首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Abstract: Effects of cadmium (10 nM), copper (80 nM) and zinc (150 nM) additions were studied in the marine diatom Ditylum brightwellii and the riverine diatom Thalassiosira pseudonana . Defense against oxidative stress via cellular thiol (SH) pools and superoxide dismutase (SOD) activation, detoxification via phytochelatins and cell damage were monitored in metal-exposed exponential-phase cells and controls, grown in estuarine medium. Total SH and reduced + oxidized glutathione (GSH + GSSG) in T. pseudonana were much higher than in D. brightwellii . In T. pseudonana , total SH and GSH decreased at 322 nM Zn, and GSH increased at 80 nM Cu but decreased at 119 nM Cu. GSH:GSSG ratios were low, while phytochelatins were not detectable in metal-exposed D. brightwellii . Cd-exposed T. pseudonana made more phytochelatins than Cu-exposed cells, and in different proportions. At 322 nM Zn, SOD activity decreased in T. pseudonana . Zn caused a major, and Cu a minor increase of SOD activity in D. brightwellii ; inhibition of photosynthesis was observed in Cu-exposed D. brightwellii , probably due to oxidative damage. The C:N ratios were higher and protein contents lower in Cu-exposed cells of both species, which might indicate excretion due to a loss of cell membrane integrity. From these results, it is hypothesized that T. pseudonana has evolved an effective detoxification mechanism as a result of a more severe exposure to toxic metals in rivers and estuaries. In contrast, D. brightwellii , a marine-estuarine species, cannot adjust well to metal exposure. Its poor defense against metal toxicity was marked by low SH-contents.  相似文献   

2.
The thylakoid membrane of photoautotrophic organisms contains the main components of the photosynthetic electron transport chain. Detailed proteome maps of the thylakoid protein complexes of two marine diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, were created by means of two-dimensional blue native (BN)/SDS-PAGE coupled with mass spectrometry analysis. One novel diatom-specific photosystem I (PS I)-associated protein was identified. A second plastid-targeted protein with possible PS I interaction was discovered to be restricted to the centric diatom species T. pseudonana. PGR5/PGRL homologues were found to be the only protein components of PS I-mediated cyclic electron transport common to both species. For the first time, evidence for a possible PS I localization of LI818-like light harvesting proteins (Lhcx) is presented. This study also advances the current knowledge on the light harvesting antenna composition and Lhcx expression in T. pseudonana on the protein level and presents details on the molecular distribution of Lhcx in diatoms. Above mentioned proteins and several others with unknown function provide a broad basis for further mutagenesis analysis, aiming toward further understanding of the composition and function of the photosynthetic apparatus of diatoms. The proteomics approach of this study further served as a tool to confirm and improve genome-derived protein models.  相似文献   

3.
H Wu  S Roy  M Alami  BR Green  DA Campbell 《Plant physiology》2012,160(1):464-476
Diatoms are important contributors to aquatic primary production, and can dominate phytoplankton communities under variable light regimes. We grew two marine diatoms, the small Thalassiosira pseudonana and the large Coscinodiscus radiatus, across a range of temperatures and treated them with a light challenge to understand their exploitation of variable light environments. In the smaller T. pseudonana, photosystem II (PSII) photoinactivation outran the clearance of PSII protein subunits, particularly in cells grown at sub- or supraoptimal temperatures. In turn the absorption cross section serving PSII photochemistry was down-regulated in T. pseudonana through induction of a sustained phase of nonphotochemical quenching that relaxed only slowly over 30 min of subsequent low-light incubation. In contrast, in the larger diatom C. radiatus, PSII subunit turnover was sufficient to counteract a lower intrinsic susceptibility to photoinactivation, and C. radiatus thus did not need to induce sustained nonphotochemical quenching under the high-light treatment. T. pseudonana thus incurs an opportunity cost of sustained photosynthetic down-regulation after the end of an upward light shift, whereas the larger C. radiatus can maintain a balanced PSII repair cycle under comparable conditions.  相似文献   

4.
5.
Future materials are envisioned to include bio-assembled, hybrid, three-dimensional nanosystems that incorporate functional proteins. Diatoms are amenable to genetic modification for localization of recombinant proteins in the biosilica cell wall. However, the full range of protein functionalities that can be accommodated by the modified porous biosilica has yet to be described. Our objective was to functionalize diatom biosilica with a reagent-less sensor dependent on ligand-binding and conformational change to drive FRET-based signaling capabilities. A fusion protein designed to confer such properties included a bacterial periplasmic ribose binding protein (R) flanked by CyPet (C) and YPet (Y), cyan and yellow fluorescent proteins that act as a FRET pair. The structure and function of the CRY recombinant chimeric protein was confirmed by expression in E. coli prior to transformation of the diatom Thalassiosira pseudonana. Mass spectrometry of the recombinant CRY showed 97% identity with the deduced amino acid sequence. CRY with and without an N-terminal Sil3 tag for biosilica localization exhibited characteristic ribose-dependent changes in FRET, with similar dissociation constants of 123.3 μM and 142.8 μM, respectively. The addition of the Sil3 tag did not alter the affinity of CRY for the ribose substrate. Subsequent transformation of T. pseudonana with a vector encoding Sil3-CRY resulted in fluorescence localization in the biosilica and changes in FRET in both living cells and isolated frustules in response to ribose. This work demonstrated that the nano-architecture of the genetically modified biosilica cell wall was able to support the functionality of the relatively complex Sil3-CyPet-RBP-YPet fusion protein with its requirement for ligand-binding and conformational change for FRET-signal generation.  相似文献   

6.
7.
8.
C K Vance  A F Miller 《Biochemistry》2001,40(43):13079-13087
Fe and Mn are both entrained to the same chemical reaction in apparently superimposable superoxide dismutase (SOD) proteins. However, neither Fe-substituted MnSOD nor Mn-substituted FeSOD is active. We have proposed that the two SOD proteins must apply very different redox tuning to their respective metal ions and that tuning appropriate for one metal ion results in a reduction potential (E(m)) for the other metal ion that is either too low (Fe) or too high (Mn) [Vance and Miller (1998) J. Am. Chem. Soc. 120, 461-467]. We have demonstrated that this is true for Fe-substituted MnSOD from Escherichia coli and that this metal ion-protein combination retains the ability to reduce but not oxidize superoxide. We now demonstrate that the corollary is also true: Mn-substituted FeSOD [Mn(Fe)SOD] has a very high E(m). Specifically, we have measured the E(m) of E. coli MnSOD to be 290 mV vs NHE. We have generated Mn(Fe)SOD and find that Mn is bound in an environment similar to that of the native (Mn)SOD protein. However, the E(m) is greater than 960 mV vs NHE and much higher than MnSOD's E(m) of 290 mV. We propose that the different tuning stems from different hydrogen bonding between the proteins and a molecule of solvent that is coordinated to the metal ion in both cases. Because a proton is taken up by SOD upon reduction, the protein can exert very strong control over the E(m), by modulating the degree to which coordinated solvent is protonated, in both oxidation states. Thus, coordinated solvent molecules may have widespread significance as "adapters" by which proteins can control the reactivity of bound metal ions.  相似文献   

9.
10.
11.
The effect of the substrate analogues azide and fluoride on the manganese(II) zero-field interactions of different manganese-containing superoxide dismutases (SOD) was measured using high-field electron paramagnetic resonance spectroscopy. Two cambialistic types, proteins that are active with manganese or iron, were studied along with two that were only active with iron and another that was only active with manganese. It was found that azide was able to coordinate directly to the pentacoordinated Mn(II) site of only the MnSOD from Escherichia coli and the cambialistic SOD from Rhodobacter capsulatus. The formation of a hexacoordinate azide-bound center was characterized by a large reduction in the Mn(II) zero-field interaction. In contrast, all five SODs were affected by fluoride, but no evidence for hexacoordinate Mn(II) formation was detected. For both azide and fluoride, the extent of binding was no more than 50%, implying either that a second binding site was present or that binding was self-limiting. Only the Mn(II) zero-field interactions of the two SODs that had little or no activity with manganese were found to be significantly affected by pH, the manganese-substituted iron superoxide dismutase from E. coli and the Gly155Thr mutant of the cambialistic SOD from Porphyromonas gingivalis. A model for anion binding and the observed pK involving tyrosine-34 is presented.  相似文献   

12.
This study identifies stress proteins and antioxidant enzymes that may play a role in the survival strategies of the Florida red tide dinoflagellate, Karenia brevis. Heat shock protein 60 (Hsp 60), mitochondrial small heat shock protein (mitosHsp), chloroplastic small heat shock protein (chlsHsp), Mn superoxide dismutase (SOD), and Fe SOD were first identified by Western blotting. The induction of these proteins in laboratory cultures in response to elevated temperatures, hydrogen peroxide, lead, or elevated light intensities was next assessed. In parallel, F(V)/F(M), a measurement of photosynthetic efficiency and common proxy of cellular stress, was determined. Hsp 60, Fe SOD, and Mn SOD were induced following exposure to elevated temperatures, hydrogen peroxide, or lead. MitosHsp responded only to heat, whereas chlsHsp responded only to H(2)O(2)-induced stress. The expression of stress proteins and antioxidant enzymes appears to be a more sensitive indicator of heat or chemically induced stresses than F(V)/F(M). However, F(V)/F(M) decreased significantly in response to elevated light intensities that did not induce the expression of stress proteins. These results identify for the first time stress proteins and antioxidant enzymes in K. brevis, provide evidence for differential sensitivity of cellular organelles to various sources of stress, and confirm the presence of conserved stress responses observed across phyla in a dinoflagellate.  相似文献   

13.
Transgenic cotton plants from several independently-transformed lines expressing a chimeric gene encoding a chloroplast-targeted Mn superoxide dismutase (SOD) from tobacco exhibit a three-fold increase in the total leaf SOD activity, strong Mn SOD activity associated with isolated chloroplasts, and a 30% and 20% increase in ascorbate peroxidase and glutathione reductase activities, respectively. The Mn SOD plants did exhibit a slightly enhanced protection against light-mediated, paraquat-induced cellular damage but only at 0.3 µM paraquat. In addition, photosynthetic rates at 10°C and 15°C were similar to those of controls, and the immediate recovery of photosynthesis after a 35-min exposure to 5°C and full sun was only slightly better than that for wild-type plants. The recovery for longer exposure times was comparable for both genotypes as was the deactivation of the H2O2-sensitive, Calvin-cycle enzyme, stromal fructose 1,6-bisphosphatase (FBPase). Compared to the controls, Mn SOD plant leaves in full sun prior to chilling stress had a lower activation of FBPase, a higher ratio of oxidized to reduced forms of ascorbate, and a higher total glutathione content. After 35 min at 5°C in full sunlight, total glutathione had risen in control leaves to 88% of the Mn SOD plant values, and oxidized to reduced ascorbate ratios were higher for both genotypes. However, an 80% increase in the ratio of oxidized to reduced glutathione occurred for Mn SOD plant leaves with no change for controls. This increased demand on the ascorbate-glutathione cycle is circumstantial evidence that high Mn SOD activity in the chloroplast leads to increased H2O2 pools that could, in some manner, affect photosynthetic recovery after a stress period. We postulate that the pool sizes of reduced ascorbate and glutathione may restrict the ability of the ascorbate-glutathione cycle to compensate for the increased activity of SOD in cotton over-producing mitochondrial Mn SOD in chloroplasts during short-term chilling/high light stress.  相似文献   

14.
以浮游硅藻假微型海链藻(Thalassiosira pseudonana(Hustedt)Hasle et Heimdal CCMP 1335)为材料,研究不同混合速率下,随辐射水平增加,UV辐射和可见光PAR对其光系统Ⅱ功能的影响。结果显示,混合速率慢时,随着PAR及UV辐射水平的增加,假微型海链藻PSⅡ的光化学效率(F_v/F_m)持续受到抑制,光合效率α和相对最大电子传递速率rETR_(max)下降。尤其是UV辐射存在时,PSⅡ反应中心D1蛋白含量下降,有活性的PSⅡ反应中心数量减少,单位反应中心吸收(ABS/RC)和耗散(DI_0/RC)的能量增加。混合速率快时,PAR辐射下PSⅡ光化学活性相比混合速率慢时升高,D1蛋白含量增加;而UV辐射存在下各光合参数表现出与混合速率慢时类似的变化趋势。研究结果表明水体混合速率的加快可缓解高水平可见光导致的光抑制,而对UV辐射的抑制效应并未产生显著改变。  相似文献   

15.
The effects of metal salts, chelating agents, and paraquat on the superoxide dismutases (SODs) of Escherichia coli B were explored. Mn(II) increased manganese-containing SOD (MnSOD), whereas Fe(II) increased iron-containing SOD (FeSOD). Chelating agents induced MnSOD but decreased FeSOD and markedly increased the degree of induction seen with Mn(II). Paraquat also exerted a synergistic effect with Mn(II). High levels of MnSOD were achieved in the combined presence of Mn(II), chelating agent, and paraquat. All of these effects were dependent on the presence of oxygen. MnSOD, not ordinarily present in anaerobically grown E. coli cells, was present when the cells were grown anaerobically in the presence of chelating agents. These results are accommodated by a scheme which incorporates autogenous repression by the apoSODs and competition between Fe(II) and Mn(II) for the metal-binding sites of the apoSODs. It is further supposed that oxygenation and intracellular O2- production favor MnSOD production because O2- oxidizes Mn(II) to Mn(III), which competes favorably with Fe(II) for the apoSODs.  相似文献   

16.
17.
MnCl2 induced manganese-containing superoxide dismutase (MnSOD) expression (mRNA, immunoreactive protein, and enzyme activity) in human breast cancer Hs578T cells. The induction of MnSOD immunoreactive protein in Hs578T cells was inhibited by tiron (a metal chelator and superoxide scavenger), pyruvate (a hydrogen peroxide scavenger), or 2-deoxy-d-glucose (DG, an inhibitor of glycolysis and the hexose monophosphate shunt), but not by 5,5-dimethyl-1-pyrroline-1-oxide (a superoxide scavenger), N-acetyl cysteine (a scavenger for reactive oxygen species and precursor of glutathione), diphenylene iodonium (an inhibitor of flavoproteins such as NADPH oxidase and nitric oxide synthase), or SOD (a superoxide scavenger). Northern blotting demonstrated that tiron or DG affected at the mRNA level, while pyruvate affected Mn-induced MnSOD expression at both the mRNA and protein levels. These results demonstrate that Mn can induce MnSOD expression in cultured human breast cancer cells. Mn also induced apoptosis and necrosis in these cells. Since inhibitors of Mn-induced MnSOD induction did not affect cell viability, MnSOD induction is probably not the cause of the Mn-induced cell killing.  相似文献   

18.
The filamentous cyanobacterium Anabaena PCC 7120 (now renamed Nostoc PCC 7120) possesses two genes for superoxide dismutase (SOD). One is an iron-containing (FeSOD) whereas the other is a manganese-containing superoxide dismutase (MnSOD). Localization experiments and analysis of the sequence showed that the FeSOD is cytosolic, whereas the MnSOD is a membrane-bound homodimeric protein containing one transmembrane helix, a spacer region, and a soluble catalytic domain. It is localized in both cytoplasmic and thylakoid membranes at the same extent with the catalytic domains positioned either in the periplasm or the thylakoid lumen. A phylogenetic analysis revealed that generally the highly homologous MnSODs of filamentous cyanobacteria are unique in being membrane-bound. Two recombinant variants of Anabaena MnSOD lacking either the hydrophobic region (MnSOD(Delta 28)) or the hydrophobic and the linker region (MnSOD(Delta 60)) are shown to exhibit the characteristic manganese peak at 480 nm, an almost 100% occupancy of manganese per subunit, a specific activity using the ferricytochrome assay of (660 +/- 90) unit mg-1 protein and a dissociation constant for the inhibitor azide of (0.84 +/- 0.05) mm. Using stopped-flow spectroscopy it is shown that the decay of superoxide in the presence of various (MnSOD(Delta 28)) or (MnSOD(Delta 60)) concentrations is first-order in enzyme concentration allowing the calculation of catalytic rate constants which increase with decreasing pH: 8 x 10(6) m-1 s-1 (pH 10) and 6 x 10(7) m-1 s-1 (pH 7). The physiological relevance of these findings is discussed with respect to the bioenergetic peculiarities of cyanobacteria.  相似文献   

19.
Photodynamic therapy (PDT), a promising therapeutic modality for the management of solid tumors, is a two-phase treatment consisting of a photosensitizer and visible light. Increasing evidence indicates that tumor cells in regions exposed to sublethal doses of PDT can respond by rescue responses that lead to insufficient cell death. We decided to examine the role of superoxide dismutases (SODs) in the effectiveness of PDT and to investigate whether 2-methoxyestradiol (2-MeOE(2)), an inhibitor of SODs, is capable of potentiating the antitumor effects of this treatment regimen. In the initial experiment we observed that PDT induced the expression of MnSOD but not Cu,Zn-SOD in cancer cells. Pretreatment of cancer cells with a cell-permeable SOD mimetic, Mn(II)-tetrakis(4-benzoic acid)porphyrin chloride, and transient transfection with the MnSOD gene resulted in a decreased effectiveness of PDT. Inhibition of SOD activity in tumor cells by preincubation with 2-MeOE(2) produced synergistic antitumor effects when combined with PDT in 3 murine and 5 human tumor cell lines. The combination treatment was also effective in vivo producing retardation of the tumor growth and prolongation of the survival of tumor-bearing mice. We conclude that inhibition of MnSOD activity by 2-MeOE(2) is an effective treatment modality capable of potentiating the antitumor effectiveness of PDT.  相似文献   

20.
Gene therapy-mediated overexpression of superoxide dismutases (SOD) appears to be a promising strategy for modulating radiosensitivity based on detoxification of superoxide radicals and suppression of apoptosis. Using recombinant lentiviral-based vectors, the effects of SOD overexpression on both were tested in human lymphoblastoid cells (TK6) that are sensitive to radiation-induced apoptosis. TK6 cells were transduced with vectors containing CuZnSOD, MnSOD or inverted MnSOD (MSODi) cDNA. Gene transfer efficiency, SOD activity, superoxide-radical resistance, apoptosis and clonogenic survival were determined. A six- to eightfold increase in SOD activity was observed after transduction, rendering MnSOD-overexpressing TK6 cells significantly more resistant to paraquat-induced superoxide radical production than controls. Although significant differences in sensitivity to apoptosis were observed for MnSOD, no differences in clonogenic survival after irradiation were detected between any groups. Our data show that efficient cellular SOD overexpression, an increased superoxide radical detoxifying ability and, for MnSOD, decreased apoptosis did not result in increased clonogenic survival after irradiation. This strengthens the hypothesis of differences in the radiation-modulating effects of SOD on normal and malignant cells (protective and nonprotective, respectively), thereby showing its potential to increase the therapeutic index in future clinical SOD-based radioprotection approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号