首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foshay MC  Vitello LB  Erman JE 《Biochemistry》2004,43(17):5065-5072
Replacement of the distal histidine, His-52, in cytochrome c peroxidase (CcP) with a lysine residue produces a mutant cytochrome c peroxidase, CcP(H52K), with spectral and kinetic properties significantly altered compared to those of the wild-type enzyme. Three spectroscopically distinct forms of the enzyme are observed between pH 4.0 and 8.0 with two additional forms, thought to be partially denatured forms, making contributions to the observed spectra at the pH extremes. CcP(H52K) exists in at least three, slowly interconverting conformational states over most of the pH range that was investigated. The side chain epsilon-amino group of Lys-52 has an apparent pK(a) of 6.4 +/- 0.2, and the protonation state of Lys-52 affects the spectral properties of the enzyme and the reactions with both hydrogen peroxide and HCN. In its unprotonated form, Lys-52 acts as a base catalyst facilitating the reactions of both hydrogen peroxide and HCN with CcP(H52K). The major form of CcP(H52K) reacts with hydrogen peroxide with a rate approximately 50 times slower than that of wild-type CcP but reacts with HCN approximately 3 times faster than does the wild-type enzyme. The major form of the mutant enzyme has a higher affinity for HCN than does native CcP.  相似文献   

2.
ATP influences the kinetics of electron transfer from cytochrome c to mitochondrial oxidase both in the membrane-embedded and detergent-solubilized forms of the enzyme. The most relevant effect is on the so-called "high affinity" binding site for cytochrome c which can be converted to "low affinity" by millimolar concentrations of ATP (Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1976) J. Biol. Chem. 251, 1104-1115). This phenomenon is characterized at the molecular level by the following features. ATP triggers a conformational change on the water-exposed surface of cytochrome c oxidase; in this process, carboxyl groups forming the cluster of negative charges responsible for binding cytochrome c change their accessibility to water-soluble protein modifier reagents; as a consequence the electrostatic field that controls the enzyme-substrate interaction is altered and cytochrome c appears to bind differently to oxidase; photolabeling experiments with the enzyme from bovine heart and other eukaryotic sources show that ATP cross-links specifically to the cytoplasmic subunits IV and VIII. Taken together, these data indicate that ATP can, at physiological concentration, bind to cytochrome c oxidase and induce an allosteric conformational change, thus affecting the interaction of the enzyme with cytochrome c. These findings raise the possibility that the oxidase activity may be influenced by the cell environment via cytoplasmic subunit-mediated interactions.  相似文献   

3.
Ascorbate peroxidase from L. Major (LmAPX) is a functional hybrid between cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX). We utilized point mutagenesis to investigate if a conserved proximal tryptophan residue (Trp208) among Class I peroxidase helps in controlling catalysis. The mutant W208F enzyme had no effect on both apparent dissociation constant of the enzyme-cytochrome c complex and K(m) value for cytochrome c indicating that cytochrome c binding affinity to the enzyme did not alter after mutation. Surprisingly, the mutant was 1000 times less active than the wild type in cytochrome c oxidation without affecting the second order rate constant of compound I formation. Our diode array stopped-flow spectral studies showed that the substrate unbound wild type enzyme reacts with H(2)O(2) to form compound I (compound II type spectrum), which was quite different from that of compound I in W208F mutant as well as horseradish peroxidase (HRP). The spectrum of the compound I in wild type LmAPX showed a red shift from 409 nm to 420 nm with equal intensity, which was broadly similar to those of known Trp radical. In case of compound I for W208F mutant, the peak in the Soret region was decreased in heme intensity at 409 nm and was not shifted to 420 nm suggesting this type of spectrum was similar to that of the known porphyrin pi-cation radical. In case of an enzyme-H(2)O(2)-ascorbate system, the kinetic for formation and decay of compound I and II of a mutant enzyme was almost identical to that of a wild type enzyme. Thus, the results of cytochrome c binding, compound I formation rate and activity assay suggested that Trp208 in LmAPX was essential for electron transfer from cytochrome c to heme ferryl but was not indispensable for ascorbate or guaiacol oxidation.  相似文献   

4.
THE Soret spectrum of "resting" cytochrome oxidase in cytochrome-c depleted mitochondria has been determined. The spectrum obtained is dependent on the rate at which the oxidase is turning over. In the least active preparations, the spectrum is almost pure "oxidized" oxidase. With increasing activity the spectrum is converted to a mixture of "oxidized" and "oxygenated" oxidases. It is concluded that the same conformational differences between the two non-reduced forms that are found in the purified enzyme also occur in these cytochrome-c depleted mitochondria.  相似文献   

5.
1. Physical studies of complex-formation between cytochrome c and yeast peroxidase are consistent with kinetic predictions that these complexes participate in the catalytic activity of yeast peroxidase towards ferrocytochrome c. Enzyme-ferricytochrome c complexes have been detected both by the analytical ultracentrifuge and by column chromatography, whereas an enzyme-ferrocytochrome c complex was demonstrated by column chromatography. Estimated binding constants obtained from chromatographic experiments were similar to the measured kinetic values. 2. The physicochemical study of the enzyme-ferricytochrome c complex, and an analysis of its spectrum and reactivity, suggest that the conformation and reactivity of neither cytochrome c nor yeast peroxidase are grossly modified in the complex. 3. The peroxide compound of yeast cytochrome c peroxidase was found to have two oxidizing equivalents accessible to cytochrome c but only one readily accessible to ferrocyanide. Several types of peroxide compound, differing in available oxidizing equivalents and in reactivity with cytochrome c, seem to be formed by stoicheiometric amounts of hydrogen peroxide. 4. Fluoride combines not only with free yeast peroxidase but also with peroxidase-peroxide and accelerates the decomposition of the latter compound. The ligand-catalysed decomposition provides evidence for one-electron reduction pathways in yeast peroxidase, and the reversible binding of fluoride casts doubt upon the concept that the peroxidase-peroxide intermediate is any form of peroxide complex. 5. A mechanism for cytochrome c oxidation is proposed involving the successive reaction of two reversibly bound molecules of cytochrome c with oxidizing equivalents associated with the enzyme protein.  相似文献   

6.
A molybdopterin-free form of xanthine oxidase   总被引:1,自引:0,他引:1  
A previously unidentified fraction lacking xanthine:O2 activity has been isolated during affinity chromatography of bovine milk xanthine oxidase preparations on Sepharose 4B/folate gel. Unlike active, desulfo, or demolybdo forms of xanthine oxidase, this form, which typically comprises about 5% of an unfractionated enzyme solution, passes through the affinity column without binding to it, and is thus easily separated from the other species. The absorption spectrum of this fraction is very similar to that of the active form, but has a 7% lower extinction at 450 nm. Analysis of the fraction has shown that it is a dimer of normal size, but that it does not contain molybdenum or molybdopterin (MPT). The "MPT-free" xanthine oxidase contains 90-96% of the Fe found in active xanthine oxidase, and 100% of the expected sulfide. EPR and absorption difference spectroscopy indicate that the MPT-free fraction is missing approximately half of its Fe/S I centers. The presence of a new EPR signal suggests that an altered Fe/S center may account for the nearly normal Fe and sulfide content. Microwave power saturation parameters for the Fe/S II and Fe/S I centers in the MPT-free fraction are normal, with P1/2 equal to 1000 and 60 mW, respectively. The new EPR signal shows intermediate saturation behavior with a P1/2 = 200 mW. The circular dichroism spectrum of the MPT-free fraction shows distinct differences from that of active enzyme. The NADH:methylene blue activity of the MPT-free fraction is the same as that of active xanthine oxidase which exhibits xanthine:O2 activity, but NADH:cytochrome c and NADH:DCIP activities are diminished by 54 and 37%, respectively.  相似文献   

7.
Site-directed mutagenesis was employed to examine the role played by specific surface residues in the activity of cytochrome c peroxidase. The double charge, aspartic acid to lysine, point mutations were constructed at positions 37, 79, and 217 on the surface of cytochrome c peroxidase, sites purported to be within or proximal to the recognition site for cytochrome c in an electron-transfer productive complex formed by the two proteins. The resulting mutant peroxidases were examined for catalytic activity by steady-state measurements and binding affinity by two methods, fluorescence binding titration and cytochrome c affinity chromatography. The cloned peroxidases exhibit similar UV-visible spectra to the wild-type yeast protein, indicating that there are no major structural differences between the cloned peroxidases and the wild-type enzyme. The aspartic acid to lysine mutations at positions 79 and 217 exhibited similar turnover numbers and binding affinities to that seen for the "wild type-like" cloned peroxidase. The same change at position 37 caused more than a 10-fold decrease in both turnover of and binding affinity for cytochrome c. This empirical finding localizes a primary recognition region critical to the dynamic complex. Models from the literature proposing structures for the complex between peroxidase and cytochrome c are discussed in light of these findings.  相似文献   

8.
The oxidation of yeast cytochrome c peroxidase by hydrogen peroxide produces a unique enzyme intermediate, cytochrome c peroxidase Compound I, in which the ferric heme iron has been oxidized to an oxyferryl state, Fe(IV), and an amino acid residue has been oxidized to a radical state. The reduction of cytochrome c peroxidase Compound I by horse heart ferrocytochrome c is biphasic in the presence of excess ferrocytochrome c as cytochrome c peroxidase Compound I is reduced to the native enzyme via a second enzyme intermediate, cytochrome c peroxidase Compound II. In the first phase of the reaction, the oxyferryl heme iron in Compound I is reduced to the ferric state producing Compound II which retains the amino acid free radical. The pseudo-first order rate constant for reduction of Compound I to Compound II increases with increasing cytochrome c concentration in a hyperbolic fashion. The limiting value at infinite cytochrome c concentration, which is attributed to the intracomplex electron transfer rate from ferrocytochrome c to the heme site in Compound I, is 450 +/- 20 s-1 at pH 7.5 and 25 degrees C. Ferricytochrome c inhibits the reaction in a competitive manner. The reduction of the free radical in Compound II is complex. At low cytochrome c peroxidase concentrations, the reduction rate is 5 +/- 3 s-1, independent of the ferrocytochrome c concentration. At higher peroxidase concentrations, a term proportional to the square of the Compound II concentration is involved in the reduction of the free radical. Reduction of Compound II is not inhibited by ferricytochrome c. The rates and equilibrium constant for the interconversion of the free radical and oxyferryl forms of Compound II have also been determined.  相似文献   

9.
Reconstituted cytochrome oxidase systems in which the majority of the vesicles contain a single oxidase dimer can be prepared. It is shown that, when these are passed through a cytochrome c affinity column, only those vesicles oriented outwards (such that the active site is available to external cytochrome c) are bound to the support matrix. Protein-free vesicles and vesicles containing an inwardly oriented enzyme are eluted in the void volume. Subsequently, vesicles containing an outwardly oriented enzyme can be eluted from the column at high salt concentrations. This protocol has been used successfully to resolve vesicles of either oxidase orientation when the enzyme is reconstituted with a variety of lipid mixtures. The recovery of oxidase activity from the column ranged between 75 and 94%.  相似文献   

10.
R A Copeland  P A Smith  S I Chan 《Biochemistry》1987,26(23):7311-7316
When cytochrome c oxidase is reduced, it undergoes a conformational change that shifts its tryptophan fluorescence maximum from 329 to 345 nm. Studies of ligand-bound, mixed-valence forms of the enzyme show that this conformational change is dependent on the redox state of the low-potential metal centers, cytochrome a and CuA. The intrinsic fluorescence of oxidized cytochrome c oxidase is not effectively quenched by Cs+; however, marked quenching is observed for the reduced enzyme with a Stern-Volmer constant of 0.69. These observations, together with the significant red shift of the emission maximum, suggest that the emitting tryptophan residues are becoming more solvent accessible in the reduced enzyme. Stopped-flow spectra show that this conformational transition occurs rapidly upon reduction of the low-potential sites with a pseudo-first-order rate constant of 4.07 +/- 0.40 s-1. The conformational change monitored by tryptophan fluorescence is suggested to be related to the previously proposed "open-closed" transition of cytochrome c oxidase. Reductive titration of the cyanide-inhibited enzyme with ferrocytochrome c shows a nonlinear response of the fluorescence shift to added electron equivalents. A theoretical treatment of the reduction of the two interacting sites of the cyanide-inhibited enzyme has been developed that gives the population of each redox state as a function of the total number of electrons accepted by the enzyme. This treatment depends on two parameters: the difference in redox potential between the two metals and the redox interaction between the redox centers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Oligonucleotide-directed mutagenesis of the yeast Saccharomyces cerevisiae was used to generate an abnormal iso-1-cytochrome c having an Arg-77 replacement of the normal Lys-77; this Lys-77 residue is evolutionarily conserved in most eukaryotic cytochromes c and is trimethylated in fungal and plant cytochromes c. Examination of strains having a single chromosomal copy of the gene encoding the Arg-77 protein indicated that the altered protein was synthesized at the normal rate and that it had normal or near normal activity in vivo. Examination of enzymatic activities in vitro with cytochrome b2, cytochrome c peroxidase, and cytochrome c oxidase indicated that the altered iso-1-cytochrome c has equal or enhanced catalytic efficiencies. Thus, replacement of the evolutionarily conserved residue Lys-77 produces no or only minor effects both in vivo and in vitro.  相似文献   

12.
To enable metal affinity purification of cytochrome c oxidase reconstituted into phospholipid vesicles, a histidine-tag was engineered onto the C-terminal end of the Rhodobacter sphaeroides cytochrome c oxidase subunit II. Characterization of the natively processed wildtype oxidase and artificially processed forms (truncated with and without a his-tag) reveals Km values for cytochrome c that are 6-14-fold higher for the truncated and his-tagged forms than for the wildtype. This lowered ability to bind cytochrome c indicates a previously undetected role for the C-terminus in cytochrome c binding and is mimicked by reduced affinity for an FPLC anion exchange column. The elution profiles and kinetics indicate that the removal of 16 amino acids from the C-terminus, predicted from the known processing site of the Paracoccus denitrificans oxidase, does not produce the same enzyme as the native processing reaction. MALDI-TOF MS data show the true C-terminus of subunit II is at serine 290, three amino acids longer than expected. When the his-tagged form is reconstituted into lipid vesicles and further purified by metal affinity chromatography, significant improvement is observed in proton pumping analysis by the stopped-flow method. The improved kinetic results are attributed to a homogeneous, correctly oriented vesicle population with higher activity and less buffering from extraneous lipids.  相似文献   

13.
A method for the purification of cytochrome c oxidase that is based on the affinity of this enzyme for polycations such as poly-L-lysine is described. When detergent extracts of bovine cardiac mitochondria were applied to either a poly-L-lysine-agarose or a lysine-Sepharose column at low ionic strength, cytochrome c oxidase was found to adhere tightly, whereas the bulk of the proteins were eluted by washing with the same buffer. The cytochrome c oxidase was eluted by application of a linear potassium chloride gradient to the columns. The resulting enzyme was identical to that obtained by more traditional purification methods in terms of its subunit composition, optical and resonance Raman spectra, and cytochrome c oxidizing activity. When detergent extracts of spheroplasts from Paracoccus denitrificans were applied to these columns, the cytochrome c oxidase from this organism was also found to adhere tightly. Thus this purification method appears applicable to both prokaryotic and eukaryotic forms of the enzyme. The advantages of this new purification method are that it is less labor intensive than the traditional procedure and less expensive than methods based on cytochrome c-affinity chromatography.  相似文献   

14.
Forty-six charge-reversal mutants of yeast cytochrome c peroxidase (CcP) have been constructed in order to determine the effect of localized charge on the catalytic properties of the enzyme. The mutants include the conversion of all 20 glutamate residues and 24 of the 25 aspartate residues in CcP, one at a time, to lysine residues. In addition, two positive-to-negative charge-reversal mutants, R31E and K149D, are included in the study. The mutants have been characterized by absorption spectroscopy and hydrogen peroxide reactivity at pH 6.0 and 7.5 and by steady-state kinetic studies using recombinant yeast iso-1 ferrocytochrome c (C102T) as substrate at pH 7.5. Many of the charge-reversal mutations cause detectable changes in the absorption spectrum of the enzyme reflecting increased amounts of hexacoordinate heme compared to wild-type CcP. The increase in hexacoordinate heme in the mutant enzymes correlates with an increase in H 2O 2-inactive enzyme. The maximum velocity of the mutants decreases with increasing hexacoordination of the heme group. Steady-state velocity studies indicate that 5 of the 46 mutations (R31E, D34K, D37K, E118K, and E290K) cause large increases in the Michaelis constant indicating a reduced affinity for cytochrome c. Four of the mutations occur within the cytochrome c binding site identified in the crystal structure of the 1:1 complex of yeast cytochrome c and CcP [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] while the fifth mutation site lies outside, but near, the crystallographic site. These data support the hypothesis that the CcP has a single, catalytically active cytochrome c binding domain, that observed in the crystal structures of the cytochrome c/CcP complex.  相似文献   

15.
Rate-limiting processes of catalysis by eukaryotic molybdenum-containing nitrate reductase (NaR, EC 1.7.1.1-3) were investigated using two viscosogens (glycerol and sucrose) and observing their impact on NAD(P)H:NaR activity of corn leaf NaR and recombinant Arabidopsis and yeast NaR. Holo-NaR has two "hinge" sequences between stably folded regions housing its internal electron carriers: 1) Hinge 1 between the molybdenum-containing nitrate reducing module and cytochrome b domain containing heme and 2) Hinge 2 between cytochrome b and cytochrome b reductase (CbR) module containing FAD. Solution viscosity negatively impacted the activity of these holo-NaR forms, which suggests that the rate-limiting events in catalysis were likely to involve large conformational changes that restrict or "gate" internal electron-proton transfers (IET). Little effect of viscosity was observed on recombinant CbR module and methyl viologen nitrate reduction by holo-NaR, suggesting that these activities involved no large conformational changes. To determine whether Hinge 2 is involved in gating the first step in IET, the effects of viscosogen on cytochrome c and ferricyanide reductase activities of holo-NaR and ferricyanide reductase activity of the recombinant molybdenum reductase module (CbR, Hinge 2, and cytochrome b) were analyzed. Solution viscosity negatively impacted these partial activities, as if Hinge 2 were involved in gating IET in both enzyme forms. We concluded that both Hinges 1 and 2 appear to be involved in gating IET steps by restricting the movement of the cytochrome b domain relative to the larger nitrate-reducing and electron-donating modules of NaR.  相似文献   

16.
The production of cytochrome c peroxidase (CCP) from Pseudomonas ( Ps.) stutzeri (ATCC 11607) was optimized by adjusting the composition of the growth medium and aeration of the culture. The protein was isolated and characterized biochemically and spectroscopically in the oxidized and mixed valence forms. The activity of Ps. stutzeri CCP was studied using two different ferrocytochromes as electron donors: Ps. stutzeri cytochrome c(551) (the physiological electron donor) and horse heart cytochrome c. These electron donors interact differently with Ps. stutzeri CCP, exhibiting different ionic strength dependence. The CCP from Paracoccus ( Pa.) denitrificans was proposed to have two different Ca(2+) binding sites: one usually occupied (site I) and the other either empty or partially occupied in the oxidized enzyme (site II). The Ps. stutzeri enzyme was purified in a form with tightly bound Ca(2+). The affinity for Ca(2+) in the mixed valence enzyme is so high that Ca(2+) returns to it from the EGTA which was added to empty the site in the oxidized enzyme. Molecular mass determination by ultracentrifugation and behavior on gel filtration chromatography have revealed that this CCP is isolated as an active dimer, in contrast to the Pa. denitrificans CCP which requires added Ca(2+) for formation of the dimer and also for activation of the enzyme. This is consistent with the proposal that Ca(2+) in the bacterial peroxidases influences the monomer/dimer equilibrium and the transition to the active form of the enzyme. Additional Ca(2+)does affect both the kinetics of oxidation of horse heart cytochrome c (but not cytochrome c(551)) and higher aggregation states of the enzyme. This suggests the presence of a superficial Ca(2+)binding site of low affinity.  相似文献   

17.
J E Erman  L B Vitello  J M Mauro  J Kraut 《Biochemistry》1989,28(20):7992-7995
Peroxide oxidation of a mutant cytochrome c peroxidase, in which Trp-191 has been replaced by Phe through site-directed mutagenesis, produces an oxidized intermediate whose stable UV/visible absorption spectrum is very similar to that of compound I of the native yeast enzyme. This spectrum is characteristic of an oxyferryl, Fe(IV), heme. Stopped-flow studies reveal that the reaction between the mutant enzyme and hydrogen peroxide is biphasic with the transient formation of an intermediate whose absorption spectrum is quite distinct from that of either the native ferric enzyme or the final product. Rapid spectral scanning of the intermediate provides a spectrum characteristic of an oxyferryl porphyrin pi-cation-radical species. At pH 6, 100 mM ionic strength, and 25 degrees C, the rate constant for formation of the oxyferryl pi-cation radical has a lower limit of 6 X 10(7) M-1 s-1 and the rate of conversion of the transient intermediate to the final oxidized product is 51 +/- 4 s-1. Evidence is presented indicating that Trp-191 either is the site of the radical in CcP compound I or is intimately involved in formation of the radical.  相似文献   

18.
Zinc cytochrome c forms tight 1:1 complexes with a variety of derivatives of cytochrome c oxidase. On complex-formation the fluorescence of zinc cytochrome c is diminished. Titrations of zinc cytochrome c with cytochrome c oxidase, followed through the fluorescence emission of the former, have yielded both binding constants (K approximately 7 x 10(6) M-1 for the fully oxidized and 2 x 10(7) M-1 for the fully reduced enzyme) and distance information. Comparison of steady-state measurements obtained by absorbance and fluorescence spectroscopy in the presence and in the absence of cyanide show that it is the reduction of cytochrome a and/or CuA that triggers a conformational change: this increases the zinc cytochrome c to acceptor (most probably cytochrome a itself) distance by some 0.5 nm. Ligand binding to the fully oxidized or fully reduced enzyme leaves the extent of fluorescence quenching unchanged, whereas binding of cyanide to the half-reduced enzyme (a2+CuA+CuB2+-CN(-)-a3(3+)) enhances fluorescence emission relative to that for the fully reduced enzyme, implying further relative movement of donor and acceptor.  相似文献   

19.
Oxidation of cytochrome c peroxidase with hydrogen peroxide to form the initial oxidized intermediate, cytochrome c peroxidase compound I, drastically alters the proton hyperfine nmr spectrum. In contrast to studies of horseradish peroxidase, where the spectrum of horseradish peroxidase compound I is similar to that of the native protein, cytochrome c peroxidase compound I exhibits only broad resonances near 17 and 30 ppm from 2,2-dimethyl-2-silapentane-5-sulfonate. No unique resonances attributable to cytochrome c peroxidase compound II could be identified. These results define the molecular conditions for which resolved hyperfine resonances of the iron(IV) states of heme proteins may be observed when the data presented here are compared with the data from horseradish peroxidase. Oxidation of cytochrome c peroxidase while it is complexed to ferricytochrome c reveals that the heme resonances of cytochrome c are not influenced by the oxidation state of cytochrome c peroxidase.  相似文献   

20.
The bacterial cytochrome c peroxidase (BCCP) from Rhodobacter capsulatus was purified as a recombinant protein from an Escherichia coli clone over-expressing the BCCP structural gene. BCCP from Rb. capsulatus oxidizes the Rhodobacter cytochrome c2 and reduces hydrogen peroxide, probably functioning as a detoxification mechanism. The enzyme binds two haem c groups covalently. The gene encoding BCCP from Rb. capsulatus was cloned through the construction of a 7-kb subgenomic clone. In comparison with the protein sequence, the sequence deduced from the gene has a 21-amino-acid N-terminal extension with the characteristics of a signal peptide. The purified recombinant enzyme showed the same physico-chemical properties as the native enzyme. Spectrophotometric titration established the presence of a high-potential (Em=+270 mV) and a low-potential haem (between -190 mV and -310 mV) as found in other BCCPs. The enzyme was isolated in the fully oxidized but inactive form. It binds calcium tightly and EGTA treatment of the enzyme was necessary to show calcium activation of the mixed valence enzyme. This activation is associated with the formation of a high-spin state at the low-potential haem. BCCP oxidizes horse ferrocytochrome c better than the native electron donor, cytochrome c2; the catalytic activities ('turnover number') are 85 800 min(-1) and 63 600 min(-1), respectively. These activities are the highest ever found for a BCCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号