首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
To facilitate stable walking, humans must generate appropriate motor patterns and effective corrective responses to perturbations. Yet most EMG analyses do not address the continuous nature of muscle activation dynamics over multiple strides. We compared muscle activation dynamics in young and older adults by defining a multivariate state space for muscle activity. Eighteen healthy older and 17 younger adults walked on a treadmill for 2 trials of 5 min each at each of 5 controlled speeds (80–120% of preferred). EMG linear envelopes of v. lateralis, b. femoris, gastrocnemius, and t. anterior of the left leg were obtained. Interstride variability, local dynamic stability (divergence exponents), and orbital stability (maximum Floquet multipliers; FM) were calculated. Both age groups exhibited similar preferred walking speeds (p=0.86). Amplitudes and variability of individual EMG linear envelopes increased with speed (p<0.01) in all muscles but gastrocnemius. Older adults also exhibited greater variability in b. femoris and t. anterior (p<0.004). When comparing continuous multivariate EMG dynamics, older adults demonstrated greater local and orbital instability of their EMG patterns (p<0.01). We also compared how muscle activation dynamics were manifested in kinematics. Local divergence exponents were strongly correlated between kinematics and EMG, independent of age and walking speed, while variability and max FM were not. These changes in EMG dynamics may be related to increased neuromotor noise associated with aging and may indicate subtle deterioration of gait function that could lead to future functional declines.  相似文献   

2.
Falls pose a tremendous risk to those over 65 and most falls occur during locomotion. Older adults commonly walk slower, which many believe helps improve walking stability. While increased gait variability predicts future fall risk, increased variability is also caused by walking slower. Thus, we need to better understand how differences in age and walking speed independently affect dynamic stability during walking. We investigated if older adults improved their dynamic stability by walking slower, and how leg strength and flexibility (passive range of motion (ROM)) affected this relationship. Eighteen active healthy older and 17 healthy younger adults walked on a treadmill for 5min each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's inherent local dynamic stability. The older subjects walked with the same preferred walking speeds as the younger subjects (p=0.860). However, these older adults still exhibited greater local divergence exponents (p<0.0001) and higher maximum FM (p<0.007) than the younger adults at all walking speeds. These older adults remained more locally unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). Both younger and older adults exhibited decreased instability by walking slower, in spite of increased variability. These increases in dynamic instability might be more sensitive indicators of future fall risk than changes in gait variability.  相似文献   

3.
The purpose of this study was to compare the extent of muscular activation during maximal voluntary knee extension contractions in old and young individuals and to examine the effects of resistance training on muscular activation in each group. The interpolated twitch technique was used to estimate muscular activation during two pre-training baseline tests, and after two and six weeks of resistance training. Throughout the study, the older group was 30% less strong than the young group (p=0.02). The training protocol was effective in both groups with overall isometric strength gains of 30 and 36% in the older (p=0.01) and young (p<0.01) groups, respectively. 10-RM training loads increased by 66% in the old group (p<0.01) and by 77% in the young group (p<0.01) throughout training. At the first baseline test, a 2% difference in muscular activation between groups (p=0.3) did not explain the large disparity in strength. Muscular activation increased by 2% in both groups throughout training (p<0.01). Despite considerably less muscular strength in the older group, muscular activation was greater than 95% of maximum and appears to be equal in both young and older individuals. Both groups demonstrated similar but small increases in muscular activation throughout training.  相似文献   

4.
Many studies have reported strength gains in older adults following high-intensity resistance training. However, the muscle contraction types examined have been primarily isometric (static) or concentric (CONC; shortening). Less is known about how eccentric (ECC) strength in older adults responds to training or about the efficacy of ECC contractions as training stimuli in these subjects, even though muscle contractions of this type are performed in most training regimens and daily physical activities. In this study, 15 physically active, healthy older women [68 (5) years; mean (SD)] completed an 8-week resistance training program of two sessions per week. Training consisted of three sets of eight repetitions of CONC ankle plantar flexion (PF) and ECC dorsiflexion (DF), at greater than 80% of the initial peak torque, in a standing position only. Subjects were tested in standing and supine positions for: (1) strength over a range of 10° DF to 20° PF for both CONC and ECC; DF and PF (2) passive resistive torque of the plantar flexors at 6°/s; and (3) DF and PF rate of torque development. All strength testing and training was done at 30°/s. Significant increases (P < 0.01) were found for both CONC DF (↑30%) and ECC DF (↑17%) peak torque in the standing position. No significant changes occurred for DF strength as measured with the subjects in the supine position, PF strength in either position, passive resistive torque, or rate of torque development. In summary, strength gains occurred only in the dorsiflexors, which were trained using ECC contractions. Improvements in DF strength were specific to the position of training, which has implications for the transferability of strength gains to functional tasks such as maintaining gait. Accepted: 17 January 1997  相似文献   

5.
6.
In-vivo hip joint contact forces (HJCF) can be estimated using computational neuromusculoskeletal (NMS) modelling. However, different neural solutions can result in different HJCF estimations. NMS model predictions are also influenced by the selection of neuromuscular parameters, which are either based on cadaveric data or calibrated to the individual. To date, the best combination of neural solution and parameter calibration to obtain plausible estimations of HJCF have not been identified. The aim of this study was to determine the effect of three electromyography (EMG)-informed neural solution modes (EMG-driven, EMG-hybrid, and EMG-assisted) and static optimisation, each using three different parameter calibrations (uncalibrated, minimise joint moments error, and minimise joint moments error and peak HJCF), on the estimation of HJCF in a healthy population (n = 23) during walking. When compared to existing in-vivo data, the EMG-assisted mode and static optimisation produced the most physiologically plausible HJCF when using a NMS model calibrated to minimise joint moments error and peak HJCF. EMG-assisted mode produced first and second peaks of 3.55 times body weight (BW) and 3.97 BW during walking; static optimisation produced 3.75 BW and 4.19 BW, respectively. However, compared to static optimisation, EMG-assisted mode generated muscle excitations closer to recorded EMG signals (average across hip muscles R2 = 0.60 ± 0.37 versus R2 = 0.12 ± 0.14). Findings suggest that the EMG-assisted mode combined with minimise joint moments error and peak HJCF calibration is preferable for the estimation of HJCF and generation of realistic load distribution across muscles.  相似文献   

7.
8.
The purposes of this study were: (1) to determine the frequency of protective stepping for balance recovery in subjects of different ages and fall-status, and (2) to compare predicted stepping based on a dynamic model (Pai and Patton, 1997. Journal of Biomechanics 30, 347–354) involving displacement and velocity combinations of the center of mass (COM) versus a static model based on displacement alone against experimentally induced stepping. Responses to three different magnitudes of forward waist pulls were recorded for 13 young, 18 older-non-fallers and 18 older-fallers. The COM phase plane trajectories derived from motion analysis were compared with the model-predicted threshold values for stepping. We found that the older fallers had the highest percentage of stepping trials (52%), followed by older-non-fallers (17.3%), and young (2.7%) at the lowest perturbation level. Younger subjects stepped less often than the elderly at the middle level. Everyone consistently stepped at the highest level of perturbation. Overall, the dynamic model showed better predictive capacity (65%) than the static model (5%) for estimating the initiation of stepping. Furthermore, the threshold for step initiation derived from the dynamic model could consistently predict when a step must occur. However, it was limited, especially among older fallers at the low perturbation level, in that it considered some steps ‘unnecessary’ that were presumably triggered by fear of falling or other factors.  相似文献   

9.
During range of motion (max-ROM) tests performed on an isokinetic dynamometer, the mechanical delay between the button press (by the participant to signal their max-ROM) and the stopping of joint rotation resulting from system inertia induces errors in both max-ROM and maximum passive joint moment. The present study aimed to quantify these errors by comparing data when max-ROM was obtained from the joint position data, as usual (max-ROMPOS), to data where max-ROM was defined as the first point of dynamometer arm deceleration (max-ROMACC). Fifteen participants performed isokinetic ankle joint max-ROM tests at 5, 30 and 60° s−1. Max-ROM, peak passive joint moment, end-range musculo-articular (MAC) stiffness and area under the joint moment-position curve were calculated. Greater max-ROM was observed in max-ROMPOS than max-ROMACC (P < 0.01) at 5 (0.2 ± 0.15%), 30 (1.8 ± 1.0%) and 60° s−1 (5.9 ± 2.3%), with the greatest error at the fastest velocity. Peak passive moment was greater and end-range MAC stiffness lower in max-ROMPOS than in max-ROMACC only at 60° s−1 (P < 0.01), whilst greater elastic energy storage was found at all velocities. Max-ROM and peak passive moment are affected by the delay between button press and eventual stopping of joint rotation in an angular velocity-dependent manner. This affects other variables calculated from the data. When high data accuracy is required, especially at fast joint rotation velocities (≥30° s−1), max-ROM (and associated measures calculated from joint moment data) should be taken at the point of first change in acceleration rather than at the dynamometer’s ultimate joint position.  相似文献   

10.
11.
ABSTRACT

Previous findings suggest that performing strength training (ST) in the evening may provide greater benefit for young individuals. However, this may not be optimal for the older population. The purpose of this study was to compare the effects of a 12-week ST program performed in the morning vs. evening on strength, functional capacity, metabolic biomarker and basal hormone concentrations in older women. Thirty-one healthy older women (66 ± 4 years, 162 ± 4 cm, 75 ± 13 kg) completed the study. Participants trained in the morning (M) (07:30, n = 10), in the evening (E) (18:00, n = 10), or acted as a non-training control group (C) (n = 11). Both intervention groups performed whole-body strength training with 3 sets of 10–12 repetitions with 2–3 minutes rest between sets. All groups were measured before and after the 12-week period with; dynamic leg press and seated-row 6-repetition maximum (6-RM) and functional capacity tests (30-second chair stands and arm curl test, Timed Up and Go), as well as whole-body skeletal muscle mass (SMM) (kg) and fat mass (FM-kg, FM%) assessed by bioelectrical impedance (BIA). Basal blood samples (in the intervention groups only) taken before and after the intervention assessed low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), blood glucose (GLU), triglycerides (TG), high-sensitive C-reactive protein (hsCRP) concentrations and total antioxidant status (TAS) after a 12 h fast. Hormone analysis included prolactin (PRL), progesterone (P) estradiol (ESTR), testosterone (T), follicle stimulating hormone (FSH), and luteinizing hormone (LH). While C showed no changes in any variable, both M and E significantly improved leg press (+ 46 ± 22% and + 21 ± 12%, respectively; p < 0.001) and seated-row (+ 48 ± 21% and + 42 ± 18%, respectively; p < 0.001) 6-RM, as well as all functional capacity outcomes (p < 0.01) due to training. M were the only group to increase muscle mass (+ 3 ± 2%, p < 0.01). Both M and E group significantly (p < 0.05) decreased GLU (–4 ± 6% and –8 ± 10%, respectively), whereas significantly greater decrease was observed in the E compared to the M group (p < 0.05). Only E group significantly decreased TG (–17 ± 25%, p < 0.01), whereas M group increased (+ 15%, p < 0.01). The difference in TG between the groups favored E compared to M group (p < 0.01). These results suggest that short-term “hypertrophic” ST alone mainly improves strength and functional capacity performance, but it influences metabolic and hormonal profile of healthy older women to a lesser extent. In this group of previously untrained older women, time-of-day did not have a major effect on outcome variables, but some evidence suggests that training in the morning may be more beneficial for muscle hypertrophy (i.e. only M significantly increased muscle mass and had larger effect size (M: g = 2 vs. E: g = 0.5).  相似文献   

12.
Abstract

Purpose/background: Multiscale entropy (MSE) is a nonlinear measure of postural control that quantifies how complex the postural sway is by assigning a complexity index to the center of pressure (COP) oscillations. While complexity has been shown to be task dependent, the relationship between sway complexity and level of task challenge is currently unclear. This study tested whether MSE can detect short-term changes in postural control in response to increased standing balance task difficulty in healthy young adults and compared this response to that of a traditional measure of postural steadiness, root mean square of velocity (VRMS).

Methods: COP data from 20?s of quiet stance were analyzed when 30 healthy young adults stood on the following surfaces: on floor and foam with eyes open and closed and on the compliant side of a Both Sides Up (BOSU) ball with eyes open. Complexity index (CompI) was derived from MSE curves.

Results: Repeated measures analysis of variance across standing conditions showed a statistically significant effect of condition (p?<?0.001) in both the anterior–posterior and medio-lateral directions for both CompI and VRMS. In the medio-lateral direction there was a gradual increase in CompI and VRMS with increased standing challenge. In the anterior–posterior direction, VRMS showed a gradual increase whereas CompI showed significant differences between the BOSU and all other conditions. CompI was moderately and significantly correlated with VRMS.

Conclusions: Both nonlinear and traditional measures of postural control were sensitive to the task and increased with increasing difficulty of standing balance tasks in healthy young adults.  相似文献   

13.
[Purpose] This study aimed to examine the effects of combined hip exercise and passive stretching as a novel treatment method for low back pain (LBP) in older adults.[Methods] Altogether, 20 Koreans with LBP aged 60–79 years (67.3 ± 5.92 years) were randomly assigned to undertake combined exercise (CE; n = 10) or lumbar stabilization exercise (LSE; n = 10). All participants performed their respective exercise program for 25–30 min with an OMNI scale of 6–8 for 8 weeks, three times a week. Body composition, muscle stiffness, pain-visual analog scale (P-VAS), Oswestry disability index, and physical function were evaluated before and after the exercise intervention.[Results] The CE group demonstrated greater improvements in lean body mass (η2 = 0.402, p = 0.003) and percent body fat (η2 = 0.222, p = 0.036) than the LSE group. Both groups demonstrated significant improvements in muscle stiffness, P-VAS scores, and Oswestry disability index scores, although no significant differences were observed between the interventions. All physical function parameters demonstrated a significant improvement in both groups, and the CE group demonstrated greater improvement in the YMCA sit-and-reach (η2 = 0.338, p = 0.007) and straight leg raise tests (η2 = 0.283, p = 0.016) than the LSE group.[Conclusion] CE is comparable to LSE as an effective and successful exercise intervention that reduces muscle stiffness and P-VAS scores. Moreover, CE is more effective than LSE in enhancing the physical function of older adults with LBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号