首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The annulus fibrosus of the intervertebral disk experiences multidirectional tension in vivo, yet the majority of mechanical property testing has been uniaxial. Therefore, our understanding of how this complex multilayered tissue responds to loading may be deficient. This study aimed to determine the mechanical properties of porcine annular samples under uniaxial and biaxial tensile loading. Two-layer annulus samples were isolated from porcine disks from four locations: anterior superficial, anterior deep, posterior superficial, and posterior deep. These tissues were then subjected to three deformation conditions each to a maximal stretch ratio of 1.23: uniaxial, constrained uniaxial, and biaxial. Uniaxial deformation was applied in the circumferential direction, while biaxial deformation was applied simultaneously in the circumferential and compressive directions. Constrained uniaxial consisted of a stretch ratio of 1.23 in the circumferential direction while holding the tissue stationary in the axial direction. The maximal stress and stress-stretch ratio (S-S) moduli determined from the biaxial tests were significantly higher than those observed during both the uniaxial tests (maximal stress, 97.1% higher during biaxial; p=0.002; S-S moduli, 117.9% higher during biaxial; p=0.0004) and the constrained uniaxial tests (maximal stress, 46.8% higher during biaxial; S-S moduli, 82.9% higher during biaxial). These findings suggest that the annulus is subjected to higher stresses in vivo when under multidirectional tension.  相似文献   

2.
A better understanding of the abdominal wall biomechanics could help designing new treatments for incisional hernia. In the current study, an experimental protocol was developed to evaluate the contributions of the abdominal wall components to the structural response of the anterior part of the abdominal wall. The specimens underwent 3 dissections (removal of (1) skin and subcutaneous fat, (2) anterior rectus sheath, (3) rectus abdominis muscles). After each dissection, they were subjected to air pressure up to 3 kPa. Ultrasound images and associated elastographic maps were collected at 0, 2 and 3 kPa in the intact state and strains on the internal surface were calculated using stereo-correlation in all states. Strains on the rectus abdominis and linea alba were analyzed. After the dissection of the anterior sheath of the rectus abdominis, longitudinal strain was found significantly different on the linea alba (5% at 3 kPa) and on the rectus abdominis area (11% at 3 kPa). The current results highlight the importance of the rectus sheath in the structural response of the anterior part of the abdominal wall ex vivo. Geometrical characteristics such as thicknesses and radii of curvature and mechanical properties (shear modulus of the rectus abdominis, e.g. at 0 pressure the average value is 14 kPa) were provided in order to facilitate future modeling efforts.  相似文献   

3.
Synthetic polypropylene meshes were designed to restore pelvic organ support for women suffering from pelvic organ prolapse; however, the FDA released two notifications regarding potential complications associated with mesh implantation. Our aim was to characterize the structural properties of Restorelle and UltraPro subjected to uniaxial tension along perpendicular directions, and then model the tensile behavior of these meshes utilizing a co-rotational finite element model, with an imbedded linear or fiber-recruitment local stress–strain relationship. Both meshes exhibited a highly nonlinear stress–strain behavior; Restorelle had no significant differences between the two perpendicular directions, while UltraPro had a 93% difference in the low (initial) stiffness (p=0.009) between loading directions. Our model predicted that early alignment of the mesh segments in the loading direction and subsequent stretching could explain the observed nonlinear tensile behavior. However, a nonlinear stress–strain response in the stretching regime, that may be inherent to the mesh segment, was required to better capture experimental results. Utilizing a nonlinear fiber recruitment model with two parameters A and B, we observed improved agreement between the simulations and the experimental results. An inverse analysis found A=120 MPa and B=1.75 for Restorelle (RMSE=0.36). This approach yielded A=30 MPa and B=3.5 for UltraPro along one direction (RMSE=0.652), while the perpendicular orientation resulted in A=130 MPa and B=4.75 (RMSE=4.36). From the uniaxial protocol, Restorelle was found to have little variance in structural properties along these two perpendicular directions; however, UltraPro was found to behave anisotropically.  相似文献   

4.
A better characterisation of soft tissues is required to improve the accuracy of human body models used, amongst other applications, for virtual crash modelling. This paper presents a theoretical model and the results of an experimental procedure to characterise the quasi-static, compressive behaviour of skeletal muscle in three dimensions. Uniaxial, unconstrained compression experiments have been conducted on aged and fresh animal muscle samples oriented at various angles from the fibre direction. A transversely isotropic hyperelastic model and a model using the theory of transverse isotropy and strain dependent Young's moduli (SYM) have been fitted to the experimental data. Results show that the hyperelastic model does not adequately fit the data in all directions of testing. In contrast, the SYM gives a good fit to the experimental data in both the fibre and cross-fibre direction, up to 30% strain for aged samples. The model also yields good prediction of muscle behaviour at 45° from the fibre direction. Fresh samples show a different behaviour than aged tissues at 45° from the fibre direction. However, the SYM is able to capture this difference and gives a good fit to the experimental data in the fibre, the cross-fibre and at 45° from the fibre direction. The model also yields good prediction of muscle behaviour when compressed at 30° and 60° from the fibre direction. The effect of the time of test after death has also been investigated. Significant stiffening of muscle behaviour is noted a few hours after death of the subject.  相似文献   

5.
This study aimed to characterize the mechanical responses of the sclera, the white outer coat of the eye, under equal-biaxial loading with unrestricted shear. An ultrasound speckle tracking technique was used to measure tissue deformation through sample thickness, expanding the capabilities of surface strain techniques. Eight porcine scleral samples were tested within 72 h postmortem  . High resolution ultrasound scans of scleral cross-sections along the two loading axes were acquired at 25 consecutive biaxial load levels. An additional repeat of the biaxial loading cycle was performed to measure a third normal strain emulating a strain gage rosette for calculating the in-plane shear. The repeatability of the strain measurements during identical biaxial ramps was evaluated. A correlation-based ultrasound speckle tracking algorithm was used to compute the displacement field and determine the distributive strains in the sample cross-sections. A Fung type constitutive model including a shear term was used to determine the material constants of each individual specimen by fitting the model parameters to the experimental stress–strain data. A non-linear stress–strain response was observed in all samples. The meridian direction had significantly larger strains than that of the circumferential direction during equal-biaxial loadings (P's<0.05P's<0.05). The stiffness along the two directions was also significantly different (P=0.02) but highly correlated (R2=0.8). These results showed that the mechanical properties of the porcine sclera were nonlinear and anisotropic under biaxial loading. This work has also demonstrated the feasibility of using ultrasound speckle tracking for strain measurements during mechanical testing.  相似文献   

6.
We hypothesize that both compression and elongation stress–strain data should be considered for modeling and simulation of soft tissue indentation. Uniaxial stress–strain data were obtained from in vitro loading experiments of porcine liver tissue. An axisymmetric finite element model was used to simulate liver tissue indentation with tissue material represented by hyperelastic models. The material parameters were derived from uniaxial stress–strain data of compressions, elongations, and combined compression and elongation of porcine liver samples. in vitro indentation tests were used to validate the finite element simulation. Stress–strain data from the simulation with material parameters derived from the combined compression and elongation data match the experimental data best. This is due to its better ability in modeling 3D deformation since the behavior of biological soft tissue under indentation is affected by both its compressive and tensile characteristics. The combined logarithmic and polynomial model is somewhat better than the 5-constant Mooney–Rivlin model as the constitutive model for this indentation simulation.  相似文献   

7.
Skeletal muscle relaxation behaviour in compression has been previously reported, but the anisotropic behaviour at higher loading rates remains poorly understood. In this paper, uniaxial unconfined cyclic compression tests were performed on fresh porcine muscle samples at various fibre orientations to determine muscle viscoelastic behaviour. Mean compression level of 25% was applied and cycles of 2% and 10% amplitude were performed at 0.2–80 Hz. Under cycles of low frequency and amplitude, linear viscoelastic cyclic relaxation was observed. Fibre/cross-fibre results were qualitatively similar, but the cross-fibre direction was stiffer (ratio of 1.2). In higher amplitude tests nonlinear viscoelastic behaviour with a frequency dependent increase in the stress cycles amplitude was found (factor of 4.1 from 0.2 to 80 Hz).The predictive capability of an anisotropic quasi-linear viscoelastic model previously fitted to stress-relaxation data from similar tissue samples was investigated. Good qualitative results were obtained for low amplitude cycles but differences were observed in the stress cycle amplitudes (errors of 7.5% and 31.8%, respectively, in the fibre/cross-fibre directions). At higher amplitudes significant qualitative and quantitative differences were evident. A nonlinear model formulation was therefore developed which provided a good fit and predictions to high amplitude low frequency cyclic tests performed in the fibre/cross-fibre directions. However, this model gave a poorer fit to high frequency cyclic tests and to relaxation tests. Neither model adequately predicts the stiffness increase observed at frequencies above 5 Hz.Together with data previously presented, the experimental data presented here provide a unique dataset for validation of future constitutive models for skeletal muscle in compression.  相似文献   

8.
The annulus fibrosus (AF) of the intervertebral disk undergoes large and multidirectional stresses and strains. Uniaxial tensile tests are limited for measuring AF material properties, because freely contracting edges can prevent fiber stretch and are not representative of in situ boundary conditions. The objectives of this study were to measure human AF biaxial tensile mechanics and to apply and validate a constitutive model to determine material properties. Biaxial tensile tests were performed on samples oriented along the circumferential–axial and the radial–axial directions. Data were fit to a structurally motivated anisotropic hyperelastic model composed of isotropic extra-fibrillar matrix, nonlinear fibers, and fiber–matrix interactions (FMI) normal to the fibers. The validated model was used to simulate shear and uniaxial tensile behavior, to investigate AF structure–function, and to quantify the effect of degeneration. The biaxial stress–strain response was described well by the model (R 2?>?0.9). The model showed that the parameters for fiber nonlinearity and the normal FMI correlated with degeneration, resulting in an elongated toe-region and lower stiffness with degeneration. The model simulations in shear and uniaxial tension successfully matched previously published circumferential direction Young’s modulus, provided an explanation for the low values in previously published axial direction Young’s modulus, and was able to simulate shear mechanics. The normal FMI were important contributors to stress and changed with degeneration, therefore, their microstructural and compositional source should be investigated. Finally, the biaxial mechanical data and constitutive model can be incorporated into a disk finite element model to provide improved quantification of disk mechanics.  相似文献   

9.
Improving our understanding of the design requirements of biologically derived collagenous scaffolds is necessary for their effective use in tissue reconstruction. In the present study, the collagen fiber kinematics of small intestinal submucosa (SIS) was quantified using small angle light scattering (SALS) while the specimen was subjected to prescribed uniaxial or biaxial strain paths. A modified biaxial stretching device based on Billiar and Sacks (J. Biomech., 30, pp. 753-7, 1997) was used, with a real-time analysis of the fiber kinematics made possible due to the natural translucency of SIS. Results indicated that the angular distribution of collagen fibers in specimens subjected to 10% equibiaxial strain was not significantly different from the initial unloaded condition, regardless of the loading path (p=0.31). Both 10% strip biaxial stretch and uniaxial stretches of greater than 5% in the preferred fiber direction led to an increase in the collagen fiber alignment along the same direction, while 10% strip biaxial stretch in the cross preferred fiber direction led to a broadening of the distribution. While an affine deformation model accurately predicted the experimental findings for a biaxial strain state, uniaxial stretch paths were not accurately predicted. Nonaffine structural models will be necessary to fully predict the fiber kinematics under large uniaxial strains in SIS.  相似文献   

10.
The compressive properties of skeletal muscle are important in impact biomechanics, rehabilitation engineering and surgical simulation. However, the mechanical behaviour of muscle tissue in compression remains poorly characterised. In this paper, the time-dependent properties of passive skeletal muscle were investigated using a combined experimental and theoretical approach. Uniaxial ramp and hold compression tests were performed in vitro on fresh porcine skeletal muscle at various rates and orientations of the tissue fibres. Results show that above a very small compression rate, the viscoelastic component plays a significant role in muscle mechanical properties; it represents approximately 50% of the total stress reached at a compression rate of 0.5% s−1. A stiffening effect with compression rate is observed especially in directions closer to the muscle fibres. Skeletal muscle viscoelastic behaviour is thus dependent on compression rate and fibre orientation.

A model is proposed to represent the observed experimental behaviour, which is based on the quasi-linear viscoelasticity framework. A previously developed strain-dependent Young's Moduli formulation was extended with Prony series to account for the tissue viscoelastic properties. Parameters of the model were obtained by fitting to stress-relaxation data obtained in the muscle fibre, cross-fibre and 45° directions. The model then successfully predicted stress-relaxation behaviour at 60° from the fibre direction (errors <25%). Simultaneous fitting to data obtained at compression rates of 0.5% s−1, 1% s−1 and 10% s−1 was performed and the model provided a good fit to the data as well as good predictions of muscle behaviour at rates of 0.05% s−1 and 5% s−1 (errors <25%).  相似文献   


11.
During spinal cord injury, nerves suffer a strain beyond their physiological limits which damages and disrupts their structure. Research has been done to measure the modulus of the spinal cord and surrounding tissue; however the relationship between strain and spinal cord fibers is still unclear. In this work, our objective is to measure the stress–strain response of the spinal cord in vivo and in vitro and model this response as a function of the number of fibers. We used the larvae lamprey (Petromyzon Marinus), a model for spinal cord regeneration and animal locomotion. We found that physiologically the spinal cord is pre-stressed to a longitudinal strain of 10% and this strain increases to 15% during swimming. Tensile measurements show that uniaxial, longitudinal loading is independent of the meninges. Stress values for uniaxial strains below 18%, are homogeneous through the length of the body. However, for higher uniaxial strains the Head section shows more resistance to longitudinal loading than the Tail. These data, together with the number of fibers obtained from histological sections were used in a composite-material model to obtain the properties of the spinal cord fibers (2.4 MPa) and matrix (0.017 MPa) to uniaxial longitudinal loading. This model allowed us to approximate the percentage of fibers in the spinal cord, establishing a relationship between uniaxial longitudinal strains and spinal cord composition. We showed that there is a proportional relationship between the number of fibers and the properties of the spinal cord at large uniaxial strains.  相似文献   

12.
Stress fiber realignment is an important adaptive response to cyclic stretch for nonmuscle cells, but the mechanism by which such reorganization occurs is not known. By analyzing stress fiber dynamics using live cell microscopy, we revealed that stress fiber reorientation perpendicular to the direction of cyclic uniaxial stretching at 1 Hz did not involve disassembly of the stress fiber distal ends located at focal adhesion sites. Instead, these distal ends were often used to assemble new stress fibers oriented progressively further away from the direction of stretch. Stress fiber disassembly and reorientation were not induced when the frequency of stretch was decreased to 0.01 Hz, however. Treatment with the Rho-kinase inhibitor Y27632 reduced stress fibers to thin fibers located in the cell periphery which bundled together to form thick fibers oriented parallel to the direction of stretching at 1 Hz. In contrast, these thin fibers remained diffuse in cells subjected to stretch at 0.01 Hz. Cyclic stretch at 1 Hz also induced actin fiber formation parallel to the direction of stretch in cells treated with the myosin light chain kinase (MLCK) inhibitor ML-7, but these fibers were located centrally rather than peripherally. These results shed new light on the mechanism by which stress fibers reorient in response to cyclic stretch in different regions of the actin cytoskeleton.  相似文献   

13.
Uniaxial and biaxial mechanical properties of purified elastic tissue from the proximal thoracic aorta were studied to understand physiological load distributions within the arterial wall. Stress–strain behaviour was non-linear in uniaxial and inflation tests. Elastic tissue was 40% stiffer in the circumferential direction compared to axial in uniaxial tests and~100% stiffer in vessels at an axial stretch ratio of 1.2 or 1.3 and inflated to physiological pressure. Poisson’s ratio vθz averaged 0.2 and vzθ increased with circumferential stretch from ~0.2 to ~0.4. Axial stretch had little impact on circumferential behaviour. In intact (unpurified) vessels at constant length, axial forces decreased with pressure at low axial stretches but remained constant at higher stretches. Such a constant axial force is characteristic of incrementally isotropic arteries at their in vivo dimensions. In purified elastic tissue, force decreased with pressure at all axial strains, showing no trend towards isotropy. Analysis of the force–length–pressure data indicated a vessel with vθz≈0.2 would stretch axially 2–4% with the cardiac pulse yet maintain constant axial force. We compared the ability of 4 mathematical models to predict the pressure-circumferential stretch behaviour of tethered, purified elastic tissue. Models that assumed isotropy could not predict the stretch at zero pressure. The neo-Hookean model overestimated the non-linearity of the response and two non-linear models underestimated it. A model incorporating contributions from orthogonal fibres captured the non-linearity but not the zero-pressure response. Models incorporating anisotropy and non-linearity should better predict the mechanical behaviour of elastic tissue of the proximal thoracic aorta.  相似文献   

14.
Computational implementation of physical and physiologically realistic constitutive models is critical for numerical simulation of soft biological tissues in a variety of biomedical applications. It is well established that the highly nonlinear and anisotropic mechanical behaviors of soft tissues are an emergent behavior of the underlying tissue microstructure. In the present study, we have implemented a structural constitutive model into a finite element framework specialized for membrane tissues. We noted that starting with a single element subjected to uniaxial tension, the non-fibrous tissue matrix must be present to prevent unrealistic tissue deformations. Flexural simulations were used to set the non-fibrous matrix modulus because fibers have little effects on tissue deformation under three-point bending. Multiple deformation modes were simulated, including strip biaxial, planar biaxial with two attachment methods, and membrane inflation. Detailed comparisons with experimental data were undertaken to insure faithful simulations of both the macro-level stress–strain insights into adaptations of the fiber architecture under stress, such as fiber reorientation and fiber recruitment. Results indicated a high degree of fidelity and demonstrated interesting microstructural adaptions to stress and the important role of the underlying tissue matrix. Moreover, we apparently resolve a discrepancy in our 1997 study (Billiar and Sacks, 1997. J. Biomech. 30 (7), 753–756) where we observed that under strip biaxial stretch the simulated fiber splay responses were not in good agreement with the experimental results, suggesting non-affine deformations may have occurred. However, by correctly accounting for the isotropic phase of the measured fiber splay, good agreement was obtained. While not the final word, these simulations suggest that affine fiber kinematics for planar collagenous tissues is a reasonable assumption at the macro level. Simulation tools such as these are imperative in the design and simulation of native and engineered tissues.  相似文献   

15.
Chien S 《Biorheology》2006,43(2):95-116
Vascular endothelial cells (EC) play significant roles in regulating circulatory functions. Shear stress and stretch can modulate EC functions by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a significant forward direction causes transient activations of monocyte chemotactic protein-1 (MCP-1), sterol response element binding protein (SREBP), and proliferative genes. Sustained laminar shear stress down-regulates these genes and up-regulates genes that inhibit EC growth. In EC subjected to complex flow patterns with little forward direction, activations of MCP-1, SREBP, and proliferation genes become sustained, and mitosis and apoptosis are enhanced. Cyclic uniaxial stretch causes actin stress fibers to orient perpendicular to stretch direction, with a consequent reduction of intracellular stress, transient JNK activation, and protection of EC against apoptosis. Cyclic biaxial stretch without a preferred direction has opposite effects. In the straight part of arterial tree, laminar shear stress with a net forward direction and uniaxial strain in the circumferential direction have anti-atherogenic effects. At vascular branch points, the complex shear flow and mechanical strain with little net direction are atherogenic. Therefore, the direction of stress has important influences on the biorheological effects of flow and deformation on vascular endothelium in health and disease.  相似文献   

16.
Mechanical stretch has been implicated as the growth stimuli in the heart. Physiologically, mechanical stretch is reported to contribute to the orientation of cardiomyocytes, though the molecular mechanism remains to be elucidated. This study was designed to make clear functional significances of N-cadherin in plasticity of cell alignment in response to mechanical stretch. Neonatal rat cardiomyocytes, cultured on silicone dishes, were subjected to artificial uniaxial cyclic stretch. Mechanical stretch was started at certain times (3-75 h) after seeding and continued for 24 h. Stretch stimulation in 3 h after cultivation promoted cell orientation running parallel to tension direction. In contrast, cardiac myocytes fail to align when exposed to stretch 24-75 h after cultivation. To address the importance of N-cadherin in the responsiveness to stretch, the expression and distribution of N-cadherin were analyzed. Immediately after seeding, N-cadherin showed dispersed distributions. During cultivation, N-cadherin localized to cell-cell contacts accompanied by the upregulation of its protein. Next, to investigate influence of cell-cell adhesion, cardiomyocytes cultured for 72 h were replated by trypsin treatment and exposed to stretch 3 h after replating. The cardiomyocytes replated by trypsinization were oriented in parallel to tension direction by mechanical stretch. Finally, adenoviral transfection of dominant-negative N-cadherin recovered the ability to exhibit cell orientation in response to stretch. Our results suggested that N-cadherin was involved in the oriented responses of cardiomyocytes induced by mechanical stretch.  相似文献   

17.
18.
An experimental program has been carried out in order to investigate the mechanical behavior of porcine corneas. We report the results of inflation tests on the whole cornea and uniaxial tests on excised corneal strips, performed on 51 fresh porcine eyes. Uniaxial tests have been performed on specimens cut from previously inflated corneas. The cornea behavior is characterized by means of elastic stiffness, measured on both average pressure-apex displacement and average uniaxial stress-strain curves; and by means of transversal contraction coefficient, peak stress, and failure stress measured on uniaxial stress-strain curves. Uniaxial tests performed on excised strips allowed to measure the anisotropy in the corneal stiffness and to compare the stiffness of the cornea with the one of the sclera. Viscous properties of the cornea have been obtained through uniaxial relaxation curves on excised corneal strips. The relevant geometrical parameters have been measured and, with the aid of the elastic thin shell theory, a stress-strain curve has been derived from the average inflation test data and compared with similar data available in the literature. The experimental system has been developed in view of future applications to the mechanical testing of both porcine and human corneas.  相似文献   

19.
哺乳动物细胞的有丝分裂过程与细胞的增殖、分化以及生物体发育、组织器官形成、损伤组织的修复和疾病的发生有关.广泛存在的力学刺激能否对细胞有丝分裂方向产生影响,以及其影响有丝分裂定向的途径尚未完全阐明.采用小鼠成纤维细胞作为模型,研究周期性单轴拉伸力学刺激对细胞应力纤维排布和有丝分裂方向的影响.结果表明,周期性单轴拉伸诱导细胞有丝分裂与应力纤维垂直于拉伸方向排布.而阻断应力纤维的两种基本组成成分(微丝和肌球蛋白Ⅱ),会造成在周期性单轴拉伸条件下的应力纤维和有丝分裂方向重排.特别是,Y27632 (10 μmol/L) 和低浓度的ML7 (50 μmol/L)、Blebbistatin (50 μmol/L)可以诱导细胞有丝分裂与应力纤维平行于拉伸方向排布.统计结果表明,在不同实验条件下,应力纤维排布和有丝分裂方向均具有高度相关性.Western blot实验表明,肌球蛋白轻链磷酸化水平与周期性单轴拉伸刺激下的应力纤维排 布和有丝分裂方向密切相关.上述结果提示:周期性单轴拉伸力学刺激通过诱导应力纤维的排布,决定了细胞的有丝分裂方向.  相似文献   

20.
Kaunas R  Usami S  Chien S 《Cellular signalling》2006,18(11):1924-1931
Cyclic mechanical stretch associated with pulsatile blood pressure can modulate cytoskeletal remodeling and intracellular signaling in vascular endothelial cells. The aim of this study was to evaluate the role of stretch-induced actin stress fiber orientation in intracellular signaling involving the activation of c-jun N-terminal kinase (JNK) in bovine aortic endothelial cells. A stretch device was designed with the capability of applying cyclic uniaxial and equibiaxial stretches to cultured endothelial cells, as well as changing the direction of cyclic uniaxial stretch. In response to 10% cyclic equibiaxial stretch, which did not result in stress fiber orientation, JNK activation was elevated for up to 6 h. In response to 10% cyclic uniaxial stretch, JNK activity was only transiently elevated, followed by a return to basal level as the actin stress fibers became oriented perpendicular to the direction of stretch. After the stress fibers had aligned perpendicularly and the JNK activity had subsided, a 90-degree change in the direction of cyclic uniaxial stretch reactivated JNK, and this activation again subsided as stress fibers became re-oriented perpendicular to the new direction of stretch. Disrupting actin filaments with cytochalasin D blocked the stress fiber orientation in response to cyclic uniaxial stretch and it also caused the uniaxial stretch-induced JNK activation to become sustained. These results suggest that stress fiber orientation perpendicular to the direction of stretch provides a mechanism for both structural and biochemical adaptation to cyclic mechanical stretch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号