首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subaxial cervical facets are important load-bearing structures, yet little is known about their mechanical response during physiological or traumatic intervertebral motion. Facet loading likely increases when intervertebral motions are superimposed with axial compression forces, increasing the risk of facet fracture. The aim of this study was to measure the mechanical response of the facets when intervertebral axial compression or distraction is superimposed on constrained, non-destructive shear, bending and rotation motions. Twelve C6/C7 motion segments (70 ± 13 yr, nine male) were subjected to constrained quasi-static anterior shear (1 mm), axial rotation (4°), flexion (10°), and lateral bending (5°) motions. Each motion was superimposed with three axial conditions: (1) 50 N compression; (2) 300 N compression (simulating neck muscle contraction); and, (3) 2.5 mm distraction. Angular deflections, and principal and shear surface strains, of the bilateral C6 inferior facets were calculated from motion-capture data and rosette strain gauges, respectively. Linear mixed-effects models (α = 0.05) assessed the effect of axial condition. Minimum principal and maximum shear strains were largest in the compressed condition for all motions except for maximum principal strains during axial rotation. For right axial rotation, maximum principal strains were larger for the contralateral facets, and minimum principal strains were larger for the left facets, regardless of axial condition. Sagittal deflections were largest in the compressed conditions during anterior shear and lateral bending motions, when adjusted for facet side.  相似文献   

2.
Epidemiological data and clinical indicia reveal devastating consequences associated with pediatric neck injuries. Unfortunately, neither injury prevention nor clinical management strategies will be able to effectively reduce these injuries or their effects on children, without an understanding of the cervical spine developmental biomechanics. Thus, we investigated the relationship between spinal development and the functional (stiffness) and failure biomechanical characteristics of the cervical spine in a baboon model. A correlation study design was used to define the relationships between spinal tissue maturation and spinal biomechanics in both tension and compression. Eighteen baboon cervical spine specimens distributed across the developmental spectrum (1–26 human equivalent years) were dissected into osteoligamentous functional spinal units. Using a servo-hydraulic MTS, these specimens (Oc–C2, C3–C4, C5–C6, C7–T1) were non-destructively tested in tension and compression and then displaced to failure in tension while measuring the six-axes of loads and displacements. The functions describing the developmental biomechanical response of the cervical spine for stiffness and normalized stiffness exhibited a significant direct relationship in both tension and compression loading. Similarly, the tensile failure load and normalized failure load demonstrated significant maturational increases. Further, differences in biomechanical response were observed between the spinal levels examined and all levels exhibited clinically relevant failure patterns. These data support our understanding of the child cervical spine from a developmental biomechanics perspective and facilitate the development of injury prevention or management schema for the mitigation of child spine injuries and their deleterious effects.  相似文献   

3.
The human cervical spine supports substantial compressive load in vivo. However, the traditional in vitro testing methods rarely include compressive loads, especially in investigations of multi-segment cervical spine constructs. Previously, a systematic comparison was performed between the standard pure moment with no compressive loading and published compressive loading techniques (follower load – FL, axial load – AL, and combined load – CL). The systematic comparison was structured a priori using a statistical design of experiments and the desirability function approach, which was chosen based on the goal of determining the optimal compressive loading parameters necessary to mimic the segmental contribution patterns exhibited in vivo. The optimized set of compressive loading parameters resulted in in vitro segmental rotations that were within one standard deviation and 10% of average percent error of the in vivo mean throughout the entire motion path. As hypothesized, the values for the optimized independent variables of FL and AL varied dynamically throughout the motion path. FL was not necessary at the extremes of the flexion–extension (FE) motion path but peaked through the neutral position, whereas, a large negative value of AL was necessary in extension and increased linearly to a large positive value in flexion. Although further validation is required, the long-term goal is to develop a “physiologic” in vitro testing method, which will be valuable for evaluating adjacent segment effect following spinal fusion surgery, disc arthroplasty instrumentation testing and design, as well as mechanobiology experiments where correct kinematics and arthrokinematics are critical.  相似文献   

4.
Accurate measurement of the coupled intervertebral motions is helpful for understanding the etiology and diagnosis of relevant diseases, and for assessing the subsequent treatment. No study has reported the in vivo, dynamic and three-dimensional (3D) intervertebral motion of the cervical spine during active axial rotation (AR) and lateral bending (LB) in the sitting position. The current study fills the gap by measuring the coupled intervertebral motions of the subaxial cervical spine in ten asymptomatic young adults in an upright sitting position during active head LB and AR using a volumetric model-based 2D-to-3D registration method via biplane fluoroscopy. Subject-specific models of the individual vertebrae were derived from each subject’s CT data and were registered to the fluoroscopic images for determining the 3D poses of the subaxial vertebrae that were used to obtain the intervertebral kinematics. The averaged ranges of motion to one side (ROM) during AR at C3/C4, C4/C5, C5/C6, and C6/C7 were 4.2°, 4.6°, 3.0° and 1.3°, respectively. The corresponding values were 6.4°, 5.2°, 6.1° and 6.1° during LB. Intervertebral LB (ILB) played an important role in both AR and LB tasks of the cervical spine, experiencing greater ROM than intervertebral AR (IAR) (ratio of coupled motion (IAR/ILB): 0.23–0.75 in LB, 0.34–0.95 in AR). Compared to the AR task, the ranges of ILB during the LB task were significantly greater at C5/6 (p=0.008) and C6/7 (p=0.001) but the range of IAR was significantly smaller at C4/5 (p=0.02), leading to significantly smaller ratios of coupled motions at C4/5 (p=0.0013), C5/6 (p<0.001) and C6/7 (p=0.0037). The observed coupling characteristics of the intervertebral kinematics were different from those in previous studies under discrete static conditions in a supine position without weight-bearing, suggesting that the testing conditions likely affect the kinematics of the subaxial cervical spine. While C1 and C2 were not included owing to technical limitations, the current results nonetheless provide baseline data of the intervertebral motion of the subaxial cervical spine in asymptomatic young subjects under physiological conditions, which may be helpful for further investigations into spine biomechanics.  相似文献   

5.
Knowledge on the spinal kinematics and muscle activation of the cervical and thoracic spine during functional task would add to our understanding of the performance and interplay of these spinal regions during dynamic condition. The purpose of this study was to examine the influence of chronic neck pain on the three-dimensional kinematics and muscle recruitment pattern of the cervical and thoracic spine during an overhead reaching task involving a light weight transfer by the upper limb. Synchronized measurements of the three-dimensional spinal kinematics and electromyographic activities of cervical and thoracic spine were acquired in thirty individuals with chronic neck pain and thirty age- and gender-matched asymptomatic controls. Neck pain group showed a significantly decreased cervical velocity and acceleration while performing the task. They also displayed with a predominantly prolonged coactivation of cervical and thoracic muscles throughout the task cycle. The current findings highlighted the importance to examine differential kinematic variables of the spine which are associated with changes in the muscle recruitment in people with chronic neck pain. The results also provide an insight to the appropriate clinical intervention to promote the recovery of the functional disability commonly reported in patients with neck pain disorders.  相似文献   

6.
Occupations that involve sustained or repetitive neck flexion are associated with a higher incidence of neck pain. Little in vivo information is available on the impact of static neck flexion on cervical spinal tissue. The aim of this study was to assess changes in mechanical and neuromuscular behaviors to sustained neck flexion in healthy adults. Sixty healthy subjects aged 20–35 years participated in this study. The participants were exposed to static neck flexion at a fixed angle of full flexion for 10 min. Mechanical and neuromuscular responses of the cervical spine to sudden perturbations were measured pre- and post-exposure. Magnitude of load-relaxation during flexion exposure, stiffness, peak head angular velocity, and reflexive activities of cervical muscles were recorded. Effective neck stiffness decreased significantly, especially in female participants (P = 0.0001). The reflexive response of the cervical erector spinae muscles to head perturbation delayed significantly (P = 0.0001). Peak head angular velocity was significantly increased after exposure to neck flexion for 10 min, especially in female participants (P = 0.001). In the present study, static flexion resulted in changes in mechanical and neuromuscular behavior of the cervical spine, potentially leading to decreased stiffness of the cervical spine. The results confirm the importance of maintaining a correct head and neck position during work and improving the work environment to reduce the cervical spinal load and work-related neck pain.  相似文献   

7.
Traumatic cervical facet dislocation (CFD) is often associated with devastating spinal cord injury. Facet fractures commonly occur during CFD, yet quantitative measures of facet deflection, strain, stiffness and failure load have not been reported. The aim of this study was to determine the mechanical response of the subaxial cervical facets when loaded in directions thought to be associated with traumatic bilateral CFD – anterior shear and flexion. Thirty-one functional spinal units (6 × C2/3, C3/4, C4/5, and C6/7, 7 × C5/6) were dissected from fourteen human cadaver cervical spines (mean donor age 69 years, range 48–92; eight male). Loading was applied to the inferior facets of the inferior vertebra to simulate the in vivo inter-facet loading experienced during supraphysiologic anterior shear and flexion motion. Specimens were subjected to three cycles of sub-failure loading (10–100 N, 1 mm/s) in each direction, before being failed in a randomly assigned direction (10 mm/s). Facet deflection, surface strains, stiffness, and failure load were measured. Linear mixed-effects models (α = 0.05; random effect of cadaver) accounted for variations in specimen geometry and bone density. Specimen-specific parameters were significantly associated with most outcome measures. Facet stiffness and failure load were significantly greater in the simulated flexion loading direction, and deflection and surface strains were higher in anterior shear at the non-destructive analysis point (47 N applied load). The sub-failure strains and stiffness responses differed between the upper and lower subaxial cervical regions. Failure occurred through the facet tip during anterior shear loading, while failure through the pedicles was most common in flexion.  相似文献   

8.
Cervical traumas are among the most common events leading to serious spinal cord injuries. While models are often used to better understand injury mechanisms, experimental data for their validation remain sparse, particularly regarding articular facets. The aim of this study was to assess the behavior of cervical FSUs under quasi-static flexion with a specific focus on facet tracking. 9 cadaveric cervical FSUs were imaged and loaded under a 10 Nm flexion moment, exerted incrementally, while biplanar X-rays were acquired at each load increment. The relative vertebral and facet rotations and displacements were assessed using radio-opaque markers implanted in each vertebra and CT-based reconstructions registered on the radiographs. The only failures obtained were due to specimen preparation, indicating a failure moment of cervical FSUs greater than 10 Nm in quasistatic flexion. Facet motions displayed a consistent anterior sliding and a variable pattern regarding their normal displacement. The present study offers insight on the behavior of cervical FSUs under quasi-static flexion beyond physiological thresholds with accurate facet tracking. The data provided should prove useful to further understand injury mechanisms and validate models.  相似文献   

9.
The objective of this study was to implement a follower load (FL) device within a robotic (universal force-moment sensor) testing system and utilize the system to explore the effect of FL on multi-segment cervical spine moment-rotation parameters and intradiscal pressure (IDP) at C45 and C56. Twelve fresh-frozen human cervical specimens (C3-C7) were biomechanically tested in a robotic testing system to a pure moment target of 2.0 Nm for flexion and extension (FE) with no compression and with 100 N of FL. Application of FL was accomplished by loading the specimens with bilateral cables passing through cable guides inserted into the vertebral bodies and attached to load controlled linear actuators. FL significantly increased neutral zone (NZ) stiffness and NZ width but resulted in no change in the range of motion (ROM) or elastic zone stiffness. C45 and C56 IDP measured in the neutral position were significantly increased with application of FL. The change in IDP with increasing flexion rotation was not significantly affected by the application of FL, whereas the change in IDP with increasing extension rotation was significantly reduced by the application of FL. Application of FL did not appear to affect the specimen’s quantity of motion (ROM) but did affect the quality (the shape of the curve). Regarding IDP, the effects of adding FL compression approximates the effect of the patient going from supine to a seated position (FL compression increased the IDP in the neutral position). The change in IDP with increasing flexion rotation was not affected by the application of FL, but the change in IDP with increasing extension rotation was, however, significantly reduced by the application of FL.  相似文献   

10.
With mechanical loading as the main risk factor for LBP, exoskeletons (EXO) are designed to reduce the load on the back by taking over part of the moment normally generated by back muscles. The present study investigated the effect of an active exoskeleton, controlled using three different control modes (INCLINATION, EMG & HYBRID), on spinal compression forces during lifting with various techniques.Ten healthy male subjects lifted a 15 kg box, with three lifting techniques (free, squat & stoop), each of which was performed four times, once without EXO and once each with the three different control modes. Using inverse dynamics, we calculated L5/S1 joint moments. Subsequently, we estimated spine forces using an EMG-assisted trunk model.Peak compression forces substantially decreased by 17.8% when wearing the EXO compared to NO EXO. However, this reduction was partly, by about one third, attributable to a reduction of 25% in peak lifting speed when wearing the EXO. While subtle differences in back load patterns were seen between the three control modes, no differences in peak compression forces were found. In part, this may be related to limitations in the torque generating capacity of the EXO. Therefore, with the current limitations of the motors it was impossible to determine which of the control modes was best. Despite these limitations, the EXO still reduced both peak and cumulative compression forces by about 18%.  相似文献   

11.
A group of 12 healthy men volunteered for the experiment. Electromyograms (EMG) were obtained from semispinalis capitis, splenius capitis, levator scapulae, and trapezius muscles. The flexion angle of the cervical spine was precisely adjusted to 0°, 10°, 20°, and 30° relative to the horizontal, with a constant angle of the atlanto-occipital joint. The subjects made eight short (about 2 s) vertical extension forces (6%, 12%,18%, 24%, 30%, 36%, 42%, and 48% of maximal voluntary peak contraction force). For each position, the centre of pressure under the head was determine as the basis for the calculation of the external lever arm. The presence of motor endplate regions was ascertained by multiple surface electrodes. The slopes of individual linear regression lines for the root mean square (rms)-values were dependent on the existence of endplates in the area of the electrodes — endplates caused smaller rms values per Newton metres of external torque. Significant intersubject differences between regression equations could not be eliminated by the normalization of EMG-parameters and/or torques. The elimination of gravity, the continuous monitoring of positions, and the consideration of localization of motor endplate regions were essential prerequisites for the acquisition of reliable relationships between EMG of different neck muscles and external torques. Two important conclusions were derived for the prediction of torques from EMG measurements: firstly, individual regression equations which take into account the position of the head and neck should be used; secondly, normalization procedures do not justify the application of average regressions to a group of subjects.  相似文献   

12.
Laboratory behavioural observation and computational fluid dynamics (CFD) analysis were conducted to examine whether the movement of the elongated dorsal and pelvic spines changed the hydrodynamic drag in white‐streaked grouper Epinephelus ongus larvae. The behavioural observation in the tank revealed that the larvae extended the dorsal and pelvic spines during passive transport and retracted during swimming; the angles of the dorsal and pelvic spines in relation to the anteroposterior axis were larger during the passive transport (mean ± s.d . = 28·84 ± 14·27 and 20·35 ± 15·05°) than those during the swimming (mean ± s.d . = 2·59 ± 5·55 and 0·32 ± 6·49°). The CFD analysis indicated that the relative hydrodynamic drag acting on the larvae was approximately 1·25 times higher when the spines were extended (passive transport) than when the spines were retracted (swimming), suggesting that the E. ongus larvae have an ability to adjust their hydrodynamic drag depending on the behavioural context.  相似文献   

13.
14.
It may be possible to enhance set and session kinematics and kinetics by engaging in low-intensity aerobic exercise during the interset rest period. The purpose of this study therefore was to quantify the change in session kinematics and kinetics of 35% 1RM and 70% 1RM loading schemes equated by volume, when aerobic exercise or passive rest was undertaken between sets. Twelve male student athletes were recruited for this study. Squat average force, peak force, average power, peak power, total work, and total impulse were quantified using a force plate and linear transducer. Blood lactate samples were taken before set 1, after set 1, after set 2, and after the last set performed. No significant (p < 0.05) differences (0.37-9.24%) were found in any of the kinematic and kinetic variables of interset after active or passive interset rest periods. Significant increases (64-76%) in blood lactate occurred from the inception of exercise to completion, for both the heavy and light loading schemes. However, no significant differences in lactate accumulation were noted, whether active or passive recovery was undertaken in the interest rest period. It was concluded that active recovery in the form of low-intensity cycling offered no additional benefits in terms of lactate clearance and enhancement of set and session kinematics and kinetics.  相似文献   

15.
Abstract

Aim: The aim of this study was to compare the effects of cervical exercise, motor imagery (MI) and action observation (AO) of cervical exercise actions on conditioned pain modulation and pressure pain thresholds. The second objective was to assess the effects of these interventions on cervical motor activity (ranges of motion and muscle endurance), attention, and the ability to generate motor images.

Study design: Single-blinded randomized controlled trial.

Materials and methods: Fifty-four healthy subjects were randomly assigned to each group. Response conditioned pain modulation, pressure pain threshold, were the main variables. The secondary outcome measures included, cervical range of motion, Neck flexor endurance test, mental movement representation associated and psychosocial variables.

Results: All groups showed significant differences in time factor for all evaluated variables (p?<?.01) except pressure pain threshold over the tibial region. The post hoc analysis revealed significant within-group differences in the AE and AO groups in conditioned pain modulation (p?<?.05), with medium effect size in time [AE (d –0.61); AO (d –0.74)].

Conclusion: The results showed that within-group changes in conditioned pain modulation, cervical muscle endurance, and attention where founded only in the AE and AO groups. Variations in pain thresholds at pressure in the trapezium area were also obtained in the three groups. Changes in the ranges of flexion-extension and rotation movement were presented exclusively in the exercise group, and in the capacity to generate motor images only in the AO group. However, there was no difference in the pressure pain threshold over the tibial region.  相似文献   

16.
目的:探讨Bryan颈椎间盘假体置换术对脊髓型颈椎病患者疗效及颈椎生物力学的影响。方法:选取2015年1月到2016年12月期间在我院接受治疗的脊髓型颈椎病患者48例,根据手术方式的不同将其分为植骨融合组(25例)和假体置换组(23例),其中植骨融合组采用颈椎前路减压植骨融合术进行治疗,假体置换组采用Bryan颈椎间盘假体置换术进行治疗。比较两组患者的日本骨科协会(JOA)颈椎评分、颈椎功能障碍指数(NDI)评分、视觉模拟疼痛量表(VAS)评分、颈椎生理曲度、颈椎活动度、手术节段活动度、上邻近节段活动度、下邻近节段活动度,并比较两组患者的并发症情况。结果:术后12个月假体置换组的NDI评分明显低于植骨融合组(P0.05);术后6个月、术后12个月植骨融合组的颈椎活动度低于假体置换组(P0.05);术后1个月、术后3个月、术后6个月、术后12个月假体置换组的手术节段活动度高于植骨融合组(P0.05);术后12个月植骨融合组的上邻近节段活动度、下邻近节段活动度高于假体置换组(P0.05);两组患者随访期间颈部轴性症状发生率比较差异有统计学意义(P0.05)。结论:与颈椎前路减压植骨融合术比较,Bryan颈椎间盘假体置换术对脊髓型颈椎病患者的远期疗效更佳,可更好的改善患者的颈椎生物力学,降低颈部轴性症状发生率,值得临床推广应用。  相似文献   

17.
对四川、云南尔苏人、木雅人、空格人、八甲人4个族群进行了6项不对称行为特征(扣手、利手、叠臂、利足、叠腿、起步)的调查,结果显示:1)4个族群中,仅尔苏人、木雅人、八甲人叠臂以L型出现率偏高以外,其余不对称行为特征均为R型出现率较高;2)4个族群6项不对称行为特征均不存在性别间差异,但木雅人、尔苏人与八甲人在扣手这一不对称行为特征上存在族群间差异,木雅人与空格人在叠臂这一不对称行为特征上存在族群间差异;3)统计分析了6项不对称行为特征之间的相关性,仅八甲人多数不对称行为特征之间存在相关性。  相似文献   

18.
The mechanical coupling behaviour of the thoracic spine is still not fully understood. For the validation of numerical models of the thoracic spine, however, the coupled motions within the single spinal segments are of importance to achieve high model accuracy. In the present study, eight fresh frozen human thoracic spinal specimens (C7-L1, mean age 54 ± 6 years) including the intact rib cage were loaded with pure bending moments of 5 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) with and without a follower load of 400 N. During loading, the relative motions of each vertebra were monitored. Follower load decreased the overall ROM (T1-T12) significantly (p < 0.01) in all primary motion directions (extension: −46%, left LB: −72%, right LB: −72%, left AR: −26%, right AR: −26%) except flexion (−36%). Substantial coupled motion was found in lateral bending with ipsilateral axial rotation, which increased after a follower load was applied, leading to a dominant axial rotation during primary lateral bending, while all other coupled motions in the different motion directions were reduced under follower load. On the monosegmental level, the follower load especially reduced the ROM of the upper thoracic spine from T1-T2 to T4-T5 in all motion directions and the ROM of the lower thoracic spine from T9-T10 to T11-T12 in primary lateral bending. The facet joints, intervertebral disc morphologies, and the sagittal curvature presumably affect the thoracic spinal coupled motions depending on axial compressive preloading. Using these results, the validation of numerical models can be performed more accurately.  相似文献   

19.
Cervical cancer is still an important cause of death in countries like Colombia. We aimed to determine whether socioeconomic status of residential address (SES) and type of health insurance affiliation (HIA) might be associated with cervical cancer survival among women in Bucaramanga, Colombia. All patients residing in the Bucaramanga Metropolitan Area diagnosed with invasive cervical cancer (ICD-0–3 codes C53.X) between 2008 and 2016 (n = 725) were identified through the population-based cancer registry, with 700 women having follow-up data for >5 years (date of study closure: Dec 31, 2021), yielding an overall 5-year survival estimate (95 % CI) of 56.4 % (52.7 – 60.0 %). KM estimates of 5-year overall survival were obtained to assess differences in cervical cancer survival by SES and HIA. Multivariable Cox-proportional hazards modeling was also conducted, including interaction effects between SES and HIA. Five-year overall survival was lower when comparing low vs. high SES (41.9 % vs 57.9 %, p < 0.0001) and subsidized vs. contributive HIA (45.1 % vs 63.0 %, p < 0.0001). Multivariable Cox modeling showed increased hazard ratios (HR) of death for low vs. high SES (HR = 1.78; 95 % CI = 1.18–2.70) and subsidized vs. contributive HIA (HR = 1.44; 95 % CI = 1.13–1.83). The greatest disparity in HR was among women of low SES affiliated to subsidized HIA (vs. contributive HIA and high SES) (HR=2.53; 95 % CI = 1.62–3.97). Despite Colombia’s universal healthcare system, important disparities in cervical cancer survival by health insurance affiliation and socioeconomic status remain.  相似文献   

20.
A novel kinematics-based approach coupled with a non-linear finite element model was used to investigate the effect of changes in the load position and posture on muscle activity, internal loads and stability margin of the human spine in upright standing postures. In addition to 397 N gravity, external loads of 195 and 380 N were considered at different lever arms and heights. Muscle forces, internal loads and stability margin substantially increased as loads displaced anteriorly away from the body. Under same load magnitude and location, adopting a kyphotic posture as compared with a lordotic one increased muscle forces, internal loads and stability margin. An increase in the height of a load held at a fixed lever arm substantially diminished system stability thus requiring additional muscle activations to maintain the same margin of stability. Results suggest the importance of the load position and lumbar posture in spinal biomechanics during various manual material handling operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号