首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computational mechanics of Nitinol stent grafts   总被引:1,自引:0,他引:1  
A finite element analysis of tubular, diamond-shaped stent grafts under representative cyclic loading conditions for abdominal aortic aneurysm (AAA) repair is presented. Commercial software was employed to study the mechanical behavior and fatigue performance of different materials found in commercially available stent-graft systems. Specifically, the effects of crimping, deployment, and cyclic pressure loading on stent-graft fatigue life, radial force, and wall compliances were simulated and analyzed for two types of realistic but different Nitinol materials (NITI-1 and NITI-2) and grafts (expanded polytetrafluoroethylene-ePTFE and polyethylene therephthalate-PET). The results show that NITI-1 stent has a better crimping performance than NITI-2. Under representative cyclic pressure loading, both NITI-1 and NITI-2 sealing stents are located in the safe zone of the fatigue-life diagram; however, the fatigue resistance of an NITI-1 stent is better than that of an NITI-2 stent. It was found that the two types of sealing stents do not damage a healthy neck artery. In the aneurysm section, the NITI-1&ePTFE, NITI-1&PET, and NITI-2&PET combinations were free of fatigue fracture when subjected to conditions of radial stress between 50 and 150mmHg. In contrast, the safety factor for the NITI-2&ePFTE combination was only 0.67, which is not acceptable for proper AAA stent-graft design. In summary, a Nitinol stent with PET graft may greatly improve fatigue life, while its compliance is much lower than the NITI-ePTFE combination.  相似文献   

2.
Recent clinical studies of the percutaneous transvenous mitral annuloplasty (PTMA) devices have shown a short-term reduction of mitral regurgitation after implantation. However, adverse events associated with the devices such as compression and perforation of vessel branches, device migration and fracture were reported. In this study, a finite element analysis was carried out to investigate the biomechanical interaction between the proximal anchor stent of a PTMA device and the coronary sinus (CS) vessel in three steps including: (i) the stent release and contact with the CS wall, (ii) the axial pull t the stent connector and (iii) the pressure inflation of the vessel wall. To investigate the impact of the material properties of tissues and stents on the interactive responses, the CS vessel was modelled with human and porcine material properties, and the proximal stent was modelled with two different Nitinol materials with one being stiffer than the other. The results indicated that the vessel wall stresses and contact forces imposed by the stents were much higher in the human model than the porcine model. However, the mechanical differences induced by the two stent types were relatively small. The softer stent exhibited a better fatigue safety factor when deployed in the human model than in the porcine model. These results underscored the importance of the CS tissue mechanical properties. Vessel wall stress and stent radial force obtained in the human model were higher than those obtained in the porcine model, which also brought up questions as to the validity of using the porcine model to assess device mechanical function. The quantification of these biomechanical interactions can offer scientific insight into the development and optimisation of the PTMA device design.  相似文献   

3.
In a mechanical component, stress-concentration is one of the factors contributing to reduce fatigue life. This paper presents a design methodology based on shape optimization to improve the fatigue safety factor and increase the radial stiffness of Nitinol self-expandable stent-grafts. A planar lattice free of stress concentrators is proposed for the synthesis of a stent with smooth cell shapes. Design optimization is systematically applied to minimize the curvature and reduce the bending strain of the elements defining the lattice cells. A novel cell geometry with improved fatigue life and radial supportive force is introduced for Nitinol self-expandable stent-grafts used for treating abdominal aortic aneurism. A parametric study comparing the optimized stent-graft to recent stent designs demonstrates that the former exhibits a superior anchoring performance and a reduction of the risk of fatigue failure.  相似文献   

4.
Cardiovascular stents are commonly made from 316L stainless steel and are deployed within stenosed arterial lesions using balloon expansion. Deployment involves inflating the balloon and plastically deforming the stent until the required diameter is obtained. This plastic deformation induces static stresses in the stent, which will remain for the lifetime of the device. In order to determine these stresses, finite element models of the unit cells of geometrically different, commercially available balloon expandable stents have been created, and deployment and elastic recoil have been simulated. In this work the residual stresses associated with deployment and recoil are compared for the various stent geometries, with a view to establishing appropriate initial stress states for fatigue loading for the stents. The maximum, minimum, and mean stresses induced in the stent due to systolic/diastolic pressure are evaluated, as are performance measures such as radial and longitudinal recoil.  相似文献   

5.
A stent is a device designed to restore flow through constricted arteries. These tubular scaffold devices are delivered to the afflicted region and deployed using minimally invasive techniques. Stents must have sufficient radial strength to prop the diseased artery open. The presence of a stent can subject the artery to abnormally high stresses that can trigger adverse biologic responses culminating in restenosis. The primary aim of this investigation was to investigate the effects of varying stent "design parameters" on the stress field induced in the normal artery wall and the radial displacement achieved by the stent. The generic stent models were designed to represent a sample of the attributes incorporated in present commercially available stents. Each stent was deployed in a homogeneous, nonlinear hyperelastic artery model and evaluated using commercially available finite element analysis software. Of the designs investigated herein, those employing large axial strut spacing, blunted corners, and higher amplitudes in the ring segments induced high circumferential stresses over smaller areas of the artery's inner surface than all other configurations. Axial strut spacing was the dominant parameter in this study, i.e., all designs employing a small stent strut spacing induced higher stresses over larger areas than designs employing the large strut spacing. Increasing either radius of curvature or strut amplitude generally resulted in smaller areas exposed to high stresses. At larger strut spacing, sensitivity to radius of curvature was increased in comparison to the small strut spacing. With the larger strut spacing designs, the effects of varying amplitude could be offset by varying the radius of curvature and vice versa. The range of minimum radial displacements from the unstented diastolic radius observed among all designs was less than 90 microm. Evidence presented herein suggests that stent designs incorporating large axial strut spacing, blunted corners at bends, and higher amplitudes exposed smaller regions of the artery to high stresses, while maintaining a radial displacement that should be sufficient to restore adequate flow.  相似文献   

6.
Tracheobronchial stents are most commonly used to restore patency to airways stenosed by tumour growth. Currently all tracheobronchial stents are associated with complications such as stent migration, granulation tissue formation, mucous plugging and stent strut fracture. The present work develops a computational framework to evaluate tracheobronchial stent designs in vivo. Pressurised computed tomography is used to create a biomechanical lung model which takes into account the in vivo stress state, global lung deformation and local loading from pressure variation. Stent interaction with the airway is then evaluated for a number of loading conditions including normal breathing, coughing and ventilation. Results of the analysis indicate that three of the major complications associated with tracheobronchial stents can potentially be analysed with this framework, which can be readily applied to the human case. Airway deformation caused by lung motion is shown to have a significant effect on stent mechanical performance, including implications for stent migration, granulation formation and stent fracture.  相似文献   

7.
Endovascular treatment of abdominal aortic aneurysms (AAA) is a promising new alternative to the traditional surgical repair. However, the endovascular approach suffers problems such as stent graft migration, endoleaks and stent mechanism breakage. Fatigue failure is believed to be the major cause of stent graft migration and device breakage. Knowledge of the in vivo forces acting on such devices is a basic requirement for the design of a successful endovascular device. Using a Fourier series trigonometric fit of a typical pressure and flow relationship, a mathematical model, using the control volume method, was developed to predict the pulsatile drag forces acting on various bifurcated stent graft geometries. It was found that for an iliac angle of 30 degrees, a proximal diameter of 24 mm and an iliac diameter of 12 mm, the drag force varied, over the cardiac cycle, between 3.9 and 5.5 N in the axial direction. It was noted that for a specific iliac angle the drag force variation with proximal diameter approximates a quadratic fit, with an increase in proximal diameter producing an increase in drag force. The more compliant the aorta the higher the drag force. Previously published results demonstrated the axial loads (axial drag forces) required for stent graft migration for certain stents types are lower than the drag forces calculated in this study. It is believed that the results of this study can provide guidelines for the quantitative analyses of the in vivo drag forces experienced by stent grafts and could therefore be used as design criteria for such devices.  相似文献   

8.
Chen MC  Tsai HW  Chang Y  Lai WY  Mi FL  Liu CT  Wong HS  Sung HW 《Biomacromolecules》2007,8(9):2774-2780
A novel biodegradable stent, made of chitosan films cross-linked with an epoxy compound, with a shape-memory property was developed. To reduce their crystallinity, glycerol and poly(ethylene oxide) were blended in the chitosan films. The mechanical properties of the prepared stent were studied using a commercially available metallic stent as a control. After blending, the ductility of the chitosan films was improved, and the compressive strength of the stent was significantly enhanced. The metallic stent could tolerate elastic deformations of 10% before becoming irreversibly deformed, while the polymeric stent was able to withstand deformations up to 30% and still regain its original configuration. The developed stent could rapidly expand ( approximately 150 s) from its crimped (temporary) to fully expanded (permanent) states stimulated by hydration, which is advantageous considering avoiding its migration during in vivo deployment. In the preliminary animal study, the implanted stent was found to be intact, and no thrombus formation was seen in the stent-implanted vessel. This degradable stent can be an attractive alternative to metallic stents and may serve as a useful vehicle for local drug delivery.  相似文献   

9.
Balloon-expandable and self-expandable stents are the two types of coronary stents available. Basically, they differ in the modality of expansion.The present study analyses the stress state induced on the vascular wall, by the expansion of balloon- and self-expandable stents, using the finite element method. Indeed, modified mechanical stress state is in part responsible in the restenosis process. The balloon-expandable stents herein investigated are assumed to be made of stainless steel, while the self-expandable stents are made of a shape memory alloy. The effects of the severity of the coronary stenosis, the atherosclerotic plaque stiffness and the stent design are investigated. Comparing the self-expandable stent with the balloon-expandable one, the former induces fewer stresses and lower damage to the vessel, but, on the other hand, its lower stiffness induces a lower capability to restore vasal lumen and to contrast arterial elastic recoil.  相似文献   

10.
Migration of stent-grafts (SGs) after endovascular aneurysm repair of abdominal aortic aneurysms is a serious complication that may require secondary intervention. Experimental, analytical, and computational studies have been carried out in the past to understand the factors responsible for migration. In an experimental setting, it can be very challenging to correctly capture and understand the interaction between a SG and an artery. Quantities such as coefficient of friction (COF) and contact pressures that characterize this interaction are difficult to measure using an experimental approach. This behavior can be investigated with good accuracy using finite element modeling. Although finite element models are able to incorporate frictional behavior of SGs, the absence of reliable values of coefficient of friction make these simulations unreliable. The aim of this paper is to demonstrate a method for determining the coefficients of friction of a self-expanding endovascular stent-graft. The methodology is demonstrated by considering three commercially available self-expanding SGs, labeled as A, B, and C. The SGs were compressed, expanded, and pulled out of polymeric cylinders of varying diameters and the pullout force was recorded in each case. The SG geometries were recreated using computer-aided design modeling and the entire experiment was simulated in ABAQUS 6.8/STANDARD. An optimization procedure was carried out for each SG oversize configuration to determine the COF that generated a frictional force corresponding to that measured in the experiment. The experimental pullout force and analytically determined COF for SGs A, B, and C were in the range of 6-9 N, 3-12 N, and 3-9 N and 0.08-0.16, 0.22-0.46, and 0.012-0.018, respectively. The computational model predicted COFs in the range of 0.00025-0.0055, 0.025-0.07, and 0.00025-0.006 for SGs A, B, and C, respectively. Our results suggest that for SGs A and B, which are exoskeleton based devices, the pullout forces increase upto a particular oversize beyond which they plateau, while pullout forces showed a continuous increase with oversize for SG C, which is an endoskeleton based device. The COF decreased with oversizing for both types of SGs. The proposed methodology will be useful for determining the COF between self-expanding stent-grafts from pullout tests on human arterial tissue.  相似文献   

11.
Vascular stents influence the post-procedural hemodynamic environment in ways that may encourage restenosis. Understanding how stents influence flow patterns may lead to more hemodynamically compatible stent designs that alleviate thrombus formation and promote endothelialization. This study employed time-resolved Digital Particle Image Velocimetry (DPIV) to compare the hemodynamic performance of two stents in a compliant vessel. The first stent was a rigid insert, representing an extreme compliance mismatch. The second stent was a commercially available nitinol stent with some flexural characteristics. DPIV showed that compliance mismatch promotes the formation of a ring vortex in the vicinity of the stent. Larger compliance mismatch increased both the size and residence time of the ring vortex, and introduced in-flow stagnation points. These results provide detailed quantitative evidence of the hemodynamic effect of stent mechanical properties. Better understanding of these characteristics will provide valuable information for modifying stent design in order to promote long-term patency.  相似文献   

12.
目的:热拉伸会改变纤维的结构和性能,进而影响由纤维编织而成的支架的性能。本文考察了PGLA纤维的拉伸倍数对编织支架在SD大鼠皮下的体内降解行为的影响。方法:制备了基于生物可降解高分子材料聚乙交酯丙交酯(PGLA,GA/LA摩尔比=90/10)的完全生物可降解编织支架,通过测试支架在大鼠体内降解过程中的失重、表面形貌、热性能、径向压缩力等变化情况,考察了纤维的不同的拉伸倍数对支架体内降解过程的影响。结果:用拉伸倍数为5的PGLA纤维编织的支架在植入SD大鼠皮下后降解最慢,重量、吸水率、结晶度、化学成分和径向压缩力的变化最慢,植入体内10天后能够保持完整的支架形态。结论:纤维的拉伸倍数会影响由纤维编织成的支架的热性能和力学性能的变化,本研究结果表明这种新的手工编织的支架具有短暂支撑管腔狭窄的潜在应用,为支架的材料选择和制备方法提供了参考,为在体内起到短暂支撑作用的支架的深入研究提供了实验基础。  相似文献   

13.
The mechanical function of a stent deployed in a damaged artery is to provide a metallic tubular mesh structure. The purpose of this study was to determine the exact mechanical characteristics of stents. In order to achieve this, we have used finite-element analysis to model two different type of stents: tubular stents (TS) and coil stents (CS). The two stents chosen for this modeling present the most extreme mechanical characteristics of the respective types. Seven mechanical properties were studied by mathematical modeling with determination of: (1) stent deployment pressure, (2) the intrinsic elastic recoil of the material used, (3) the resistance of the stent to external compressive forces, (4) the stent foreshortening, (5) the stent coverage area, (6) the stent flexibility, and (7) the stress maps. The pressure required for deployment of CS was significantly lower than that required for TS, over 2.8 times greater pressure was required for the tubular model. The elastic recoil of TS is higher than CS (5.4% and 2.6%, respectively). TS could be deformed by 10% at compressive pressures of between 0.7 and 1.3 atm whereas CS was only deformed at 0.2 and 0.7 atm. The degree of shortening observed increases with deployment diameter for TS. CS lengthen during deployment. The metal coverage area is two times greater for TS than for CS. The ratio between the stiffness of TS and that of CS varies from 2060 to 2858 depending on the direction in which the force is applied. TS are very rigid and CS are significantly more flexible. Stress mapping shows stress to be localized at link nodes. This series of finite-element analyses illustrates and quantifies the main mechanical characteristics of two different commonly used stents. In interventional cardiology, we need to understand their mechanisms of implantation and action.  相似文献   

14.
Due to the recent increase in the number of stent insertion procedures, the number of studies to evaluate the mechanical behaviors of stents, such as the stress and deformation states, using finite element analysis is also increasing. However, it is still not easy to design stents that are uniformly expanded and show enough radial strength and flexibility. Therefore, in this study, the Taguchi method and finite element analysis were used to determine a set of optimal design variables for unit patterns of stents, and a new design approach was developed to realize uniform expansion, enough radial strength and good flexibility. The stent designed using the new design approach was verified by experiments.  相似文献   

15.
Coronary artery stenosis is commonly treated by stent placement via percutaneous intervention, at times requiring multiple stents that may overlap. Stent overlap is associated with increased risk of adverse clinical outcome. While changes in local blood flow are suspected to play a role therein, hemodynamics in arteries with overlapping stents remain poorly understood. In this study we analyzed six cases of partially overlapping stents, placed ex vivo in porcine left coronary arteries and compared them to five cases with two non-overlapping stents. The stented vessel geometries were obtained by micro-computed tomography of corrosion casts. Flow and shear stress distribution were calculated using computational fluid dynamics. We observed a significant increase in the relative area exposed to low wall shear stress (WSS<0.5 Pa) in the overlapping stent segments compared both to areas without overlap in the same samples, as well as to non-overlapping stents. We further observed that the configuration of the overlapping stent struts relative to each other influenced the size of the low WSS area: positioning of the struts in the same axial location led to larger areas of low WSS compared to alternating struts. Our results indicate that the overlap geometry is by itself sufficient to cause unfavorable flow conditions that may worsen clinical outcome. While stent overlap cannot always be avoided, improved deployment strategies or stent designs could reduce the low WSS burden.  相似文献   

16.
Finite element analysis of covered microstents   总被引:6,自引:0,他引:6  
Currently available neuroendovascular devices are inadequate for effective treatment of many wide-necked or fusiform intracranial aneurysms and intracranial carotid-cavernous fistulae (CCF). Placing a covered microstent across the intracranial aneurysm neck and CCF rent could restore normal vessel morphology by preventing blood flow into the aneurysm lumen or CCF rent. To fabricate covered microstents, our research group has developed highly flexible ultra thin (approximately 150 microm) silicone coverings and elastomerically captured them onto commercially available metal stents without stitching. Preliminary in vivo studies were conducted by placing these covered microstents in the common carotid artery of rabbits. The feasibility of using covered stents was demonstrated. However, the cover affected the deployment pressure and the stents failed occasionally during deployment due to tearing of the cover. Appropriate modeling of covered stents will assist in designing suitable coverings, and help to reduce the failure rate of covered microstents. The purpose of this study is to use the finite element method to determine the mechanical properties of the covered microstent and investigate the effects of the covering on the mechanical behavior of the covered microstent. Variations in the mechanical properties of the covered microstent such as deployment pressure, elastic recoil and longitudinal shortening due to change in thickness and material properties of the cover have been investigated. This work is also important for custom design of covered microstents such as adding cutout holes to save adjacent perforating arteries.  相似文献   

17.
This study established a numerical model to investigate the degradation mechanism and behavior of bioabsorbable cardiovascular stents. In order to generate the constitutive degradation material model, the degradation characteristics were characterized with user-defined field variables. The radial strength bench test and analysis were used to verify the material model. In order to validate the numerical degradation model, in vitro bench test and in vivo implantation studies were conducted under physiological and normal conditions. The results showed that six months of degradation had not influenced the thermodynamic properties and mechanical integrity of the stent while the molecular weight of the stents implanted in the in vivo and in vitro models had decreased to 61.8% and 68.5% respectively after six month''s implantation. It was also found that the degradation rate, critical locations and changes in diameter of the stents in the numerical model were in good consistency in both in vivo and in vitro studies. It implies that the numerical degradation model could provide useful physical insights and prediction of the stent degradation behavior and evaluate, to some extent, the in-vivo performance of the stent. This model could eventually be used for design and optimization of bioabsorbable stent.  相似文献   

18.
Layer-by-layer self-assembly of two polysaccharides, hyaluronan (HA) and chitosan (CH), was employed to engineer bioactive coatings for endovascular stents. A polyethyleneimine (PEI) primer layer was adsorbed on the metallic surface to initiate the sequential adsorption of the weak polyelectrolytes. The multilayer growth was monitored using a radiolabeled HA and shown to be linear as a function of the number of layers. The chemical structure, interfacial properties, and morphology of the self-assembled multilayer were investigated by time-of-flight secondary ions mass spectrometry (ToF-SIMS), contact angle measurements, and atomic force microscopy (AFM), respectively. Multilayer-coated NiTi disks presented enhanced antifouling properties, compared to unmodified NiTi disks, as demonstrated by a decrease of platelet adhesion in an in vitro assay (38% reduction; p = 0.036). An ex vivo assay on a porcine model indicated that the coating did not prevent fouling by neutrophils. To assess whether the multilayers may be exploited as in situ drug delivery systems, the nitric-oxide-donor sodium nitroprusside (SNP) was incorporated within the multilayer. SNP-doped multilayers were shown to further reduce platelet adhesion, compared to standard multilayers (40% reduction). When NiTi wires coated with a multilayer containing a fluorescently labeled HA were placed in intimate contact with the vascular wall, the polysaccharide translocated on the porcine aortic samples, as shown by confocal microscopy observation of a treated artery. The enhanced thromboresistance of the self-assembled multilayer together with the antiinflammatory and wound healing properties of hyaluronan and chitosan are expected to reduce the neointimal hyperplasia associated with stent implantation.  相似文献   

19.
The expanding nasal septal cartilage is believed to create a force that powers midfacial growth. In addition, the nasal septum is postulated to act as a mechanical strut that prevents the structural collapse of the face under masticatory loads. Both roles imply that the septum is subject to complex biomechanical loads during growth and mastication. The purpose of this study was to measure the mechanical properties of the nasal septum to determine (1) whether the cartilage is mechanically capable of playing an active role in midfacial growth and in maintaining facial structural integrity and (2) if regional variation in mechanical properties is present that could support any of the postulated loading regimens. Porcine septal samples were loaded along the horizontal or vertical axes in compression and tension, using different loading rates that approximate the in vivo situation. Samples were loaded in random order to predefined strain points (2–10%) and strain was held for 30 or 120 seconds while relaxation stress was measured. Subsequently, samples were loaded until failure. Stiffness, relaxation stress and ultimate stress and strain were recorded. Results showed that the septum was stiffer, stronger and displayed a greater drop in relaxation stress in compression compared to tension. Under compression, the septum displayed non-linear behavior with greater stiffness and stress relaxation under faster loading rates and higher strain levels. Under tension, stiffness was not affected by strain level. Although regional variation was present, it did not strongly support any of the suggested loading patterns. Overall, results suggest that the septum might be mechanically capable of playing an active role in midfacial growth as evidenced by increased compressive residual stress with decreased loading rates. However, the low stiffness of the septum compared to surrounding bone does not support a strut role. The relatively low stiffness combined with high stress relaxation under fast loading rates suggests that the nasal septum is a stress dampener, helping to absorb and dissipate loads generated during mastication.  相似文献   

20.
This theoretical/numerical study aims at assessing the haemodynamic changes induced by endovascular stenting. By using the classical one-dimensional linear pressure waves theory in elastic vessels, we first show that the modulus of the reflection coefficient induced by an endovascular prosthesis is most likely small since it is proportional to the stent-to-wavelength ratio. As a direct consequence, the wall motion of the elastic (stented) artery can be prescribed a priori and the coupled fluid-structure problem does not have to be solved for assessing the haemodynamic changes due to stenting. Several 2D axisymetric calculations are performed to solve the unsteady incompressible Navier-Stokes equations on moving meshes for different types of (stented) arteries. The numerical results suggest that endovascular stenting increases the systo-diastolic variations of the wall shear stress (by 35% at the middle of the stent, by almost 50% in the proximal transition region). Additional calculations show that over-dilated stents produce less haemodynamic perturbations. Indeed, the increase of the amplitude of the wall shear stress variations over the cardiac cycle is only 10% when the stent radius is equal to the radius of the elastic artery at systole (instead of being equal to the mean artery radius).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号