首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The use of classical smallpox vaccines based on vaccinia virus (VV) is associated with severe complications in both naive and immune individuals. Modified vaccinia virus Ankara (MVA), a highly attenuated replication-deficient strain of VV, has been proven to be safe in humans and immunocompromised animals, and its efficacy against smallpox is currently being addressed. Here we directly compare the efficacies of MVA alone and in combination with classical VV-based vaccines in a cynomolgus macaque monkeypox model. The MVA-based smallpox vaccine protected macaques against a lethal respiratory challenge with monkeypox virus and is therefore an important candidate for the protection of humans against smallpox.  相似文献   

2.
Potent and safe vaccinia virus vectors inducing cell-mediated immunity are needed for clinical use. Replicating vaccinia viruses generally induce strong cell-mediated immunity; however, they may have severe adverse effects. As a vector for clinical use, we assessed the defective vaccinia virus system, in which deletion of an essential gene blocks viral replication, resulting in an infectious virus that does not multiply in the host. The vaccinia virus Lister/Elstree strain, used during worldwide smallpox eradication, was chosen as the parental virus. The immunogenicity and safety of the defective vaccinia virus Lister were evaluated without and with the inserted human p53 gene as a model and compared to parallel constructs based on modified vaccinia virus Ankara (MVA), the present "gold standard" of recombinant vaccinia viruses in clinical development. The defective viruses induced an efficient Th1-type immune response. Antibody and cytotoxic-T-cell responses were comparable to those induced by MVA. Safety of the defective Lister constructs could be demonstrated in vitro in cell culture as well as in vivo in immunodeficient SCID mice. Similar to MVA, the defective viruses were tolerated at doses four orders of magnitude higher than those of the wild-type Lister strain. While current nonreplicating vectors are produced mainly in primary chicken cells, defective vaccinia virus is produced in a permanent safety-tested cell line. Vaccines based on this system have the additional advantage of enhanced product safety. Therefore, a vector system was made which promises to be a valuable tool not only for immunotherapy for diseases such as cancer, human immunodeficiency virus infection, or malaria but also as a basis for a safer smallpox vaccine.  相似文献   

3.
It was previously demonstrated that the vaccinia virus recombinants expressing the respiratory syncytial virus (RSV) F, G, or M2 (also designated as 22K) protein (Vac-F, Vac-G, or Vac-M2, respectively) induced almost complete resistance to RSV challenge in BALB/c mice. In the present study, we sought to identify the humoral and/or cellular mediators of this resistance. Mice were immunized by infection with a single recombinant vaccinia virus and were subsequently given a monoclonal antibody directed against CD4+ or CD8+ T cells or gamma interferon (IFN-gamma) to cause depletion of effector T cells or IFN-gamma, respectively, at the time of RSV challenge (10 days after immunization). Mice immunized with Vac-F or Vac-G were completely or almost completely resistant to RSV challenge after depletion of both CD4+ and CD8+ T cells prior to challenge, indicating that these cells were not required at the time of virus challenge for expression of resistance to RSV infection induced by the recombinants. In contrast, the high level of protection of mice immunized with Vac-M2 was completely abrogated by depletion of CD8+ T cells, whereas depletion of CD4+ T cells or IFN-gamma resulted in intermediate levels of resistance. These results demonstrate that antibodies are sufficient to mediate the resistance to RSV induced by the F and G proteins, whereas the resistance induced by the M2 protein is mediated primarily by CD8+ T cells, with CD4+ T cells and IFN-gamma also contributing to resistance.  相似文献   

4.
Vaccination with live vaccinia virus affords long-lasting protection against variola virus, the agent of smallpox. Its mode of protection in humans, however, has not been clearly defined. Here we report that vaccinia-specific B-cell responses are essential for protection of macaques from monkeypox virus, a variola virus ortholog. Antibody-mediated depletion of B cells, but not CD4+ or CD8+ T cells, abrogated vaccine-induced protection from a lethal intravenous challenge with monkeypox virus. In addition, passive transfer of human vaccinia-neutralizing antibodies protected nonimmunized macaques from severe disease. Thus, vaccines able to induce long-lasting protective antibody responses may constitute realistic alternatives to the currently available smallpox vaccine (Dryvax).  相似文献   

5.
The potential threat of smallpox use in a bioterrorist attack has heightened the need to develop an effective smallpox vaccine for immunization of the general public. Vaccination with the current smallpox vaccine, Dryvax, produces protective immunity but may result in adverse reactions for some vaccinees. A subunit vaccine composed of protective vaccinia virus proteins should avoid the complications arising from live-virus vaccination and thus provide a safer alternative smallpox vaccine. In this study, we assessed the protective efficacy and immunogenicity of a multisubunit vaccine composed of the A27L and D8L proteins from the intracellular mature virus (IMV) form and the B5R protein from the extracellular enveloped virus (EEV) form of vaccinia virus. BALB/c mice were immunized with Escherichia coli-produced A27L, D8L, and B5R proteins in an adjuvant consisting of monophosphoryl lipid A and trehalose dicorynomycolate or in TiterMax Gold adjuvant. Following immunization, mice were either sacrificed for analysis of immune responses or lethally challenged by intranasal inoculation with vaccinia virus strain Western Reserve. We observed that three immunizations either with A27L, D8L, and B5R or with the A27L and B5R proteins alone induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Several linear B-cell epitopes within the three proteins were recognized by sera from the immunized mice. In addition, protein-specific cellular responses were detected in spleens of immunized mice by a gamma interferon enzyme-linked immunospot assay using peptides derived from each protein. Our data suggest that a subunit vaccine incorporating bacterially expressed IMV- and EEV-specific proteins can be effective in stimulating anti-vaccinia virus immune responses and providing protection against lethal virus challenge.  相似文献   

6.
CD8(+) T lymphocytes have been shown to be involved in controlling poxvirus infection, but no protective cytotoxic T-lymphocyte (CTL) epitopes are defined for variola virus, the causative agent of smallpox, or for vaccinia virus. Of several peptides in vaccinia virus predicted to bind HLA-A2.1, three, VETFsm(498-506), A26L(6-14), and HRP2(74-82), were found to bind HLA-A2.1. Splenocytes from HLA-A2.1 transgenic mice immunized with vaccinia virus responded only to HRP2(74-82) at 1 week and to all three epitopes by ex vivo enzyme-linked immunosorbent spot (ELISPOT) assay at 4 weeks postimmunization. To determine if these epitopes could elicit a protective CD8(+) T-cell response, we challenged peptide-immunized HLA-A2.1 transgenic mice intranasally with a lethal dose of the WR strain of vaccinia virus. HRP2(74-82) peptide-immunized mice recovered from infection, while na?ve mice died. Depletion of CD8(+) T cells eliminated protection. Protection of HHD-2 mice, lacking mouse class I major histocompatibility complex molecules, implicates CTLs restricted by human HLA-A2.1 as mediators of protection. These results suggest that HRP2(74-82), which is shared between vaccinia and variola viruses, may be a CD8(+) T-cell epitope of vaccinia virus that will provide cross-protection against smallpox in HLA-A2.1-positive individuals, representing almost half the population.  相似文献   

7.
Immunostimulatory CpG oligodeoxynucleotides (ODN) have proven effective as adjuvants for protein-based vaccines, but their impact on immune responses induced by live viral vectors is not known. We found that addition of CpG ODN to modified vaccinia Ankara (MVA) markedly improved the induction of longer-lasting adaptive protective immunity in BALB/c mice against intranasal pathogenic vaccinia virus (Western Reserve; WR). Protection was mediated primarily by CD8(+) T cells in the lung, as determined by CD8-depletion studies, protection in B cell-deficient mice, and greater protection correlating with CD8(+) IFN-gamma-producing cells in the lung but not with those in the spleen. Intranasal immunization was more effective at inducing CD8(+) T cell immunity in the lung, and protection, than i.m. immunization. Addition of CpG ODN increased the CD8(+) response but not the Ab response. Depletion of CD4 T cells before vaccination with MVA significantly diminished protection against pathogenic WR virus. However, CpG ODN delivered with MVA was able to substitute for CD4 help and protected CD4-depleted mice against WR vaccinia challenge. This study demonstrates for the first time a protective adjuvant effect of CpG ODN for a live viral vector vaccine that may overcome CD4 deficiency in the induction of protective CD8(+) T cell-mediated immunity.  相似文献   

8.
Previous studies have shown that vaccination and boosting of rhesus macaques with attenuated vesicular stomatitis virus (VSV) vectors encoding Env and Gag proteins of simian immunodeficiency virus-human immunodeficiency virus (SHIV) hybrid viruses protect rhesus macaques from AIDS after challenge with the highly pathogenic SHIV 89.6P (23). In the present study, we compared the effectiveness of a single prime-boost protocol consisting of VSV vectors expressing SHIV Env, Gag, and Pol proteins to that of a protocol consisting of a VSV vector prime followed with a single boost with modified vaccinia virus Ankara (MVA) expressing the same SHIV proteins. After challenge with SHIV 89.6P, MVA-boosted animals controlled peak challenge viral loads to less than 2 x 10(6) copies/ml (a level significantly lower than that seen with VSV-boosted animals and lower than those reported for other vaccine studies employing the same challenge). MVA-boosted animals have shown excellent preservation of CD4(+) T cells, while two of four VSV-boosted animals have shown significant loss of CD4(+) T cells. The improved protection in MVA-boosted animals correlates with trends toward stronger prechallenge CD8(+)-T-cell responses to SHIV antigens and stronger postchallenge SHIV-neutralizing antibody production.  相似文献   

9.
Cellular and humoral immunity against vaccinia virus infection of mice   总被引:8,自引:0,他引:8  
Despite the widespread use of vaccinia virus (VV) as a vector for other Ags and as the smallpox vaccine, there is little information available about the protective components of the immune response following VV infection. In this study, protection against wild-type VV was evaluated in mice with respect to the relative contributions of CD8(+) T cells vs that of CD4(+) T cells and Ab. C57BL/6 mice primed with the Western Reserve strain of VV mount significant IgM and IgG Ab responses, specific cytotoxic T cell responses, IFN-gamma responses in CD4(+) and CD8(+) T cells, and effectively clear the virus. This protection was abrogated by in vivo depletion of CD4(+) T cells or B cells in IgH(-/-) mice, but was not sensitive to CD8(+) T cell depletion alone. However, a role for CD8(+) T cells in primary protection was demonstrated in MHC class II(-/-) mice, where depleting CD8(+) T cells lead to increase severity of disease. Unlike control MHC class II(-/-) mice, the group depleted of CD8(+) T cells developed skin lesions on the tail and feet and had adrenal necrosis. Adoptive transfer experiments also show CD8(+) T cells can mediate protective memory. These results collectively show that both CD4(+) and CD8(+) T cell-mediated immunity can contribute to protection against VV infection. However, CD4(+) T cell-dependent anti-virus Ab production plays a more important role in clearing virus following acute infection, while in the absence of Ab, CD8(+) T cells can contribute to protection against disease.  相似文献   

10.
With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.  相似文献   

11.
Smallpox vaccine based on live, replicating vaccinia virus (VACV) is associated with several potentially serious and deadly complications. Consequently, a new generation of vaccine based on non-replicating Modified vaccinia virus Ankara (MVA) has been under clinical development. MVA seems to induce good immune responses in blood tests, but it is impossible to test its efficacy in vivo in human. One of the serious complications of the replicating vaccine is eczema vaccinatum (EV) occurring in individuals with atopic dermatitis (AD), thus excluding them from all preventive vaccination schemes. In this study, we first characterized and compared development of eczema vaccinatum in different mouse strains. Nc/Nga, Balb/c and C57Bl/6J mice were epicutaneously sensitized with ovalbumin (OVA) or saline control to induce signs of atopic dermatitis and subsequently trans-dermally (t.d.) immunized with VACV strain Western Reserve (WR). Large primary lesions occurred in both mock- and OVA-sensitized Nc/Nga mice, while they remained small in Balb/c and C57Bl/6J mice. Satellite lesions developed in both mock- and OVA-sensitized Nc/Nga and in OVA-sensitized Balb/c mice with the rate 40–50%. Presence of mastocytes and eosinophils was the highest in Nc/Nga mice. Consequently, we have chosen Nc/Nga mice as a model of AD/EV and tested efficacy of MVA and Dryvax vaccinations against a lethal intra-nasal (i.n.) challenge with WR, the surrogate of smallpox. Inoculation of MVA intra-muscularly (i.m.) or t.d. resulted in no lesions, while inoculation of Dryvax t.d. yielded large primary and many satellite lesions similar to WR. Eighty three and 92% of mice vaccinated with a single dose of MVA i.m. or t.d., respectively, survived a lethal i.n. challenge with WR without any serious illness, while all Dryvax-vaccinated animals survived. This is the first formal prove of protective immunity against a lethal poxvirus challenge induced by vaccination with MVA in an atopic organism.  相似文献   

12.
The influence of preexisting immunity to viral vectors is a major issue for the development of viral-vectored vaccines. In this study, we investigate the effect of preexisting vaccinia virus immunity on the immunogenicity and efficacy of a DNA/modified vaccinia Ankara (MVA) SIV vaccine in rhesus macaques using a pathogenic intrarectal SIV251 challenge. Preexisting immunity decreased SIV-specific CD8 and CD4 T cell responses but preserved the SIV-specific humoral immunity. In addition, preexisting immunity did not diminish the control of an SIV challenge mediated by the DNA/MVA vaccine. The peak and set point viremia was 150- and 17-fold lower, respectively, in preimmune animals compared with those of control animals. The peak and set point viremia correlated directly with colorectal virus at 2 wk postchallenge suggesting that early control of virus replication at the site of viral challenge was critical for viral control. Factors that correlated with early colorectal viral control included 1) the presence of anti-SIV IgA in rectal secretions, 2) high-avidity binding Ab for the native form of Env, and 3) low magnitude of vaccine-elicited SIV-specific CD4 T cells displaying the CCR5 viral coreceptor. The frequency of SIV-specific CD8 T cells in blood and colorectal tissue at 2 wk postchallenge did not correlate with early colorectal viral control. These results suggest that preexisting vaccinia virus immunity may not limit the potential of recombinant MVA vaccines to elicit humoral immunity and highlight the importance of immunodeficiency virus vaccines achieving early control at the mucosal sites of challenge.  相似文献   

13.
T cell-mediated protection against a recombinant vaccinia virus was evaluated in mice with respect to the relative contributions of CTL vs that of T cell-dependent IL and of CD4+ cells. H-2b mice primed with the wildtype of vesicular stomatitis virus serotype Indiana (VSV-IND wt) mount an in vitro measurable cytotoxic response against the nucleoprotein (NP) of VSV-IND and are protected against a challenge infection with a vaccinia-VSV recombinant virus expressing the NP of VSV-IND (vacc-IND-NP). Their protective mechanism was highly susceptible to in vivo depletion of CD8+ T cells, but resistant to CD4+ depletion or treatment with anti-IFN-gamma and anti-TNF-alpha. Surprisingly, also VSV-CTL nonresponder H-2k mice were protected against a challenging infection with vacc-IND-NP when primed with VSV-IND wt. In contrast to the CTL responder H-2b mice, this protection was highly susceptible to CD4+ T cell depletion and to anti-IFN-gamma or anti-TNF-alpha treatment, but resistant to CD8+ T cell depletion. Antibodies were not responsible because they failed to transfer protection; in contrast CD4+ T cells conferred significant protection. VSV-CTL responder H-2b and nonresponder H-2k mice were protected almost equally well against a challenge dose of 10(3) pfu vacc-IND-NP inoculated intracerebrally. However, after intracerebral challenge with 5 x 10(6) pfu vacc-IND-NP, the CTL nonresponder mice died, whereas the CTL responder mice eliminated the virus by day 5. These results collectively show that CD4+ T cell-dependent IL may mediate antiviral protection, but their efficiency is relatively weak compared with CD8-mediated protection correlating with cytotoxic activity in vitro.  相似文献   

14.
Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s) of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA) or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immunization given two days before challenge. In conclusion, our data clearly demonstrate that perforin-dependent CD8 T cell immunity plays a key role in MVA conferred short term protection against lethal mousepox. Rapid induction of T cell immunity might serve as a new paradigm for treatments that need to fit into a scenario of protective emergency vaccination.  相似文献   

15.
The development of a subunit vaccine for smallpox represents a potential strategy to avoid the safety concerns associated with replication-competent vaccinia virus. Preclinical studies to date with subunit smallpox vaccine candidates, however, have been limited by incomplete information regarding protective antigens and the requirement for multiple boost immunizations to afford protective immunity. Here we explore the protective efficacy of replication-incompetent, recombinant adenovirus serotype 35 (rAd35) vectors expressing the vaccinia virus intracellular mature virion (IMV) antigens A27L and L1R and extracellular enveloped virion (EEV) antigens A33R and B5R in a murine vaccinia virus challenge model. A single immunization with the rAd35-L1R vector effectively protected mice against a lethal systemic vaccinia virus challenge. The rAd35-L1R vector also proved more efficacious than the combination of four rAd35 vectors expressing A27L, L1R, A33R, and B5R. Moreover, serum containing L1R-specific neutralizing antibodies afforded postexposure prophylaxis after systemic vaccinia virus infection. In contrast, the combination of rAd35-L1R and rAd35-B5R vectors was required to protect mice against a lethal intranasal vaccinia virus challenge, suggesting that both IMV- and EEV-specific immune responses are important following intranasal infection. Taken together, these data demonstrate that different protective antigens are required based on the route of vaccinia virus challenge. These studies also suggest that rAd vectors warrant further assessment as candidate subunit smallpox vaccines.  相似文献   

16.
The nonstructural immediate-early protein pp89 of murine cytomegalovirus (MCMV) is the first viral protein synthesized after infection and has a regulatory function in viral gene expression. Despite its localization in the nucleus of infected cells, pp89 is also the dominant antigen recognized by MCMV-specific cytolytic T lymphocytes. The recombinant vaccinia virus MCMV-ieI-VAC, which expresses pp89, was used to study the capacity of this protein to induce protective immunity in BALB/c mice. Vaccination with MCMV-ieI-VAC induced a long-lasting immunity that protected mice against challenge with a lethal dose of MCMV but did not prevent infection and morbidity. In vivo depletion of CD8+ T lymphocytes before challenge completely abrogated the protective immunity. CD8+ T lymphocytes derived from MCMV-ieI-VAC-primed donors and adoptively transferred into sublethally irradiated and MCMV-infected recipients were found to limit viral replication in host tissues, whereas CD4+ T lymphocytes and pp89-specific antiserum had no protective effect. The data demonstrate for the first time that a single nonstructural viral protein can confer protection against a lethal cytolytic infection and that this immunity is entirely mediated by the CD8+ subpopulation of T lymphocytes.  相似文献   

17.
Three distinct chimpanzee Fabs against the A33 envelope glycoprotein of vaccinia virus were isolated and converted into complete monoclonal antibodies (MAbs) with human gamma 1 heavy-chain constant regions. The three MAbs (6C, 12C, and 12F) displayed high binding affinities to A33 (K(d) of 0.14 nM to 20 nM) and may recognize the same epitope, which was determined to be conformational and located within amino acid residues 99 to 185 at the C terminus of A33. One or more of the MAbs were shown to reduce the spread of vaccinia virus as well as variola virus (the causative agent of smallpox) in vitro and to more effectively protect mice when administered before or 2 days after intranasal challenge with virulent vaccinia virus than a previously isolated mouse anti-A33 MAb (1G10) or vaccinia virus immunoglobulin. The protective efficacy afforded by anti-A33 MAb was comparable to that of a previously isolated chimpanzee/human anti-B5 MAb. The combination of anti-A33 MAb and anti-B5 MAb did not synergize the protective efficacy. These chimpanzee/human anti-A33 MAbs may be useful in the prevention and treatment of vaccinia virus-induced complications of vaccination against smallpox and may also be effective in the immunoprophylaxis and immunotherapy of smallpox and other orthopoxvirus diseases.  相似文献   

18.
The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA-vectored vaccines inoculated by scarification can elicit protective immune responses that are comparable to subcutaneous vaccination, and may allow for antigen sparing when vaccine supply is limited.  相似文献   

19.
Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.  相似文献   

20.
The vaccinia virus (VACV) Lister strain was one of the vaccine strains that enabled smallpox eradication. Although the strain is most often harmless, there have been numerous incidents of mild to life-threatening accidents with this strain and others. In an attempt to further attenuate the Lister strain, we investigated the role of 5 genomic regions known to be deleted in the modified VACV Ankara (MVA) genome in virulence in immunodeficient mice, immunogenicity in immunocompetent mice, and vaccine efficacy in a cowpox virus challenge model. Lister mutants were constructed so as to delete each of the 5 regions or various combinations of these regions. All of the mutants replicated efficiently in tissue culture except region I mutants, which multiplied more poorly in human cells than the parental strain. Mutants with single deletions were not attenuated or only moderately so in athymic nude mice. Mutants with multiple deletions were more highly attenuated than those with single deletions. Deleting regions II, III, and V together resulted in total attenuation for nude mice and partial attenuation for SCID mice. In immunocompetent mice, the Lister deletion mutants induced VACV specific humoral responses equivalent to those of the parental strain but in some cases lower cell-mediated immune responses. All of the highly attenuated mutants protected mice from a severe cowpox virus challenge at low vaccine doses. The data suggest that several of the Lister mutants combining multiple deletions could be used in smallpox vaccination or as live virus vectors at doses equivalent to those used for the traditional vaccine while displaying increased safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号