共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Lateral diffusion of CO(2) was investigated in photosynthesizing leaves with different anatomy by gas exchange and chlorophyll a fluorescence imaging using grease to block stomata. When one-half of the leaf surface of the heterobaric species Helianthus annuus was covered by 4-mm-diameter patches of grease, the response of net CO(2) assimilation rate (A) to intercellular CO(2) concentration (C(i)) indicated that higher ambient CO(2) concentrations (C(a)) caused only limited lateral diffusion into the greased areas. When single 4-mm patches were applied to leaves of heterobaric Phaseolus vulgaris and homobaric Commelina communis, chlorophyll a fluorescence images showed dramatic declines in the quantum efficiency of photosystem II electron transport (measured as F(q)'/F(m)') across the patch, demonstrating that lateral CO(2) diffusion could not support A. The F(q)'/F(m)' values were used to compute images of C(i) across patches, and their dependence on C(a) was assessed. At high C(a), the patch effect was less in C. communis than P. vulgaris. A finite-volume porous-medium model for assimilation rate and lateral CO(2) diffusion was developed to analyze the patch images. The model estimated that the effective lateral CO(2) diffusion coefficients inside C. communis and P. vulgaris leaves were 22% and 12% of that for free air, respectively. We conclude that, in the light, lateral CO(2) diffusion cannot support appreciable photosynthesis over distances of more than approximately 0.3 mm in normal leaves, irrespective of the presence or absence of bundle sheath extensions, because of the CO(2) assimilation by cells along the diffusion pathway. 相似文献
3.
Diffusion of CO2 inside leaves is generally regarded to be from the substomatal cavities to the assimilating tissues, i.e. in the vertical direction of the leaf blades. However, lateral gas diffusion within intercellular air spaces may be much more effective than hitherto considered. In a previous work it was demonstrated that, when 'clamp-on' leaf chambers are used, leaf internal 'CO2 leakage' beyond the leaf chamber gaskets may seriously affect gas exchange measurement. This effect has been used in the present paper to quantify gas conductance (g(leaf,l), mmol m(-2) s(-1)) in the lateral directions within leaves and significant differences between homo- and heterobaric leaves were observed. For the homobaric leaves, lateral gas conductance measured over a distance of 6 or 8 mm (the widths of the chamber gaskets) was 2-20% of vertical conductance taken from published data measured over much smaller distances of 108-280 microm (the thickness of the leaves). The specific internal gas diffusion properties of the leaves have been characterized by gas conductivities (g*(leaf), micromol m(-1) s(-1)). Gas conductivities in the lateral directions of heterobaric leaves were found to be small but not zero. In homobaric leaves, they were between 67 and 209 micromol m(-1) s(-1) and thus even larger than those in the vertical direction of the leaf blades (between 15 and 78 micromol m(-1) s(-1)). The potential implications for experimentalists performing gas exchange measurements are discussed. 相似文献
4.
Lateral CO2 diffusion inside dicotyledonous leaves can be substantial: quantification in different light intensities
下载免费PDF全文

Substantial lateral CO(2) diffusion rates into leaf areas where stomata were blocked by grease patches were quantified by gas exchange and chlorophyll a fluorescence imaging in different species across the full range of photosynthetic photon flux densities (PPFD). The lateral CO(2) flux rate over short distances was substantial and very similar in five dicotyledonous species with different vascular anatomies (two species with bundle sheath extensions, sunflower [Helianthus annuus] and dwarf bean [Phaseolus vulgaris]; and three species without bundle sheath extensions, faba bean [Vicia faba], petunia [Petunia hybrida], and tobacco [Nicotiana tabacum]). Only in the monocot maize (Zea mays) was there little or no evident lateral CO(2) flux. Lateral diffusion rates were low when PPFD <300 micromol m(-2) s(-1) but approached saturation in moderate PPFD (300 micromol m(-2) s(-1)) when lateral CO(2) diffusion represented 15% to 24% of the normal CO(2) assimilation rate. Smaller patches and higher ambient CO(2) concentration increased lateral CO(2) diffusion rates. Calculations with a two-dimensional diffusion model supported these observations that lateral CO(2) diffusion over short distances inside dicotyledonous leaves can be important to photosynthesis. The results emphasize that supply of CO(2) from nearby stomata usually dominates assimilation, but that lateral supply over distances up to approximately 1 mm can be important if stomata are blocked, particularly when assimilation rate is low. 相似文献
5.
Kaldenhoff R 《Current opinion in plant biology》2012,15(3):276-281
Plants provide an excellent system to study CO(2) diffusion because, under light saturated conditions, photosynthesis is limited by CO(2) availability. Recent findings indicate that CO(2) diffusion in leaves can be variable in a short time range. Mesophyll CO(2) conductance could change independently from stomata movement or CO(2) fixing reactions and it was suggested that, beside others, the membranes are mesophyll CO(2) conductance limiting components. Specific aquaporins as membrane intrinsic pore proteins are considered to have a function in the modification of membrane CO(2) conductivity. Because of conflicting data, the mechanism of membrane CO(2) diffusion in plants and animals is a matter of a controversy vivid debate in the scientific community. On one hand, data from biophysics are in favor of CO(2) diffusion limiting mechanisms completely independent from membrane structure and membrane components. On the other, there is increasing evidence from physiology that a change in membrane composition has an effect on CO(2) diffusion. 相似文献
6.
Pieruschka R Chavarría-Krauser A Cloos K Scharr H Schurr U Jahnke S 《The New phytologist》2008,178(2):335-347
This study examines the extent to which lateral gas diffusion can influence intercellular CO(2) concentrations (c(i)) and thus photosynthesis in leaf areas with closed stomata. Leaves were partly greased to close stomata artificially, and effects of laterally diffusing CO(2) into the greased areas were studied by gas-exchange measurement and chlorophyll fluorescence imaging. Effective quantum yields (Delta F/F(m)') across the greased areas were analysed with an image-processing tool and transposed into c(i) profiles, and lateral CO(2) diffusion coefficients (D(C'lat)), directly proportional to lateral conductivities (), were estimated using a one-dimensional (1D) diffusion model. Effective CO(2) diffusion distances in Vicia faba (homobaric), Commelina vulgaris (homobaric) and Phaseolus vulgaris (heterobaric) leaves clearly differed, and were dependent on D(C'lat), light intensity, [CO(2)], and [O(2)]: largest distances were approx. 7.0 mm for homobaric leaves (with high D(C'lat)) and approx. 1.9 mm for heterobaric leaves (low D(C'lat)). Modeled lateral CO(2) fluxes indicate large support of photosynthesis over submillimeter distances for leaves with low D(C'lat), whereas in leaves with large D(C'lat), photosynthesis can be stimulated over distances of several millimeters. For the plant species investigated, the surplus CO(2) assimilation rates of the greased leaf areas (A(gr)) differed clearly, depending on lateral conductivities of the respective leaves. 相似文献
7.
8.
Supra-optimal levels of zinc in primary leaves of Phaseolus vulgaris increased the CO2 compensation point and inhibited net photosynthesis. Leaf morphology was modified: mesophyll intercellular area, stomatal slit length and interstomatal distance were reduced, but stomatal density increased. Internal and stomatal conductances to CO2 diffusion decreased. These changes are discussed in relation to the observed effects on leaf gas exchange and to the previously reported inhibition of different photosynthetic and photorespiratory enzymes. 相似文献
9.
Fila G Badeck FW Meyer S Cerovic Z Ghashghaie J 《Journal of experimental botany》2006,57(11):2687-2695
In vitro-cultured plants typically show a low photosynthetic activity, which is considered detrimental to subsequent ex vitro acclimatization. Studies conducted so far have approached this problem by analysing the biochemical and photochemical aspects of photosynthesis, while very little attention has been paid to the role of leaf conductance to CO(2) diffusion, which often represents an important constraint to CO(2) assimilation in naturally grown plants. Mesophyll conductance, in particular, has never been determined in in vitro plants, and no information exists as to whether it represents a limitation to carbon assimilation during in vitro growth and subsequent ex vitro acclimatization. In this study, by means of simultaneous gas exchange and chlorophyll fluorescence measurements, the stomatal and mesophyll conductance to CO(2) diffusion were assessed in in vitro-cultured plants of the grapevine rootstock '41B' (Vitis vinifera 'Chasselas'xVitis berlandieri), prior to and after ex vitro acclimatization. Their impact on electron transport rate partitioning and on limitation of potential net assimilation rate was analysed. In vitro plants had a high stomatal conductance, 155 versus 50 mmol m(-2) s(-1) in acclimatized plants, which ensured a higher CO(2) concentration in the chloroplasts, and a 7% higher electron flow to the carbon reduction pathway. The high stomatal conductance was counterbalanced by a low mesophyll conductance, 43 versus 285 mmol m(-2) s(-1), which accounted for a 14.5% estimated relative limitation to photosynthesis against 2.1% estimated in acclimatized plants. It was concluded that mesophyll conductance represents an important limitation for in vitro plant photosynthesis, and that in acclimatization studies the correct comparison of photosynthetic activity between in vitro and acclimatized plants must take into account the contribution of both stomatal and mesophyll conductance. 相似文献
10.
K.-J. Dietz 《Planta》1986,167(2):260-263
Numerical values which define the relative limitation of photosynthesis by light and CO2 were computed from the slopes of light-and CO2-response curves of photosynthesis. This method offers an easy approach for the characterization of photosynthesis of leaves. 相似文献
11.
12.
GUILLAUME TCHERKEZ ALINE MAHÉ FLORENCE GUÉRARD EDOUARD R. A. BOEX‐FONTVIEILLE ELISABETH GOUT MARLÈNE LAMOTHE MARGARET M. BARBOUR RICHARD BLIGNY 《Plant, cell & environment》2012,35(12):2208-2220
Although there is now a considerable literature on the inhibition of leaf respiration (CO2 evolution) by light, little is known about the effect of other environmental conditions on day respiratory metabolism. In particular, CO2 and O2 mole fractions are assumed to cause changes in the tricarboxylic acid pathway (TCAP) but the amplitude and even the direction of such changes are still a matter of debate. Here, we took advantage of isotopic techniques, new simple equations and instant freeze sampling to follow respiratory metabolism in illuminated cocklebur leaves (Xanthium strumarium L.) under different CO2/O2 conditions. Gas exchange coupled to online isotopic analysis showed that CO2 evolved by leaves in the light came from ‘old’ carbon skeletons and there was a slight decrease in 13C natural abundance when [CO2] increased. This suggested the involvement of enzymatic steps fractionating more strongly against 13C and thus increasingly limiting for the metabolic respiratory flux as [CO2] increased. Isotopic labelling with 13C2‐2,4‐citrate lead to 13C‐enriched Glu and 2‐oxoglutarate (2OG), clearly demonstrating poor metabolism of citrate by the TCAP. There was a clear relationship between the ribulose‐1,5‐bisphosphate oxygenation‐to‐carboxylation ratio (vo/vc) and the 13C commitment to 2OG, demonstrating that 2OG and Glu synthesis via the TCAP is positively influenced by photorespiration. 相似文献
13.
M. M. Ludlow 《Planta》1970,91(4):285-290
Summary Net photosynthesis of tropical legume leaves increased by 44% and that of tropical grass leaves was unaffected when oxygen concentration was reduced from 21 to 0.2%. Stomatal resistance to carbon dioxide diffusion was unaltered in both cases but mesophyll resistance of legume leaves decreased with oxygen concentration. It is proposed that the decrease in mesophyll resistance is accompanied by decreases in excitation and carboxylation resistances. 相似文献
14.
J. W. Cary 《Photosynthesis research》1981,2(3):185-194
A new theory and experimental method was developed to measure the diffusion resistance to CO2 in the gas phase of mesophyll leaf tissue. Excised leaves were placed in a chamber and their net evaporation and CO2 assimilation rates measured at two different ambient pressures. These data were used to calculate CO2 gas phase diffusion resistances. A variety of field grown leaves were tested and the effects of various experimental errors considered. Increasing the gas phase diffusion resistance decreased transpiration more than it decreased CO2 assimilation. It was concluded that gas phase diffusion resistance associated with CO2 assimilation may sometimes be 100 or 200 s·m-1 greater than the resistance implied by transpiration rates. This may be due to longer path lengths for the CO2 diffusion, constricted in places by the shape and arrangement of mesophyll cells. 相似文献
15.
Summary Sunflower (Helianthus annuus L.) leaf discs were exposed to 14CO2 or 14CO2 followed by 12CO2 at 21% O2 and three different CO2 concentrations. After intervals of up to 15 min, the specific activity of some photosynthetic intermediates was determined. At all CO2 concentrations, the specific activity of 3-phosphoglyceric acid (3-PGA) increased most rapidly and after 15 min of 14CO2 feeding was 92% (967 ppm CO2), 87% (400 ppm CO2) and 53% (115 ppm CO2) of CO2 supplied to the assimilation chamber. The specific activity of glycine, serine and the photorespiratory CO2 was similar at all CO2 concentrations, in aggreement with their proposed close metabolic relationship in the glycolate pathway. However, the kinetics of serine and glycine labelling suggested that serine was not totally derived from glycine. Because the specific activity of these glycolate-pathway intermediates was very differnet from that of 3-PGA at all CO2 concentrations, not all of the carbon traversing this pathway came directly from the Calvin cycle. The non-equilibration of the 3-PGA with the feeding gas reflects the recycling of C from the glycolate pathway into the photosynthetic reduction cycle. Measurements of the rates of CO2 evolution in the light and estimates of the C flux through the glycolate pathway suggest that the photorespiratory activity was high and similar at 115 ppm CO2 and 400 ppm CO2 but inhibited at 967 ppm CO2. 相似文献
16.
A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration 总被引:1,自引:0,他引:1
Background and Aims
Global climate models predict decreases in leaf stomatal conductance and transpiration due to increases in atmospheric CO2. The consequences of these reductions are increases in soil moisture availability and continental scale run-off at decadal time-scales. Thus, a theory explaining the differential sensitivity of stomata to changing atmospheric CO2 and other environmental conditions must be identified. Here, these responses are investigated using optimality theory applied to stomatal conductance.Methods
An analytical model for stomatal conductance is proposed based on: (a) Fickian mass transfer of CO2 and H2O through stomata; (b) a biochemical photosynthesis model that relates intercellular CO2 to net photosynthesis; and (c) a stomatal model based on optimization for maximizing carbon gains when water losses represent a cost. Comparisons between the optimization-based model and empirical relationships widely used in climate models were made using an extensive gas exchange dataset collected in a maturing pine (Pinus taeda) forest under ambient and enriched atmospheric CO2.Key Results and Conclusion
In this interpretation, it is proposed that an individual leaf optimally and autonomously regulates stomatal opening on short-term (approx. 10-min time-scale) rather than on daily or longer time-scales. The derived equations are analytical with explicit expressions for conductance, photosynthesis and intercellular CO2, thereby making the approach useful for climate models. Using a gas exchange dataset collected in a pine forest, it is shown that (a) the cost of unit water loss λ (a measure of marginal water-use efficiency) increases with atmospheric CO2; (b) the new formulation correctly predicts the condition under which CO2-enriched atmosphere will cause increasing assimilation and decreasing stomatal conductance. 相似文献17.
Experiments were conducted to examine whether mercury-sensitive aquaporins facilitate photosynthetic CO(2) diffusion across the plasma membrane of leaf mesophyll cells. Discs without abaxial epidermes from Vicia faba leaflets were treated with HgCl(2), an inhibitor of aquaporins. Hydraulic conductivity of the plasma membrane of these discs, measured as the weight loss of the discs in the 1 M sorbitol solution, was inhibited by sub-mM concentrations of HgCl(2) by 70 to 80%. Photosynthetic CO(2) fixation was also inhibited by the HgCl(2) treatment in a similar concentration range. When 0.3 mM HgCl(2) solution was fed to the V. faba leaflets with intact epidermes via the transpiration stream, the rate of photosynthesis on leaf area basis (A) measured at photosynthetically active photon flux density of 700 micromol m(-2) s(-1) and at leaf temperature of 25 degrees C, decreased by about 20 to 30% at any CO(2) concentration in the intercellular spaces (C(i)). However, when CO(2) concentration in the chloroplast stroma (C(c)) was calculated from fluorescence and gas exchange data and A was plotted against C(c), A at low C(c) concentrations did not differ before and after the treatment. The conductance for CO(2) diffusion from the intercellular spaces to the chloroplast stroma (g(i)) decreased to 40 and 30% of the control value, when the leaflets were fed with 0.3 mM and 1.2 mM HgCl(2), respectively. Similar results were obtained with leaves of Phaseolus vulgaris. Although effects of HgCl(2) were not specific, the present results showed that HgCl(2) consistently lowered g(i). It is, thus, probable that the photosynthetic CO(2) uptake across the plasma membrane of the mesophyll cells is facilitated by mercury-sensitive aquaporins. 相似文献
18.
Net CO2 exchange rates, stomatal and internal resistances for CO2-transport were followed on fully expanded Witloof chicory leaves (Cichorium intybus L. cv. Foliosum) for several months during vegetative growth. Maximum net CO2 exchange rate (Pmax) stayed high with a sudden drastic drop at the end of the growing season largely due to an increase in internal diffusion resistance. During an analogous growth period the H2O vapour diffusion resistances of leaves for four selections were measured. The adaxial stomatal resistance was always higher than the abaxial one. Stomatal densities calculated for those selections showed higher values at the abaxial leaf side. 相似文献
19.
20.
Overcoming drought-induced decreases in soybean leaf photosynthesis by measuring with CO2-enriched air 总被引:1,自引:0,他引:1
James R. Frederick David M. Alm John D. Hesketh Frederick E. Below 《Photosynthesis research》1990,26(1):49-57
Soybean [Glycine max (L.) Merr. cv. Williams 82 and A3127] plants were grown in the field under long-term soil moisture deficit and irrigation to determine the effects of severe drought stress on the photosynthetic capacity of soybean leaves. Afternoon leaf water potentials, stomatal conductances, intercellular CO2 concentrations and CO2-assimilation rates for the two soil moisture treatments were compared during the pod elongation and seed enlargement stages of crop development. Leaf CO2-assimilation rates were measured with either ambient (340 l CO2 l–1) or CO2-enriched (1800 l CO2 l–1) air. Although seed yield and leaf area per plant were decreased an average of 48 and 31%, respectively, as a result of drought stress, leaf water potentials were reduced only an average of 0.27 MPa during the sampling period. Afternoon leaf CO2-assimilation rates measured with ambient air were decreased an average of 56 and 49% by soil moisture deficit for Williams 82 and A3127, respectively. The reductions in leaf photosynthesis of both cultivars were associated with similar decreases in leaf stomatal conductance and with small increases in leaf intercellular CO2 concentration. When the CO2-enriched air was used, similar afternoon leaf CO2-assimilation rates were found between the soil moisture treatments at each stage of crop development. These results suggest that photosynthetic capacity of soybean leaves is not reduced by severe soil moisture deficit when a stress develops gradually under field conditions.Abbreviations Ci
intercellular CO2 concentrations
- Aa
rates of CO2 assimilation measured with ambient air
- Ae
rates of CO2 assimilation measured with CO2-enriched air
- gs
stomatal conductances
- RuBPCase
ribulose-1,5-bisphosphate carboxylase 相似文献