kDa heat shock proteins Hsc70 and Hsp70 is modulated by physical interactions with four previously identified chaperone cofactors: Hsp40, BAG-1, the Hsc70-interacting protein Hip, and the Hsc70-Hsp90-organizing protein Hop. Hip and Hop interact with Hsc70 via a tetratricopeptide repeat domain. In a search for additional tetratricopeptide repeat-containing proteins, we have identified a novel 35-kDa cytoplasmic protein, carboxyl terminus of Hsc70-interacting protein (CHIP). CHIP is highly expressed in adult striated muscle in vivo and is expressed broadly in vitro in tissue culture. Hsc70 and Hsp70 were identified as potential interaction partners for this protein in a yeast two-hybrid screen. In vitro binding assays demonstrated direct interactions between CHIP and both Hsc70 and Hsp70, and complexes containing CHIP and Hsc70 were identified in immunoprecipitates of human skeletal muscle cells in vivo. Using glutathione S-transferase fusions, we found that CHIP interacted with the carboxy-terminal residues 540 to 650 of Hsc70, whereas Hsc70 interacted with the amino-terminal residues 1 to 197 (containing the tetratricopeptide domain and an adjacent charged domain) of CHIP. Recombinant CHIP inhibited Hsp40-stimulated ATPase activity of Hsc70 and Hsp70, suggesting that CHIP blocks the forward reaction of the Hsc70-Hsp70 substrate-binding cycle. Consistent with this observation, both luciferase refolding and substrate binding in the presence of Hsp40 and Hsp70 were inhibited by CHIP. Taken together, these results indicate that CHIP decreases net ATPase activity and reduces chaperone efficiency, and they implicate CHIP in the negative regulation of the forward reaction of the Hsc70-Hsp70 substrate-binding cycle.  相似文献   

20.
Aberrantly expressed human gamma synuclein (SNCG) interacts with BubR1 and heat shock protein 70 (Hsp70) in late stages of breast and ovarian cancer. This interaction is essential for progression, development and survival of cancer cells. A short, synthetically designed ankyrin-repeat-containing peptide (ANK peptide) was proven to inhibit the activity of SNCG. However, the potential binding site residues of SNCG responsible for its oncogenic function have not been reported so far. The objectives of this study were to generate a three-dimensional model of SNCG and to identify the key residues involved in interaction with BubR1, ANK peptide and Hsp70. Our study is the first attempt to report the specific binding of SNCG with the TPR motif of BubR1 and the 18kDa region of Hsp70. Our findings provide novel insights into the mechanism of interaction of SNCG, and can act as a basis for the ongoing drug design and discovery process aimed at treating breast and ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号