首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
M H Hao  S C Harvey 《Biopolymers》1992,32(10):1393-1405
This paper presents a general method for studying the harmonic dynamics of large biomolecules and molecular complexes. The performance and accuracy of the method applied to a number of molecules are also reported. The basic approach of the method is to divide a macromolecule into a number of smaller components. The local normal modes of the components are first calculated by treating individual components and the interactions between nearest neighboring components. The physical displacements of all atoms are then represented in the local normal mode space, in which a selected range of high-frequency local modes is neglected. The equation of motion of the molecule in the local normal mode space will then have a smaller dimension, and consequently the normal modes of the whole structure, particularly for large molecules, can be solved much more easily. The normal modes of two polypeptides--(Ala)6 and (Ala)12--and a double-helical DNA--d(ATATA).d(TATAT)--are analyzed with this method. Reductions on the dimensions of harmonic dynamic equations for these molecules have been made, with the fraction of the deleted high-frequency modes ranging from 1/2 to 5/6. The calculated low-frequency normal modes are found to be very accurate as compared to the exact solutions by standard procedure. The major advantage of the present approach on macromolecule harmonic dynamics is that the reduction on the dimensionality of the eigenvalue problems can be varied according to the size of molecules, so the method can be easily applied to large macromolecules with controlled accuracy.  相似文献   

2.
The fundamental intramolecular frequency of a globular protein can be obtained from the measurements of acoustic velocities of bulk protein matter. This lowest frequency for common size molecules is shown to be above several hundred GHz. All modes below this frequency would then be intermolecular modes or bulk modes of the molecule and surrounding matter or tissue. The lowest frequency modes of an extended DNA double helix are also shown to be bulk modes because of interaction with water. Only DNA modes, whose frequency is well above 4 GHz, can be intrahelical modes, that is, confined to the helix rather than in the helix plus surroundings. Near 4 GHz, they are heavily damped and, therefore, not able to resonantly absorb. Modes that absorb radio frequency (RF) below this frequency are bulk modes of the supporting matter. Bulk modes rapidly thermalize all absorbed energy. The implication of these findings for the possibility of athermal RF effects is considered. The applicability of these findings for other biological molecules is discussed.  相似文献   

3.
Low-frequency vibrational modes of biological molecules consist of intramolecular modes, which are dependent on the molecule as a whole, as well as intermolecular modes, which arise from hydrogen-bonding interactions and van der Waals forces. Vibrational modes thus contain important information about conformation dynamics of biological molecules, and can also be used for identification purposes. However, conventional Fourier transform infrared spectroscopy and terahertz time-domain spectroscopy (THz-TDS) often result in broad, overlapping features that are difficult to distinguish. The technique of waveguide THz-TDS has been recently developed, resulting in sharper features. For this technique, an ordered polycrystalline film of the molecule is formed on a metal sample plate. This plate is incorporated into a metal parallel-plate waveguide and probed via waveguide THz-TDS. The planar order of the film reduces the inhomogeneous broadening, and cooling of the samples to 77K reduces the homogenous broadening. This combination results in the line-narrowing of THz vibrational modes, in some cases to an unprecedented degree. Here, this technique has been demonstrated with seven small biological molecules, thymine, deoxycytidine, adenosine, D-glucose, tryptophan, glycine, and L-alanine. The successful demonstration of this technique shows the possibilities and promise for future studies of internal vibrational modes of large biological molecules.  相似文献   

4.
Non-linear behaviour of biochemical networks, such as intracellular gene, protein or metabolic networks, is commonly represented using graphs of the underlying topology. Nodes represent abundance of molecules and edges interactions between pairs of molecules. These graphs are linear and thus based on an implicit linearization of the kinetic reactions in one or several dynamic modes of the total system. It is common to use data from different sources -- experiments conducted under different conditions or even on different species -- meaning that the graph will be a superposition of linearizations made in many different modes. The mixing of different modes makes it hard to identify functional modules, that is sub-systems that carry out a specific biological function, since the graph will contain many interactions that do not naturally occur at the same time. The ability to establish a boundary between the sub-system and its environment is critical in the definition of a module, contrary to a motif in which only internal interactions count. Identification of functional modules should therefore be done on graphs depicting the mode in which their function is carried out, i.e. graphs that only contain edges representing interactions active in the specific mode. In general, when an interaction between two molecules is established, one should always state the mode of the system in which it is active.  相似文献   

5.
P T Wong 《Biophysical journal》1994,66(5):1505-1514
Correlation field splittings of the vibrational modes of methylene chains in lipid bilayers, isolated lipid molecules in perdeuterated lipid bilayers, crystalline lipid, and interdigitated lipid bilayers have been investigated by pressure-tuning Fourier-transform infrared spectroscopy. The correlation field splittings of these modes are originating from the vibrational coupling interactions between the fully extended methylene chains with different site symmetry along each bilayer leaflet. The interchain-interactions of the methylene chains with the same site symmetry only contribute to frequency shift of the vibrational modes. The magnitude of the correlation field splitting is a measure of the strength of the interchain-interactions, and the relative intensities of the correlation field component bands provide information concerning the relative orientation of the zig-zag planes of the interacting methylene chains. It has been demonstrated in the present work that the correlation field splitting of the CH2 bending and rocking modes commonly observed in the vibrational spectra of lipid bilayers is the result of the intermolecular interchain-interactions among the methylene chains of the neighboring molecules. The intramolecular interchain-interactions between the sn-1 and sn-2 methylene chains within each molecule are weak. The correlation field splitting resulting from the intramolecular interchain-interactions exhibits a much smaller magnitude than that from the intermolecular interchain-interactions and is observed only at very high pressure. Interdigitation of the opposing bilayer leaflets disturbs significantly the intermolecular interchain-interactions and results in dramatic changes in the pressure profiles of the correlation field component bands of both the CH2 bending and rocking modes. The relative intensities of the correlation field component bands of these modes and the magnitude of the splitting are also altered significantly. These results provide further evidence that the correlation field splitting of the CH2 bending and rocking modes in the vibrational spectra of lipid bilayers is due to the intermolecular interchain-interactions. The present work has also demonstrated that the correlation field splitting of the vibrational modes in lipid bilayers is mainly contributed by the intermolecular interchain-interactions among the nearest neighboring molecules and that the long-range correlation interactions beyond the second neighboring molecules are insignificant.  相似文献   

6.
Soluble N-ethylmaleimide-sensitive factor attachment protein gamma (gamma-SNAP) is a member of an eukaryotic protein family involved in intracellular membrane trafficking. The X-ray structure of Brachydanio rerio gamma-SNAP was determined to 2.6 A and revealed an all-helical protein comprised of an extended twisted-sheet of helical hairpins with a helical-bundle domain on its carboxy-terminal end. Structural and conformational differences between multiple observed gamma-SNAP molecules and Sec17, a SNAP family protein from yeast, are analyzed. Conformational variation in gamma-SNAP molecules is matched with great precision by the two lowest frequency normal modes of the structure. Comparison of the lowest-frequency modes from gamma-SNAP and Sec17 indicated that the structures share preferred directions of flexibility, corresponding to bending and twisting of the twisted sheet motif. We discuss possible consequences related to the flexibility of the SNAP proteins for the mechanism of the 20S complex disassembly during the SNAP receptors recycling.  相似文献   

7.
An evolutionary progression leading toward replication is resolved into several phases; (a) the replication of RNA segments by self-priming and -templating, (b) the replication of single stranded molecules by elongation and controlled scission, (c) replication of complementary duplexes and (d) replication of DNA. The initial phase is suggested by evidence for the existence of tandem repeats in an early population of molecules presumed to be ancestral to today's structurl RNAs. Relics of these repeats are seen in the positioning of sequence matches between transfer and ribosomal RNAs. Conservation of the positions of the matches is indicated by persistence of a periodicity in their spacings along the molecules.Selection is viewed as a vector, with a source and a focus. The evolutionary progression entails shifts in the source of selection, from external catalysts to the replicating molecule itself, and in its focus, from substrate to replicator, to the products of the replicator's activity. When the source and focus of selection are the same selection becomes internalized, and replication and Darwinian evolution follow.Catalytic specificity is regarded as an antecedent to natural selection. Shifting of the source and focus of selection and switches in evolution's vehicle, the most fundamental thing that evolves, result in profound changes in the modes of evolution. Control provides a conceptual framwork within which entry into a Darwinian mode of evolution, and ultimately liberation from Darwinian evolution might be explained.This paper was prepared for posthumous publication by H. S. Forrest and M. P. Staves. Reprint requests should be addressed to M. P. Staves, Dept. of Biochemistry, University of Alabama at Birmingham, AL 35294, U.S.A.  相似文献   

8.
The cytotoxic T cell (CTL) response is determined by the peptide repertoire presented by the HLA class I molecules of an individual. We performed an in-depth analysis of the peptide repertoire presented by a broad panel of common HLA class I molecules on four B lymphoblastoid cell-lines (BLCL). Peptide elution and mass spectrometry analysis were utilised to investigate the number and abundance of self-peptides. Altogether, 7897 unique self-peptides, derived of 4344 proteins, were eluted. After viral infection, the number of unique self-peptides eluted significantly decreased compared to uninfected cells, paralleled by a decrease in the number of source proteins. In the overall dataset, the total number of unique self-peptides eluted from HLA-B molecules was larger than from HLA-A molecules, and they were derived from a larger number of source proteins. These results in B cells suggest that HLA-B molecules possibly present a more diverse repertoire compared to their HLA-A counterparts, which may contribute to their immunodominance. This study provides a unique data set giving new insights into the complex system of antigen presentation for a broad panel of HLA molecules, many of which were never studied this extensively before.  相似文献   

9.
The problem of radiationless Förster energy transfer between a donor and an acceptor molecule is studied in the vicinity of a metallic nanorice. Using a recently formulated effective medium theory, the modified dipole–dipole interaction between the molecules in the vicinity of a spheroidal metallic nanoshell can be easily formulated, from which huge enhancement of the energy transfer rate is obtained due to the resonant excitation of the bonding and the antibonding plasmonic modes of the nanoshell. Effects due to the different locations and orientations of the molecules are also studied. The results show that the plasmonic resonances depend mainly on the nanorice geometry and much less on the configuration of the molecules, whereas the enhancement is more sensitive to the relative orientations and locations of the molecules.  相似文献   

10.
He Y  Chen JY  Knab JR  Zheng W  Markelz AG 《Biophysical journal》2011,100(4):1058-1065
We investigate the presence of structural collective motions on a picosecond timescale for the heme protein, cytochrome c, as a function of oxidation and hydration, using terahertz (THz) time domain spectroscopy and molecular dynamics simulations. The THz response dramatically increases with oxidation, with the largest increase for lowest hydrations, and highest frequencies. For both oxidation states the THz response rapidly increases with hydration saturating above ∼25% (g H2O/g protein). Quasiharmonic vibrational modes and dipole-dipole correlation functions were calculated from molecular dynamics trajectories. The collective mode density of states alone reproduces the measured hydration dependence, providing strong evidence of the existence of these motions. The large oxidation dependence is reproduced only by the dipole-dipole correlation function, indicating the contrast arises from diffusive motions consistent with structural changes occurring in the vicinity of buried internal water molecules. This source for the observed oxidation dependence is consistent with the lack of an oxidation dependence in nuclear resonant vibrational spectroscopy measurements.  相似文献   

11.
Cell polarity and Dictyostelium development   总被引:2,自引:0,他引:2  
Cell polarity is essential for unicellular and multicellular stages of Dictyostelium development. Chemotaxis during early development requires each cell to rapidly reorganize its cytoskeleton to point towards a source of cAMP. This involves a balance between local induction of F-actin polymerization and suppression of pseudopods that point in other directions. Both the lipid phosphatidylinositol (3,4,5) trisphosphate and the soluble signal cGMP have been implicated in these processes, in addition to conserved and novel proteins. During later development cells adopt newly discovered, alternative modes of movement and interact through adhesion molecules. Finally, cells polarize secretion to particular regions of their surface.  相似文献   

12.
13.
J B Sokoloff 《Biopolymers》1990,30(5-6):555-562
A previous model for acoustic mode vibrations of a DNA molecule in water is extended to the case of an array of many DNA molecules, as occurs in the fibers studied in most experimental work on DNA. The acoustic modes of this system are found to consist of coupled modes of water sound vibrations and DNA acoustic modes. This model is used to study the electrostatic coupling of acoustic vibrations to the relaxational modes of the orientational degrees of freedom of the water molecules. It is found that the long-range or macroscopic electric field generated by the acoustic mode vibrations of the water-DNA system gives too small a damping and frequency shift of the acoustic modes to account for the observations on DNA fibers. Therefore, the observed damping and frequency shifts are most likely due to either friction between the surrounding water and the vibrating DNA, or coupling to the water orientation degrees of freedom resulting from the short range (i.e., screened) Coulomb interaction. The latter explanation (which is most likely the correct one) implies that the relaxation time of the hydration shell water is longer than the observed relaxation time by a factor of the static dielectric constant of the hydration water.  相似文献   

14.
The extracellular matrix (ECM) is the central element of a pericellular network of bioactive molecules. It orchestrates molecular interactions, availability and activity, acting as a key regulator of cell functions and complex biological processes, including physiological and pathological angiogenesis. The ECM serves as a source of both stimulatory and inhibitory angiogenesis regulatory factors. The observation that several endogenous inhibitors of angiogenesis derive from the ECM proves its importance in physiological angiogenesis, and point to the ECM as a precious source of therapeutic agents for angiogenesis-driven diseases, including cancer growth and metastatic dissemination. This review focuses on the different approaches to exploit ECM molecules for designing tools for therapeutic inhibition or monitoring of pathological angiogenesis, with particular focus on antineoplastic therapy, and emphasis on peptides of ECM moieties and mimetic small molecules.  相似文献   

15.
The study reported herein addressed the structure, adsorption energy and normal modes of zwitterion l-cysteine (Z-cys) adsorbed on the Au20 cluster by using density functional theory (DFT). It was found that four Z-cys are bound to the Au20 apexes preferentially through S atoms. Regarding normal modes, after adsorption of four Z-cys molecules, a more intense infrared (IR) peak is maintained around 1,631.4 cm?1 corresponding with a C=O stretching mode, but its intensity is enhanced approximately six times. The enhancement in the intensity of modes between 0 to 300 cm?1 is around 4.5 to 5.0 times for normal modes that involve O–C=O and C-S bending modes. Other two normal modes in the range from 300 to 3,500 cm?1 show enhancements of 6.0 and 7.4 times. In general, four peaks show major intensities and they are related with normal modes of carboxyl and NH3 groups of Z-cys.  相似文献   

16.
The flexibility of a series of cyclic peptides derived from the epitope of a snake toxin is investigated using computer simulation techniques. Molecular dynamics (MD) simulations and vibrational analyses are performed on chemically constrained peptides modeled on the parent protein loop. In the 50 ps MD simulations, large variations in the atomic fluctuations are seen between the peptides, and can be related to the nature of the chemical constraints present in the molecules. Normal mode analyses are performed on energy-minimized configurations derived from the dynamics trajectories. The atomic fluctuations calculated from the normal modes are about 30% of those of the molecular dynamics for the more flexible peptides and 70% for the more constrained molecules. The calculated differences in flexibility between the molecules are much less significant in the harmonic approximation. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
We present well-resolved absorption spectra of biological molecules in the far-IR (FIR) spectral region recorded by terahertz time-domain spectroscopy (THz-TDS). As an illustrative example we discuss the absorption spectra of benzoic acid, its monosubstitutes salicylic acid (2-hydroxy-benzoic acid), 3- and 4-hydroxybenzoic acid, and aspirin (acetylsalicylic acid) in the spectral region between 18 and 150 cm(-1). The spectra exhibit distinct features originating from low-frequency vibrational modes caused by intra- or intermolecular collective motion and lattice modes. Due to the collective origin of the observed modes the absorption spectra are highly sensitive to the overall structure and configuration of the molecules, as well as their environment. The THz-TDS procedure can provide a direct fingerprint of the molecular structure or conformational state of a compound.  相似文献   

18.
Photosynthesis is the principal process responsible for fixation of inorganic carbon dioxide into organic molecules with sunlight as the energy source. Potentially, many chemicals could be inexpensively produced by photosynthetic organisms. Mathematical modeling of photoautotrophic metabolism is therefore important to evaluate maximum theoretical product yields and to deeply understand the interactions between biochemical energy, carbon fixation, and assimilation pathways. Flux balance analysis based on linear programming is applied to photoautotrophic metabolism. The stoichiometric network of a model photosynthetic prokaryote, Synechocystis sp. PCC 6803, has been reconstructed from genomic data and biochemical literature and coupled with a model of the photophosphorylation processes. Flux map topologies for the hetero-, auto-, and mixotrophic modes of metabolism under conditions of optimal growth were determined and compared. The roles of important metabolic reactions such as the glyoxylate shunt and the transhydrogenase reaction were analyzed. We also theoretically evaluated the effect of gene deletions or additions on biomass yield and metabolic flux distributions.  相似文献   

19.
Formulae for calculating low-frequency twist-like and accordion-like modes of DNA molecules have been derived using a quasi-continuum model. The formulae can be employed in essentially all (viz. A, B, C, D, E, and Z) forms of DNA. Calculated results indicate that the experimentally observed low-frequency modes at 22 cm-1 for the A-form octanucleotide (d[CCCCGGGG]) and at 18 cm-1 for the B-form dodecanucleotide (d[CGCAA ATTTGCG]) may result from accordion-like motions, while those observed at 12 cm-1 and 15 cm-1 may result from combinations of twist-like oscillations excited in the intact segments of B- and A-DNA's, respectively. Frequency shifts in the low-frequency modes observed when DNA molecules undergo conformational changes among different forms are also discussed in terms of the current model.  相似文献   

20.
This report describes a computer program for clustering docking poses based on their 3-dimensional (3D) coordinates as well as on their chemical structures. This is chiefly intended for reducing a set of hits coming from high throughput docking, since the capacity to prepare and biologically test such molecules is generally far more limited than the capacity to generate such hits. The advantage of clustering molecules based on 3D, rather than 2D, criteria is that small variations on a scaffold may bring about different binding modes for molecules that would not be predicted by 2D similarity alone. The program does a pose-by-pose/atom-by-atom comparison of a set of docking hits (poses), scoring both spatial and chemical similarity. Using these pair-wise similarities, the whole set is clustered based on a user-supplied similarity threshold. An output coordinate file is created that mirrors the input coordinate file, but contains two new properties: a cluster number and similarity to the cluster center. Poses in this output file can easily be sorted by cluster and displayed together for visual inspection with any standard molecular viewing program, and decisions made about which molecule should be selected for biological testing as the best representative of this group of similar molecules with similar binding modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号