首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids   总被引:16,自引:0,他引:16  
Wang J  Tian L  Madlung A  Lee HS  Chen M  Lee JJ  Watson B  Kagochi T  Comai L  Chen ZJ 《Genetics》2004,167(4):1961-1973
Polyploidization is an abrupt speciation mechanism for eukaryotes and is especially common in plants. However, little is known about patterns and mechanisms of gene regulation during early stages of polyploid formation. Here we analyzed differential expression patterns of the progenitors' genes among successive selfing generations and independent lineages. The synthetic Arabidopsis allotetraploid lines were produced by a genetic cross between A. thaliana and A. arenosa autotetraploids. We found that some progenitors' genes are differentially expressed in early generations, whereas other genes are silenced in late generations or among different siblings within a selfing generation, suggesting that the silencing of progenitors' genes is rapidly and/or stochastically established. Moreover, a subset of genes is affected in autotetraploid and multiple independent allotetraploid lines and in A. suecica, a natural allotetraploid derived from A. thaliana and A. arenosa, indicating locus-specific susceptibility to ploidy-dependent gene regulation. The role of DNA methylation in silencing progenitors' genes is tested in DNA-hypomethylation transgenic lines of A. suecica using RNA interference (RNAi). Two silenced genes are reactivated in both ddm1- and met1-RNAi lines, consistent with the demethylation of centromeric repeats and gene-specific regions in the genome. A rapid and stochastic process of differential gene expression is reinforced by epigenetic regulation during polyploid formation and evolution.  相似文献   

2.
3.
Allopolyploids contain complete sets of chromosomes from two or more different progenitor species. Because allopolyploid hybridization can lead to speciation, allopolyploidy is an important mechanism in evolution. Meiotic instability in early-generation allopolyploids contributes to high lethality, but less is known about mitotic fidelity in allopolyploids. We compared mitotic stability in resynthesized Arabidopsis suecica-like neoallopolyploids with that in 13 natural lines of A. suecica (2n = 4x = 26). We used fluorescent in situ hybridization to distinguish the chromosomal contribution of each progenitor, A. thaliana (2n = 2x =10) and A. arenosa (2n = 4x = 32). Surprisingly, cells of the paternal parent A. arenosa had substantial aneuploidy, while cells of the maternal parent A. thaliana were more stable. Both natural and resynthesized allopolyploids had low to intermediate levels of aneuploidy. Our data suggest that polyploidy in Arabidopsis is correlated with aneuploidy, but varies in frequency by species. The chromosomal composition in aneuploid cells within individuals was variable, suggesting somatic mosaicisms of cell lineages, rather than the formation of distinct, stable cytotypes. Our results suggest that somatic aneuploidy can be tolerated in Arabidopsis polyploids, but there is no evidence that this type of aneuploidy leads to stable novel cytotypes.  相似文献   

4.
Gene redundancy in polyploid species complicates genetic analyses by making the generation of recessive, loss-of-function alleles impractical. We show that this problem can be circumvented using RNA interference (RNAi) to achieve dominant loss of function of targeted genes. Arabidopsis suecica is an allotetraploid (amphidiploid) hybrid of A. thaliana and A. arenosa. We demonstrate that A. suecica can be genetically transformed using the floral dip method for Agrobacterium-mediated transformation. Transgenes segregate as in a diploid, indicating that chromosome pairing occurs exclusively (or almost so) among homologs and not among homeologs. Expressing a double-stranded (ds) RNA corresponding to the A. thaliana gene, decrease in DNA methylation 1 (DDM1) caused the elimination of DDM1 mRNAs and the loss of methylation at both A. thaliana- and A. arenosa-derived centromere repeats. These results indicate that a single RNAi-inducing transgene can dominantly repress multiple orthologs.  相似文献   

5.
Genomewide nonadditive gene regulation in Arabidopsis allotetraploids   总被引:12,自引:0,他引:12  
  相似文献   

6.
7.
8.
Genomic in situ hybridization (GISH) is a useful tool to analyse natural polyploids, hybrid plants, and their backcross progenies as to their origin, genomic composition, and intergenomic rearrangements. However, in angiosperms with very small genomes (<0.6 pg/1 C), often only heterochromatic regions were found to be labeled. We have modified the GISH technique to label entire mitotic and meiotic chromosomes of Arabidopsis thaliana (2n = 10) and closely related species with very small genomes by using high concentrations of DNA (7.5-15 microg per probe per slide) or 5 microg of probe and long hybridization times (>60 h). According to our GISH data, Cardaminopsis carpatica (2n = 16) is most likely the diploid ancestor of the autotetraploid Arabidopsis arenosa (2n = 32). Furthermore, within the allotetraploid species Arabidopsis suecica (2n = 26), it was possible to elucidate the origin of chromosomes contributed by the parental species A. thaliana and A. arenosa for a specimen with 2n = 26 or a deviating chromosome number.  相似文献   

9.
A coalescent-based method was used to investigate the origins of the allotetraploid Arabidopsis suecica, using 52 nuclear microsatellite loci typed in eight individuals of A. suecica and 14 individuals of its maternal parent Arabidopsis thaliana, and four short fragments of genomic DNA sequenced in a sample of four individuals of A. suecica and in both its parental species A. thaliana and Arabidopsis arenosa. All loci were variable in A. thaliana but only 24 of the 52 microsatellite loci and none of the four sequence fragments were variable in A. suecica. We explore a number of possible evolutionary scenarios for A. suecica and conclude that it is likely that A. suecica has a recent, unique origin between 12,000 and 300,000 years ago. The time estimates depend strongly on what is assumed about population growth and rates of mutation. When combined with what is known about the history of glaciations, our results suggest that A. suecica originated south of its present distribution in Sweden and Finland and then migrated north, perhaps in the wake of the retreating ice.  相似文献   

10.
It has been hypothesized that polyploidy permits the proliferation of transposable elements, due to both the masking of deleterious recessive mutations and the breakdown of host silencing mechanisms. We investigated the patterns of insertion polymorphism of an Ac-like transposable element and nucleotide diversity at 18 gene fragments in the allotetraploid Arabidopsis suecica and the autotetraploid A. arenosa. All identified insertions were fixed in A. suecica, and many were clearly inherited from the parental species A. thaliana or A. arenosa. These results are inconsistent with a rapid increase in transposition associated with hybrid breakdown but support the evidence from nucleotide polymorphism patterns of a recent single origin of this species leading to genomewide fixations of transposable elements. In contrast, most insertions were segregating at very low frequencies in A. arenosa samples, showing a significant departure from neutrality in favor of purifying selection, even when we account for population subdivision inferred from sequence variation. Patterns of nucleotide variation at reference genes are consistent with the TE results, showing evidence for higher effective population sizes in A. arenosa than in related diploid taxa but a near complete population bottleneck associated with the origins of A. suecica.  相似文献   

11.
DNA sequencing was performed on up to 12 chloroplast DNA regions [giving a total of 4288 base pairs (bp) in length] from the allopolyploid Arabidopsis suecica (48 accessions) and its two parental species, A. thaliana (25 accessions) and A. arenosa (seven accessions). Arabidopsis suecica was identical to A. thaliana at all 93 sites where A. thaliana and A. arenosa differed, thus showing that A. thaliana is the maternal parent of A. suecica. Under the assumption that A. thaliana and A. arenosa separated 5 million years ago, we estimated a substitution rate of 2.9 x 10(-9) per site per year in noncoding single copy sequence. Within A. thaliana we found 12 substitution (single bp) and eight insertion/deletion (indel) polymorphisms, separating the 25 accessions into 15 haplotypes. Eight of the A. thaliana accessions from central Sweden formed one cluster, which was separated from a cluster consisting of central European and extreme southern Swedish accessions. This latter cluster also included the A. suecica accessions, which were all identical except for one 5 bp indel. We interpret this low level of variation as a strong indication that A. suecica effectively has a single origin, which we dated at 20 000 years ago or more.  相似文献   

12.
Random amplified polymorphic DNA (RAPD) markers were used to estimate the level of genetic variation in Swedish accessions of the allopolyploid Arabidopsis suecica and its parental species A. thaliana and A. arenosa. The results showed clear differences among the three species with respect to the level of variation. A. arenosa was highly variable, A. thaliana showed a moderate level of variation whereas A. suecica was much less variable than the two other species. An extended analysis covering 19 Swedish populations of A. suecica corroborated the low level of variation in this species, yet 16 unique phenotypes were observed. No isolation by distance was observed. When the genetic variation was partitioned among and within populations of A. suecica, the results showed that the majority of the variation (81%) occurred among populations. This result is interpreted as a strong indication that A. suecica is autogamous in nature.  相似文献   

13.
14.
Centromeric H3-like histones, which replace histone H3 in the centromeric chromatin of animals and fungi, have not been reported in plants. We identified a histone H3 variant from Arabidopsis thaliana that encodes a centromere-identifying protein designated HTR12. By immunological detection, HTR12 localized at centromeres in both mitotic and meiotic cells. HTR12 signal revealed tissue- and stage-specific differences in centromere morphology, including a distended bead-like structure in interphase root tip cells. The anti-HTR12 antibody also detected spherical organelles in meiotic cells. Although the antibody does not label centromeres in the closely related species Arabidopsis arenosa, HTR12 signal was found on all centromeres in allopolyploids of these two species. Comparison of the HTR12 genes of A. thaliana and A. arenosa revealed striking adaptive evolution in the N-terminal tail of the protein, similar to the pattern seen in its counterpart in Drosophila. This finding suggests that the same evolutionary forces shape centromeric chromatin in both animals and plants.  相似文献   

15.
16.
17.
18.
Genetic and epigenetic interactions in allopolyploid plants   总被引:34,自引:0,他引:34  
Allopolyploid plants are hybrids that contain two copies of the genome from each parent. Whereas wild and cultivated allopolyploids are well adapted, man-made allopolyploids are typically unstable, displaying homeotic transformation and lethality as well as chromosomal rearrangements and changes in the number and distribution of repeated DNA sequences within heterochromatin. Large increases in the length of some chromosomes has been documented in allopolyploid hybrids and could be caused by the activation of dormant retrotransposons, as shown to be the case in marsupial hybrids. Synthetic (man-made) allotetraploids of Arabidopsis exhibit rapid changes in gene regulation, including gene silencing. These regulatory abnormalities could derive from ploidy changes and/or incompatible interactions between parental genomes, although comparison of auto- and allopolyploids suggests that intergenomic incompatibilities play the major role. Models to explain intergenomic incompatibilities incorporate both genetic and epigenetic mechanisms. In one model, the activation of heterochromatic transposons (McClintock's genomic shock) may lead to widespread perturbation of gene expression, perhaps by a silencing interaction between activated transposons and euchromatic genes. Qualitatively similar responses, of lesser intensity, may occur in intraspecific hybrids. Therefore, insight into genome function gained from the study of allopolyploidy may be applicable to hybrids of any type and may even elucidate positive interactions, such as those responsible for hybrid vigor.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号