首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate prediction of loads acting at the joint in total knee replacement (TKR) patients is key to developing experimental or computational simulations which evaluate implant designs under physiological loading conditions. In vivo joint loads have been measured for a small number of telemetric TKR patients, but in order to assess device performance across the entire patient population, a larger patient cohort is necessary. This study investigates the accuracy of predicting joint loads from joint kinematics. Specifically, the objective of the study was to assess the accuracy of internal–external (I–E) and anterior–posterior (A–P) joint load predictions from I–E and A–P motions under a given compressive load, and to evaluate the repeatability of joint load ratios (I–E torque to compressive force (I–E:C), and A–P force to compressive force (A–P:C)) for a range of compressive loading profiles. A tibiofemoral finite element model was developed and used to simulate deep knee bend, chair-rise and step-up activities for five patients. Root-mean-square (RMS) differences in I–E:C and A–P:C load ratios between telemetric measurements and model predictions were less than 1.10e–3 Nm/N and 0.035 N/N for all activities. I–E:C and A–P:C load ratios were consistently reproduced regardless of the compressive force profile applied (RMS differences less than 0.53e–3 Nm/N and 0.010 N/N, respectively). When error in kinematic measurement was introduced to the model, joint load predictions were forgiving to kinematic measurement error when conformity between femoral and tibial components was low. The prevalence of kinematic data, in conjunction with the analysis presented here, facilitates determining the scope of A–P and I–E joint loading ratios experienced by the TKR population.  相似文献   

2.
pH-dependent (pH 6.0–8.0) quaternary structural changes of ferric Vitreoscilla hemoglobin (VHb) have been investigated using dynamic light scattering. The VHb exhibits a monomeric state under neutral conditions at pH 7.0, while the protein forms distinct homodimeric species at pH 6.0 and 8.0, respectively. The dissociation constant obtained using the Bio-Layer Interferometry technology indicates that, at pH 7.0, the monomer–monomer dissociation of VHb is about 6-fold or 5-fold higher (KD = 6.34 μM) compared with that at slightly acidic pH (KD = 1.05 μM) or slightly alkaline pH (KD = 1.22 μM). The pH-dependent absorption spectra demonstrate that the heme microenvironment of VHb is sensitive to the changes of pH value. The maximum absorption band of heme group of VHb shifts from 402 nm to 407 nm when pH changes from 6.0 to 8.0. In addition, the fluorescence emission spectra of VHb, taken at excitation wavelength of 295 nm, suggest that the single Trp122 fluorescence quantum yields in VHb are decreased due to the formation of the homodimeric species. However, the circular dichroism spectra data display that the secondary structures of VHb are little affected by pH transitions. The pH-dependent peroxidase activity of VHb was also investigated in this study. The optimum pH for VHb using 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) as substrate is 7.0, which implies that the monomer state of VHb would exhibit better peroxidase activity than the homodimeric species of VHb at pH 6.0 and 8.0.  相似文献   

3.
The removal of toxic methyl ethyl ketone (MEK) is studied in a lab scale biofilter packed with mixture of coal and matured compost. The biofiltration operation is divided into 5 phases for a period of 60 days followed by shock loading conditions for three weeks. The maximum removal efficiency of 95% is achieved during phase II for an inlet concentration of 0.59 g m−3, and 82–91% for the inlet concentration in the range of 0.45–1.23 g m−3 of MEK during shock loads. The Michaelis–Menten kinetic constants obtained are 0.086 g m−3 h−1 and 0.577 g m−3. The obtained experimental results are validated using Ottengraf–van den Oever model for zero-order diffusion-controlled region to understand the mechanism of biofiltration. The critical inlet concentration of MEK, critical inlet load of MEK and biofilm thickness are estimated using the results obtained from model predictions.  相似文献   

4.
Here we explored the impact of hydrogen sulfide (H2S) on biophysical properties of the primary human airway smooth muscle (ASM)–the end effector of acute airway narrowing in asthma. Using magnetic twisting cytometry (MTC), we measured dynamic changes in the stiffness of isolated ASM, at the single-cell level, in response to varying doses of GYY4137 (1–10 mM). GYY4137 slowly released appreciable levels of H2S in the range of 10–275 μM, and H2S released was long lived. In isolated human ASM cells, GYY4137 acutely decreased stiffness (i.e. an indicator of the single-cell relaxation) in a dose-dependent fashion, and stiffness decreases were sustained in culture for 24 h. Human ASM cells showed protein expressions of cystathionine-γ-lyase (CSE; a H2S synthesizing enzyme) and ATP-sensitive potassium (KATP) channels. The KATP channel opener pinacidil effectively relaxed isolated ASM cells. In addition, pinacidil-induced ASM relaxation was completely inhibited by the treatment of cells with the KATP channel blocker glibenclamide. Glibenclamide also markedly attenuated GYY4137-mediated relaxation of isolated human ASM cells. Taken together, our findings demonstrate that H2S causes the relaxation of human ASM and implicate as well the role for sarcolemmal KATP channels. Finally, given that ASM cells express intrinsic enzymatic machinery of generating H2S, we suggest thereby this class of gasotransmitter can be further exploited for potential therapy against obstructive lung disease.  相似文献   

5.
To better understand methodological factors that alter landings strategies, we compared sagittal plane joint energetics during the initial landing phase of drop jumps (DJ) vs. drop landings (DL), and when shod vs. barefoot. Surface electromyography, kinematic and kinetic data were obtained on 10 males and 10 females during five consecutive drop landings and five consecutive drop jumps (0.45 m) when shod and when barefoot. Energy absorption was greater in the DJ vs. DL (P = .002), due to increased energy absorption at the hip during the DJ. Joint stiffness/impedance was more affected by shoe condition, where overall stiffness/impedance was greater in shod compared to barefoot conditions (P = .036). Further, hip impedance was greater in shod vs. barefoot for the DL only (via increased peak hip extensor moment in DL), while ankle stiffness was greater in the barefoot vs. shod condition for the DJ only (via decreased joint excursion and increased peak joint moment in DJ vs. DL) (P = .011). DJ and DL place different neuromechanical demands upon the lower extremities, and shoe wear may alter impact forces that modulate stiffness/impedance strategies. The impact of these methodological differences should be considered when comparing landing biomechanics across studies.  相似文献   

6.
Given the almost linear relationship between ground-reaction force and leg length, bouncy gaits are commonly described using spring–mass models with constant leg-spring parameters. In biological systems, however, spring-like properties of limbs may change over time. Therefore, it was investigated how much variation of leg-spring parameters is present during vertical human hopping. In order to do so, rest-length and stiffness profiles were estimated from ground-reaction forces and center-of-mass dynamics measured in human hopping. Trials included five hopping frequencies ranging from 1.2 to 3.6 Hz. Results show that, even though stiffness and rest length vary during stance, for most frequencies the center-of-mass dynamics still resemble those of a linear spring–mass hopper. Rest-length and stiffness profiles differ for slow and fast hopping. Furthermore, at 1.2 Hz two distinct control schemes were observed.  相似文献   

7.
Dynamics and function of proteins are governed by the structural and energetic properties of the different states they adopt and the barriers separating them. In earlier work, native-state triplet–triplet energy transfer (TTET) on the villin headpiece subdomain (HP35) revealed an equilibrium between a locked native state and an unlocked native state, which are structurally similar but have different dynamic properties. The locked state is restricted to low amplitude motions, whereas the unlocked state shows increased conformational flexibility and undergoes local unfolding reactions. This classified the unlocked state as a dry molten globule (DMG), which was proposed to represent an expanded native state with loosened side-chain interactions and a solvent-shielded core. To test whether the unlocked state of HP35 is actually expanded compared to the locked state, we performed high-pressure TTET measurements. Increasing pressure shifts the equilibrium from the locked toward the unlocked state, with a small negative reaction volume for unlocking (ΔV0 = − 1.6 ± 0.5 cm3/mol). Therefore, rather than being expanded, the unlocked state represents an alternatively packed, compact state, demonstrating that native proteins can exist in several compact folded states, an observation with implications for protein function. The transition state for unlocking/locking, in contrast, has a largely increased volume relative to the locked and unlocked state, with respective activation volumes of 7.1 ± 0.4 cm3/mol and 8.7 ± 0.9 cm3/mol, indicating an expansion of the protein during the locking/unlocking transition. The presented results demonstrate the existence of both compact, low-energy and expanded, high-energy DMGs, prompting a broader definition of this state.  相似文献   

8.
Soil salinization and alkalinization frequently co-occur in nature, but there is little information on the interactive effects of salt and alkali stresses on plants. Seed germination and early seedling growth are crucial stages for plant establishment. We investigated the interactive effects of salt and alkali stresses on seed germination, germination recovery and seedling growth of a halophyte Spartina alterniflora. Seed germination percentage was not significantly reduced at low salinity (≤ 200 mM) at pH 6.63–9.95, but decreased with increased salinity and pH. Ungerminated seeds germinated well after transfer to distilled water from treatment solutions, indicating that seeds can remain viable in high salt–alkaline habits. Shoot growth was stimulated at low salinity and pH, but decreased with increased salinity and pH. Radicle elongation decreased sharply with increased salinity and pH, and was significantly inhibited when pH ≥ 9.0, indicating that the radicles are very sensitive to salt–alkaline stress. The deleterious effects of salinity or high pH alone were less than when combined. A reciprocal enhancement of salt and alkali stresses is a characteristic feature for salt–alkaline stress. Stepwise regression analysis indicates that salinity is the dominant factor, while pH and buffer capacity are secondary for salt–alkaline mixed stress.  相似文献   

9.
Exposure to excess glucocorticoids (GCs) during embryonic development influences offspring phenotypes and behaviors and induces epigenetic modifications of the genes in the hypothalamic–pituitary–adrenal (HPA) axis and in the serotonergic system in mammals. Whether prenatal corticosterone (CORT) exposure causes similar effects in avian species is less clear. In this study, we injected low (0.2 μg) and high (1 μg) doses of CORT into developing embryos on day 11 of incubation (E11) and tested the changes in aggressive behavior and hypothalamic gene expression on posthatch chickens of different ages. In ovo administration of high dose CORT significantly suppressed the growth rate from 3 weeks of age and increased the frequency of aggressive behaviors, and the dosage was associated with elevated plasma CORT concentrations and significantly downregulated hypothalamic expression of arginine vasotocin (AVT) and corticotropin-releasing hormone (CRH). The hypothalamic content of glucocorticoid receptor (GR) protein was significantly decreased in the high dose group (p < 0.05), whereas no changes were observed for GR mRNA. High dose CORT exposure significantly increased platelet serotonin (5-HT) uptake, decreased whole blood 5-HT concentration (p < 0.05), downregulated hypothalamic tryptophan hydroxylase 1 (TPH1) mRNA and upregulated 5-HT receptor 1A (5-HTR1A) and monoamine oxidase A (MAO-A) mRNA, but not monoamine oxidase B (MAO-B). High dose CORT also significantly increased DNA methylation of the hypothalamic GR and CRH gene promoters (p < 0.05). Our findings suggest that embryonic exposure to CORT programs aggressive behavior in the chicken through alterations of the HPA axis and the serotonergic system, which may involve modifications in DNA methylation.  相似文献   

10.
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics–kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17 N m is varied by ±50% to 25.5 N m and 8.5 N m. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.  相似文献   

11.
12.

Background

Gene polymorphisms of the chemokine receptors CCR2 and CCR5 (CCR2V64I, CCR5-59029G>A and CCR5Δ32) have been shown to be associated with renal allograft rejection. The aim of this study was to investigate the association of these polymorphisms with allograft rejection among Pakistani transplant patients.

Method

A total of 606 renal transplant patients and an equal number of their donors were included in this study. DNA samples were used to amplify polymorphic regions of CCR2V64I, CCR5-59029G>A and CCR5Δ32 by polymerase chain reaction using sequence specific primers. The amplified products of CCRV64I and CCR5-59029G>A were digested with restriction enzymes (BsaB1 and Bsp12861) respectively. The CCR5Δ32 genotypes were determined by sizing the PCR amplicons. The association of these polymorphisms with the biopsy proven rejection and other clinical parameters was evaluated using the statistical software SPSS v.17.

Results

In this study, the G/G genotype of CCR2V64I was associated with a high frequency of allograft rejection (p = 0.009; OR = 2.14; 95% CI = 1.2–3.7). Rejection episode(s) in the GA + AA genotypes were found to be significantly lower as compared to the GG genotype (p = 0.009; OR = 0.4; 95% CI = 0.2–0.8). The Kaplan–Meier curve also indicated a reduced overall allograft survival for patients with the G/G genotype of CCR2V64I (59.2 ± 1.4 weeks, log p = 0.008). There was a significant association with rejection by female donors possessing the CCR2 GG genotype (p = 0.02; OR = 2.6; CI = 1.1–6.3) and male donors with the CCR5-59029 GG genotype (p = 0.004; OR = 1.7; CI = 1.03–3.01).

Conclusion

This study shows an association of the CCR2V64I (G/G) genotype with renal allograft rejection. However, no such association was found for the CCR5 gene polymorphisms. Therapeutic interventions such as blocking the CCR2 receptor (especially G polymorphism) may yield better survival of renal allograft in this patient group. Further, chemokine receptors may be added to the spectrum of the immunogenetic factors that are known to be associated with renal allograft rejection.  相似文献   

13.
The discrepancy of results for the quantification of androstenedione in human serum between a radioimmunoassay (RIA) method and high performance liquid chromatography tandem-mass spectrometry (LC–MS/MS) was investigated. RIA overestimated concentrations compared to LC–MS/MS on 59 clinical samples (RIA = 1.79 × LC–MS/MS + 0.94). RIA kit and LC–MS/MS calibrants were also determined by both methods. The RIA performed with improved accuracy on the calibrants (RIA = 1.35 × LC–MS/MS − 0.28). Lipid, protein, electrolyte content, and pH of the two sets of calibrants were further investigated. The RIA calibrants contained little lipid material, while the LC–MS/MS calibrant material contained the same levels expected in normal serum/plasma. The pH and sex hormone binding globulin (SHBG) values were different between the RIA calibrants and the LC–MS/MS calibrant material (SHBG, 31 ± 2 and 38 ± 2 nmol/l; pH, 8.27 ± 0.18 and 8.66 ± 0.03, respectively). No correlation was observed between androstenedione RIA and LC–MS/MS discrepancy and lipid or protein. LC–MS/MS sample preparation was tested for the removal of protein-bound material and recovery determined (99–108%). The corresponding RIA results overestimated androstenedione by 52–174% compared to LC–MS/MS. The results here demonstrate that LC–MS/MS is the more accurate method.  相似文献   

14.
Glycine oxidase (GO) from Bacillus subtilis is a homotetrameric flavoprotein oxidase that catalyzes the oxidation of the amine functional group of sarcosine or glycine (and some d-amino acids) to yield the corresponding keto acids, ammonia/amine and H2O2. It shows optima at pH 7–8 for stability and pH 9–10 for activity, depending on the substrate. The tetrameric oligomeric state of the holoenzyme is not affected by pH in the 6.5–10 range. Free GO forms the anionic red semiquinone upon photoreduction. This species is thermodynamically stable, as indicated by the large separation of the two single-electron reduction potentials (ΔE ≥ 290 mV). The first potential is pH independent, while the second is dependent. The midpoint reduction potential exhibits a −23.4 mV/pH unit slope, which is consistent with an overall two-electrons/one-proton transfer in the reduction to yield anionic reduced flavin. In the presence of glycolate (a substrate analogue) and at pH 7.5 the potential for the semiquinone-reduced enzyme couple is shifted positively by ∼160 mV: this favors a two-electron transfer compared to the free enzyme. Binding of glycolate and sulfite is also affected by pH, showing dependencies that reflect the ionization of an active site residue with a pKa ≈ 8.0. These results highlight substantial differences between GO and related flavoenzymes. This knowledge will facilitate biotechnological use of GO, e.g. as an innovative tool for the in vivo detection of the neurotransmitter glycine.  相似文献   

15.
The goal of our study is to evaluate the contribution of CXCL12 rs1746048 (hg19, chr10:44775574) to the risk of CHD in Han Chinese, and to summarize its role in CHD through meta-analysis of existing studies among various ethnic groups. Significant association is observed between rs1746048-C and an increased risk of CHD in Han Chinese (χ2 = 5.41, df = 1, P = 0.02). Post hoc analysis reveals an even stronger association of rs1746048 with the risk of CHD for subjects aged 65 years or older (genotype: χ2 = 8.39, df = 2, P = 0.015; allele: χ2 = 9.13, df = 1, P = 0.003, odd ratio (OR) = 1.91, 95% confidential interval (CI) = 1.25–2.91). A break down analysis by gender shows that rs1746048 is likely a CHD risk factor under the recessive model in males (CC + CT versus TT: P = 0.05, χ2 = 3.59, df = 1, OR = 1.72, 95% CI = 1.00–3.04). In addition, a meta-analysis of ten studies among over 107,000 individuals confirms that rs1746048 is a risk factor of CHD (P < 0.0001, OR = 1.12, 95% CI = 1.09–1.15) and this agrees with the findings of our case–control study in Han Chinese.  相似文献   

16.
Nedd4-1 (neuronal precursor cell expressed developmentally downregulated gene 4-1) is an E3 ubiquitin ligase that interacts with and negatively regulates the epithelial Na+ channel (ENaC). The WW domains of Nedd4-1 bind to the ENaC subunits via recognition of PY motifs. Human Nedd4-1 (hNedd4-1) contains four WW domains with the third domain (WW3*) showing the strongest affinity to the PY motif. To understand the mechanism underlying this binding affinity, we have carried out NMR structural and dynamics analyses of the hNedd4-1 WW3* domain in complex with a peptide comprising the C-terminal tail of the human ENaC α-subunit. The structure reveals that the peptide interacts in a similar manner to other WW domain–ENaC peptide structures. Crucial interactions that likely provide binding affinity are the broad XP groove facilitating additional contacts between the WW3* domain and the peptide, compared to similar complexes, and the large surface area buried (83 Å2) between R430 (WW3*) and L647′ (αENaC). This corroborates the model-free analysis of the 15N backbone relaxation data, which showed that R430 is the most rigid residue in the domain (S2 = 0.90 ± 0.01). Carr–Purcell–Meiboom–Gill relaxation dispersion analysis identified two different conformational exchange processes on the μs–ms time-scale. One of these processes involves residues located at the peptide binding interface, suggesting conformational exchange may play a role in peptide recognition. Thus, both structural and dynamic features of the complex appear to define the high binding affinity. The results should aid interpretation of biochemical data and modeling interfaces between Nedd4-1 and other interacting proteins.  相似文献   

17.

Purpose

Matrix metalloproteinase (MMP) 1, MMP2, MMP3 and MMP9 are important members of the MMP family. Recently, many studies have been carried out on the association between polymorphisms of MMP1-1607 1G/2G, MMP2-735 C/T, MMP2-1306 C/T, MMP3-1171 5A/6A and MMP9-1562 C/T and lung cancer risk. However the results of these studies remained inconclusive due to conflicting results from different case–control studies. To clarify these associations, we conducted a meta-analysis.

Methods

We conducted a comprehensive search in Medline, EMBASE, OVID and Chinese Biomedical Literature Database (date from Jan 2000 to Aug 2012). Overall and subgroup analysis by the ethnicity of study population was carried out. Odds ratio (OR) with 95% confidence interval (95%CI) was used to assess the strength of the association.

Results

There were 17 studies involving five polymorphic sites in four MMP genes. For MMP1-1607,increased lung cancer risk was found under dominant model (MMP1-1607 1G/2G: OR = 1.14, 95%CI = 1.03–1.26, P = 0.01), but not in the Caucasian population. For MMP2-1306 C/T, T polymorphism decreased lung cancer risk under dominant and recessive models (dominant, OR = 0.63, 95%CI = 0.46–0.88, P = 0.0006; recessive, OR = 0.61, 95%CI = 0.38–0.99, P = 0.04). For MMP9-1562 C/T, TT genotype decreased this risk under the recessive model (OR = 0.38, 95%CI = 0.19–0.75, P = 0.005), but not in the Asian population. For MMP2-735 C/T and MMP3-1171 5A/6A, there was no association between this polymorphism and lung cancer risk under the dominant and recessive models.

Conclusions

MMP1-1607 1G/2G polymorphism increased lung cancer risk in Asians. It was also found thatMMP2-1306 C/T polymorphism decreased lung cancer risk in Asians, while MMP9-1562 C/T polymorphism decreased lung cancer risk in Caucasians. No significant difference was found in any genotype of MMP2-735 C/T and MMP3-1171 5A/6A. Further studies with larger sample sizes should be carried out.  相似文献   

18.
The angiotensinogen (AGT) gene M235T polymorphism has been reported to be associated with myocardial infarction (MI) and brain infarction (BI), but the results remain inconclusive. This meta-analysis was designed to clarify these controversies. Electronic databases were systematically searched before February 2013. A total of 38 studies with 17304 subjects met our inclusion criteria. In East Asian group, significant association was found between AGT M235T polymorphism and risk of MI (for dominant model: OR = 1.79; 95% CI = 1.04–3.06; for recessive model OR = 2.01; 95% CI = 1.21–3.36; for additive model OR = 1.79; 95% CI = 1.14–2.86) as well as BI (for dominant model: OR = 1.66; 95% CI = 1.22–2.27; for recessive model OR = 1.78, 95% CI = 1.29–2.46; for additive model: OR = 1.64, 95% CI = 1.34–2.00), while the M235T polymorphism did not impact the risk of MI in total population and other ethnicity. In the subgroup analyses by gender and age, there was lack of evidence for the association. This meta-analysis suggested an association between the M235T polymorphism and MI as well as BI in East Asian population. Further studies with larger numbers of worldwide participants are needed to understand the genetic basis of MI and BI.  相似文献   

19.
CXCL12 has been implicated in human carcinogenesis, but the association between the most-studied G801A polymorphism (rs1801157) and the risk of various cancers was reported with inconclusive results. The aim of this study was to assess the association between the CXCL12 G801A polymorphism and cancer risk. A meta-analysis of 17 studies with 3048 cancer patients and 4522 controls was conducted to evaluate the strength of the association using odds ratio (OR) with its 95% confidence interval (CI). The overall results showed that the variant genotypes were associated with a significantly increased risk of all cancer types (OR = 1.38, 95%CI = 1.18–1.61 for GA versus GG, and OR = 1.36, 95%CI = 1.17–1.59 for GA/AA versus GG). In the stratified analyses, there was a significantly increased risk for the studies of breast cancer (OR = 1.64, 95% CI = 1.16–2.33 for AA versus GG, OR = 1.42, 95%CI = 1.18–1.71 for GA versus GG, and OR = 1.44, 95%CI = 1.21–1.72 for GA/AA versus GG) and lung cancer (OR = 2.86, 95% CI = 1.75–4.69 for AA versus GG, OR = 1.62, 95% CI = 1.20–2.18 for GA vs. GG, OR = 1.80, 95% CI = 1.36–2.39 for GA/AA versus GG, and OR = 2.24, 95%CI = 1.41–3.57 for AA versus GA/GG), which remained for the studies of Asian populations and hospital-based control sources. Although some modest bias could not be eliminated, this meta-analysis indicates that the CXCL12 G801A polymorphism is a low-penetrance risk factor for cancer development.  相似文献   

20.
The kinetic, thermodynamic and isotherm modeling studies were carried out on adsorptive removal of Victoria blue (VB) dye using activated carbon, Ba/alginate and modified carbon/Ba/alginate polymer beads. The feasibility of sorption process was determined by varying the experimental parameters viz., dye concentration (4–20 mg L−1), contact time (10–90 min), pH (3–10), adsorbent dose (0.5–2.5 g) and temperature (303–343 K). Freundlich and Langmuir isotherms were determined and ascertained with the dimensionless separation factor (RL). Lagergren's pseudo-first order, pseudo-second order and intraparticle diffusion model equations were used to analyze the kinetics of the adsorption process. The thermodynamic consistency of adsorption was found with Gibbs free energy (ΔG°), changes in enthalpy (ΔH°) and entropy (ΔS°) were calculated using the Van’t Hoff plot. The polymer beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR) and their morphology was determined by scanning electron microscopy (SEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号