首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chronic exposure of astronauts to microgravity results in structural degradation of their lower limb bones. Currently, no effective exercise countermeasure exists. On Earth, the impact loading that occurs with regular locomotion is associated with the maintenance of bone's structural integrity, but impact loads are rarely experienced in space. Accurately mimicking Earth-like impact loads in a reduced-gravity environment should help to reduce the degradation of bone caused by weightlessness. We previously showed that running with externally applied horizontal forces (AHF) in the anterior direction qualitatively simulates the high-impact loading associated with downhill running on Earth. We hypothesized that running with AHF at simulated reduced gravity would produce impact loads equal to or greater than values experienced during normal running at Earth gravity. With an AHF of 20% of gravity-specific body weight at all gravity levels, impact force peaks increased 74%, average impact loading rates increased 46%, and maximum impact loading rates increased 89% compared to running without any AHF. In contrast, AHF did not substantially affect active force peaks. Duty factor and stride frequency decreased modestly with AHF at all gravity levels. We found that running with an AHF in simulated reduced gravity produced impact loads equal to or greater than those experienced at Earth gravity. An appropriate AHF could easily augment existing partial gravity treadmill running exercise countermeasures used during spaceflight and help prevent musculoskeletal degradation.  相似文献   

2.
One method to determine the forces produced during running is to conduct extensive kinematic and kinetic analysis. These analyses can be performed by having an individual perform repeated over-ground running trials or simply run continuously on an instrumented treadmill. The forces produced during over-ground running may not be the same as the forces during treadmill running and these differences could be attributed to a number of factors, including the design of the instrumented treadmill. The purpose of this paper was to determine whether there are differences in force measurements on different instrumented treadmill setups in comparison to over-ground running and to correct for any of these differences using a theoretical model. 11 participants ran on three different treadmills and performed over-ground running at 2.7, 3.6, and 4.5 m/s. Ground reaction forces were measured via force plates and an instrumented pressure insole. We found that the magnitude of the vertical ground reaction force differed between the three treadmills and over-ground running. The difference in ground reaction forces estimated by the pressure insole and the treadmill-force-plate system or instrumented treadmill can be explained by a three degree of freedom mechanical model of a person running on a treadmill and this model could potentially be used to correct for errors in force measurement from instrumented treadmills. The model included a force plate, a treadmill, and a wobbling mass with varying natural frequencies and damping characteristics, and constant masses. These findings provide researchers a method to correct forces from an instrumented treadmill set-up to determine a close approximation of the actual forces experienced by a participant during treadmill running.  相似文献   

3.
Bed rest and spaceflight reduce exercise fitness. Supine lower body negative pressure (LBNP) treadmill exercise provides integrated cardiovascular and musculoskeletal stimulation similar to that imposed by upright exercise in Earth gravity. We hypothesized that 40 min of supine exercise per day in a LBNP chamber at 1.0-1.2 body wt (58 +/- 2 mmHg LBNP) maintains aerobic fitness and sprint speed during 15 days of 6 degrees head-down bed rest (simulated microgravity). Seven male subjects underwent two such bed-rest studies in random order: one as a control study (no exercise) and one with daily supine LBNP treadmill exercise. After controlled bed-rest, time to exhaustion during an upright treadmill exercise test decreased 10%, peak oxygen consumption during the test decreased 14%, and sprint speed decreased 16% (all P < 0.05). Supine LBNP exercise during bed rest maintained all the above variables at pre-bed-rest levels. Our findings support further evaluation of LBNP exercise as a countermeasure against long-term microgravity-induced deconditioning.  相似文献   

4.
Long-duration exposure to microgravity has been shown to have detrimental effects on the human musculoskeletal system. To date, exercise countermeasures have been the primary approach to maintain bone and muscle mass and they have not been successful. Up until 2008, the three exercise countermeasure devices available on the International Space Station (ISS) were the treadmill with vibration isolation and stabilization (TVIS), the cycle ergometer with vibration isolation and stabilization (CEVIS), and the interim resistance exercise device (iRED). This article examines the available envelope of mechanical loads to the lower extremity that these exercise devices can generate based on direct in-shoe force measurements performed on the ISS. Four male crewmembers who flew on long-duration ISS missions participated in this study. In-shoe forces were recorded during activities designed to elicit maximum loads from the various exercise devices. Data from typical exercise sessions on Earth and on-orbit were also available for comparison. Maximum on-orbit single-leg loads from TVIS were 1.77 body weight (BW) while running at 8 mph. The largest single-leg forces during resistance exercise were 0.72 BW during single-leg heel raises and 0.68 BW during double-leg squats. Forces during CEVIS exercise were small, approaching only 0.19 BW at 210 W and 95 RPM. We conclude that the three exercise devices studied were not able to elicit loads comparable to exercise on Earth, with the exception of CEVIS at its maximal setting. The decrements were, on average, 77% for walking, 75% for running, and 65% for squats when each device was at its maximum setting. Future developments must include an improved harness to apply higher gravity replacement loads during locomotor exercise and the provision of greater resistance exercise capability. The present data set provides a benchmark that will enable future researchers to judge whether or not the new generation of exercise countermeasures recently added to the ISS will address the need for greater loading.  相似文献   

5.
Mechano-sensing in cells is tightly obliged with changes in intracellular free calcium (IFC), regulation of specific genes and activation of specific second messenger systems. To investigate whether single non-professional cells like osteoblasts can detect microgravity through the mechano-sensor, measurements on a sub-orbital rocket and parabolic flights observing the IFC and gene expression were performed. We find that microgravity did neither effect IFC nor gene expression. Thermal and mechanical noise within cells is too high in relation to the change of force due to the change from gravity to microgravity. Complementary force measurements have shown that cells exert high forces on the substrate and that these high forces have to be applied for activation.  相似文献   

6.
Summary In the free walking rock lobster the forces developed by legs 4 and 5 were investigated during the power stroke. Two orthogonal force components lying in the horizontal plane were measured. Based on these results the diffent tasks of the two legs during walking are discussed. The forces developed by leg 4 were compared when the animal walked freely and on a treadmill. In these two situations the results differ qualitatively as in driven walking the forces are nearly identical in a long series of consecutive steps whereas in free walking the forces can vary greatly from step to step. However, similar mean values of force were measured with those on the treadmill being somewhat higher. This shows that, although the treadmill is driven by a motor, the animal does perform active walking movements. In the treadmill situation the forces increase as the speed of treadmill motor is decreased.Supported by DAAD and DFG (Cr 58) for H. Cruse and by ATP (80 119.112) INSERM for F. Clarac  相似文献   

7.
8.
The study of gravitropism in space has permitted the discovery that statoliths are not completely free to sediment in the gravisensing cells of roots. These organelles are attached to actin filaments via motor proteins (myosin) which are responsible for their displacement from the distal pole of the cell toward the proximal pole when the seedlings are transferred from a 1g centrifuge in space to microgravity. On the ground, the existence of the link between the statoliths and the actin network could not be established because the gravity force is much greater than the force exerted by the motor proteins. This finding led to a new hypothesis on gravisensing. It has been proposed that statoliths can exert tensions in the actin network which become asymmetrical when the root is stimulated in the horizontal position on the ground. The space experiments have confirmed to some extent the results obtained on gravisensitivity with clinostats, although these devices do not simulate microgravity correctly. Reexamination of the means of estimating gravisensitivity has led to the conclusion that the perception and the transduction phases could be very short (that is, within a second). This data is consistent with the fact that the statoliths are attached to the actin filament and do not have to move a long distance to exert forces on the actin network. It has also been demonstrated that gravity regulates the gravitropic bending in order to avoid the overshooting of the vertical direction on the ground. The roots, which are stimulated and placed in microgravity, are not subjected to this regulation and curve more than roots stimulated continuously. However, the curvature of roots or of coleoptiles that takes place in microgravity can be greatly reduced by straightening the extremity of the organs.  相似文献   

9.
Biomineralized tissues are widespread in animals. They are essential elements in skeletons and in statocysts. The function of both can only be understood with respect to gravitational force, which has always been present. Therefore, it is not astonishing to identify microgravity as a factor influencing biomineralization, normally resulting in the reduction of biomineralized materials. All known biominerals are composite materials, in which the organic matrix and the inorganic materials, organized in crystals, interact. If, during remodeling and turnover processes under microgravity, a defective organization of these crystals occurs, a reduction in biomineralized materials could be the result. To understand the influence of microgravity on the formation of biocrystals, we studied the shell-building process of the snail Biomphalaria glabrata as a model system. We show that, under microgravity (space shuttle flights STS-89 and STS-90), shell material is built in a regular way in both adult snails and snail embryos during the beginning of shell development. Microgravity does not influence crystal formation. Because gravity has constantly influenced evolution, the organization of biominerals with densities near 3 must have gained independence from gravitational forces, possibly early in evolution.  相似文献   

10.
Microbial responses to microgravity and other low-shear environments.   总被引:2,自引:0,他引:2  
Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.  相似文献   

11.
Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.  相似文献   

12.
Astronauts experience spine deconditioning during exposure to microgravity due to the lack of axial loads on the spine. Treadmill exercise in a lower body negative pressure (LBNP) chamber provides axial loads on the lumbar spine. We hypothesize that daily supine LBNP exercise helps counteract lumbar spine deconditioning during 28 days of microgravity simulated by bed rest. Twelve sets of healthy, identical twins underwent 6 degrees head-down-tilt bed rest for 28 days. One subject from each set of twins was randomly assigned to the exercise (Ex) group, whereas their sibling served as a nonexercise control (Con). The Ex group exercised in supine posture within a LBNP chamber for 45 min/day, 6 days/wk. All subjects underwent magnetic resonance imaging of their lumbar spine before and at the end of bed rest. Lumbar spinal length increased 3.7 +/- 0.5 mm in the Con group over 28-day bed rest, whereas, in the Ex group, lumbar spinal length increased significantly less (2.3 +/- 0.4 mm, P = 0.01). All lumbar intervertebral disk heights (L5-S1, L4-5, L3-4, L2-3, and L1-2) in the Con group increased significantly over the 28-day bed rest (P < 0.05). In the Ex group, there were no significant increases in L5-S1 and L4-5 disk heights. Lumbar lordosis decreased significantly by 3.3 +/- 1.2 degrees during bed rest in the Con group (P = 0.02), but it did not decrease significantly in the Ex group. Our results suggest that supine LBNP treadmill exercise partially counteracts lumbar spine lengthening and deconditioning associated with simulated microgravity.  相似文献   

13.
The purpose of this study was to investigate the effects of mild therapeutic exercise (treadmill) in preventing the inactivity-induced alterations in contractile properties (e.g., power, force, and velocity) of type I soleus single fibers in three different age groups. Young adult (5- to 12-mo-old), middle-aged (24- to 31-mo-old), and old (32- to 40-mo-old) F344BNF1 rats were randomly assigned to three experimental groups: weight-bearing control (CON), non-weight bearing (NWB), and NWB with exercise (NWBX). NWB rats were hindlimb suspended for 2 wk, representing inactivity. The NWBX rats were hindlimb suspended for 2 wk and received therapeutic exercise on a treadmill four times a day for 15 min each. Peak power and isometric maximal force were reduced following hindlimb suspension (HS) in all three age groups. HS decreased fiber diameter in young adult and old rats (-21 and -12%, respectively). Specific tension (isometric maximal force/cross-sectional area) was significantly reduced in both the middle-aged (-36%) and old (-23%) rats. The effects of the mild therapeutic exercise program on fiber diameter and contractile properties were age specific. Mild treadmill therapeutic exercise attenuated the HS-induced reduction in fiber diameter (+17%, 93% level of CON group) and peak power (μN·fiber length·s(-1)) (+46%, 63% level of CON group) in young adult rats. In the middle-aged animals, this exercise protocol improved peak power (+60%, 100% level of CON group) and normalized power (kN·m(-2)·fiber length·s(-1)) (+45%, 108% level of CON group). Interestingly, treadmill exercise resulted in a further reduction in shortening velocity (-42%, 67% level of CON group) and specific tension (-29%, 55% level of CON group) in the old animals. These results suggest that mild treadmill exercise is beneficial in attenuating and preventing inactivity-induced decline in peak power of type I soleus single fibers in young adult and middle-aged animals, respectively. However, this exercise program does not prevent the HS-induced decline in muscle function in the old animals.  相似文献   

14.
A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 degrees, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.  相似文献   

15.
Previous studies examining the delay to the onset of vasodilation have primarily focused on the onset of exercise, a setting complicated by the fact that the muscle pump and the vasodilator systems are both activated, making it difficult to attribute changes in blood flow to one or both. The goal here was to determine the delay to the onset of vasodilation after changes in work rate imposed by changes in treadmill grade (work intensity) during locomotion at a steady speed. The rationale was that constant speed would help ensure constant muscle pump activity (contraction frequency) such that vasodilator responses could be examined in isolation. Seven Sprague-Dawley rats underwent three trials each in which treadmill incline was suddenly ( approximately 1 s) elevated from -10 degrees to +10 degrees. The delay to the onset of vasodilation averaged 5.0 +/- 1.8 s, and this delay was not altered by inhibition of nitric oxide synthase. Similar or longer delays were seen during sinusoidal exercise. Thus there is a significant delay before the onset of vasodilation after an increase in work intensity (muscle force) during locomotory exercise at constant speed.  相似文献   

16.
The influences of weightbearing forces on the structural remodeling, matrix biochemistry, and mechanical characteristics of the rat tibia and femur and surrounding musculature were examined by means of a hindlimb suspension protocol and highly intensive treadmill running. Female, young adult, Sprague-Dawley rats were designated as either normal control, sedentary suspended, or exercise suspended rats. For 4 weeks, sedentary suspended rats were deprived of hindlimb-to-ground contact forces, while the exercise suspended rats experienced hindlimb ground reaction forces only during daily intensive treadmill training sessions. The suspension produced generalized atrophy of hindlimb skeletal muscles, with greater atrophy occurring in predominantly slow-twitch extensors and adductors, as compared with the mixed fiber-type extensors and flexors. Region-specific cortical thinning and endosteal resorption in tibial and femoral diaphyses occurred in conjunction with decrements in bone mechanical properties. Tibial and femoral regional remodeling was related to both the absence of cyclic bending strains due to normal weightbearing forces and the decrease in forces applied to bone by antigravity muscles. To a moderate extent, the superimposed strenuous running counteracted muscular atrophy during the suspension, particularly in the predominantly slow-twitch extensor and adductor muscles. The exercise did not, however, mitigate changes in bone mechanical properties and cross-sectional morphologies, and in some cases exacerbated the changes. Suspension with or without exercise did not alter the normal concentrations of collagen, phosphorus, and calcium in either tibia or femur.  相似文献   

17.
In this paper, a new method of determining spatial and temporal gait parameters by using centre of pressure (CoP) data is presented. A treadmill is used which was developed to overcome limitations of regular methods for the analysis of spatio-temporal gait parameters and ground reaction forces during walking and running. The design of the treadmill is based on the use of force transducers underneath a separate left and right plate, which together form the treadmill walking surface. The results of test procedures and measurements show that accurate recordings of vertical ground reaction force can be obtained. These recordings enable a separate analysis of vertical ground reaction forces during double support phases in walking, and the analysis of changes in the centre of pressure (CoP) position during subsequent foot placements. From the CoP data, temporal gait parameters (e.g. duration of left/right support and swing phases) and spatial gait parameters (i.e. left/right step lengths and widths) can be derived.  相似文献   

18.
Centrifuges are used for 1 x g controls in space flight microgravity experiments and in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the centrifuge and the geometry of the experiment hardware used these shear forces contribute significantly to the total force acting on the cells or tissues. The inertial shear force artifact should be dealt with for future experiment hardware development for Shuttle and the International Space Station (ISS) as well as for the interpretation of previous space-flight and on-ground research data.  相似文献   

19.
This report describes new treadmill ergometer designed to measure the vertical and horizontal ground reaction forces produced by the left and right legs during walking. It was validated by static and dynamic tests. Non-linearity was from 0.2% (left vertical force) to 1.4% (right antero-posterior force). The resonance frequency was from 219 (right vertical direction) to 58 Hz (left medio-lateral direction). A calibration "leg", an air jack in series with a strain gauge, was developed and used to produce force signals comparable to those obtained during human locomotion. The mean differences between the force measured by the calibration leg and treadmill ergometer at 5 km h(-1) were 3.7 N (0.7%) for the left side and 6.5 N (1.2%) for the right. Measurements obtained during human walking showed that the treadmill ergometer has considerable potential for analysing human gait.  相似文献   

20.
In planning for long-duration (1- to 2-yr) space missions (microgravity), the availability of oxygen, water, and food is critical for survival. If astronauts would consume approximately 3,100 kcal and 2.2 liters of fluid per day, the requirements for a 2-yr flight would be 2,263,000 kcal and 1,606 liters for each astronaut. These estimates, based on limited microgravity simulation and flight data, include 1 h/day of moderate isotonic exercise. Each 30-min/day reduction in exercise training time would save 110,869 kcal and 91 liters of water per year. One daily 5-h extravehicular sortie at an average work rate of 1.7 l/min would require an additional 529,250 kcal and 1,095 liters of water per year. Results from microgravity simulation (bed rest) experiments suggest that 1) there is uncertainty whether basal metabolism is unchanged, 2) submaximal ergometer exercise oxygen uptake appears to be unchanged or lower, and 3) without vigorous exercise training near peak levels, the peak oxygen uptake is definitely reduced. In addition, the equilibrium level of exercise core temperature is elevated excessively by approximately 0.5 degrees C after bed-rest acclimation. Changes in the efficiency of work or metabolism in any or all of these conditions could affect nutritional requirements for long spaceflights. Further research is necessary to elucidate the metabolic factors that would be changed and the energy cost of intra- and extravehicular activity during prolonged exposure to microgravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号