首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soft tissue artefact (STA), i.e. the motion of the skin, fat and muscles gliding on the underlying bone, may lead to a marker position error reaching up to 8.7 cm for the particular case of the scapula. Multibody kinematics optimisation (MKO) is one of the most efficient approaches used to reduce STA. It consists in minimising the distance between the positions of experimental markers on a subject skin and the simulated positions of the same markers embedded on a kinematic model. However, the efficiency of MKO directly relies on the chosen kinematic model. This paper proposes an overview of the different upper limb models available in the literature and a discussion about their applicability to MKO.The advantages of each joint model with respect to its biofidelity to functional anatomy are detailed both for the shoulder and the forearm areas. Models capabilities of personalisation and of adaptation to pathological cases are also discussed. Concerning model efficiency in terms of STA reduction in MKO algorithms, a lack of quantitative assessment in the literature is noted. In priority, future studies should concern the evaluation and quantification of STA reduction depending on upper limb joint constraints.  相似文献   

2.
Elbow joint stiffness is critical to positioning the hand. Abnormal elbow joint stiffness may affect a person's ability to participate in activities of daily living. In this work, elbow joint stiffness was measured in ten healthy young adults with a device adapted from one previously used to measure stiffness in other joints. Measurements of elbow stiffness involved applying a constant-velocity rotational movement to the elbow and measuring the resultant displacement, torque, and acceleration. Elbow stiffness was then computed using a previously-established model for joint stiffness. Measurements were made at two unique elbow joint angles, two speeds, and two forearm muscle contraction levels. The results indicate that the elbow joint stiffness is significantly affected by both rotational speed and forearm muscle contraction level.  相似文献   

3.
Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior.  相似文献   

4.
Variations in handgrip force influences shoulder muscle activity, and this effect is dependent upon upper limb position. Previous work suggests that neural coupling between proximal and distal muscles with changes in joint position is a possible mechanism but these studies tend to use artificially constrained postures that do not reflect activities of daily living. The purpose of this study was to examine the effects of upper limb posture on corticospinal excitability to the forearm muscles during workplace relevant arm positions. Motor evoked potentials (MEPs) were elicited in four forearm muscles via transcranial magnetic stimulation at six arm positions (45°, 90° and 120° of humeral elevation in both the flexion and abduction planes). MEPs were delivered as stimulus–response curves (SRCs) at rest and at constant intensity during two gripping tasks. Boltzmann plateau levels were smaller for the flexor carpi radialis in flexion at 45° versus 90° (p = 0.0008). Extensor carpi radialis had a greater plateau during flexion than abduction (p = 0.0042). Corticospinal excitability to the forearm muscles were influenced by upper limb posture during both the resting and gripping conditions. This provides further evidence that upper limb movements are controlled as a whole rather than segmentally and is relevant for workplace design considerations.  相似文献   

5.
Estimating the main axis of rotation (AoR) of a human joint represents an important issue in biomechanics. This study compared three formal methods used to estimate functional AoR, namely a cylindrical fitting method, a mean helical axis transformation, and a symmetrical axis approach. These methods were tested on 106 subjects undergoing navigated total knee arthroplasty. AoR orientation in 3D and in the frontal and coronal planes provided by each method was compared to the transepicondylar axis direction. Although all the methods resulted effective, significant differences were identified among them, relatively to the orientation in 3D and in the frontal plane projection. This was probably due to the presence of secondary rotations during the first degrees of knee flexion.  相似文献   

6.
A novel technique based on evolutionary optimization is proposed here to compute the average rotation centres (RCs) of ball joints linked into kinematic chains using 3D trajectories of the markers attached to the external surface of the corresponding articulated structures. The chain is hierarchically solved by iteratively minimizing the variance of the marker distances from the actual RC through an evolutional strategy method (ESM) from proximal to distal joints. In particular, the technique is compared to the non-rigid sphere-fitting method, recently proposed in literature and implemented through a closed-form solution (CFS), in conditions of random and systematic noise superimposed to the marker coordinates. Results from simulated motions showed that, in case of small range of motion (5°, 10°) the performance of CFS is really unreliable whereas ESM provided satisfactory accuracy. Error propagation along the kinematic chain was found to be negligible. Also in the case of systematic errors, ESM provides an accuracy that is sensibly better than that of the CFS. As a case study, ESM was applied to the in vivo computation of the RCs of the vertebrae in the lower spine region using a specific marker protocol. A set of spine movements by a normal adult male, recorded by an optoelectronic motion capture system, were processed with the developed method. The variability of the estimated average RCs was small (few millimeters) in agreement with the literature data from cadaveric studies and X-ray imaging.  相似文献   

7.
8.
Comparison of methods for estimating the spread of a non-indigenous species   总被引:1,自引:0,他引:1  
Aim  To compare different quantitative approaches for estimating rates of spread in the exotic species gypsy moth, Lymantria dispar L., using county-level presence/absence data and spatially extensive trapping grids.
Location  USA
Methods  We used county-level presence/absence records of the gypsy moth's distribution in the USA, which are available beginning in 1900, and extensive grids of pheromone-baited traps, which are available in selected areas beginning in 1981. We compared a regression approach and a boundary displacement approach for estimating gypsy moth spread based on these sources of data.
Results  We observed relative congruence between methods and data sources in estimating overall rates of gypsy moth spread through time, and among regions.
Main conclusions  The ability to estimate spread in exotic invasive species is a primary concern in management programmes and one for which there is a lack of information on the reliability of methods. Also, in most invading species, there is generally a lack of data to explore methods of estimating spread. Extensive data available on gypsy moth in the USA allowed for such a comparison. We show that, even with spatially crude records of presence/absence, overall rates of spread do not differ substantially from estimates obtained from the more costly deployment of extensive trapping grids. Moreover, these methods can also be applied to the general study of species distributional changes, such as range expansion or retraction, in response to climate change or other environmental effects.  相似文献   

9.
The accuracy and reliability of a sonomicrometry system (Sonometrics Corporation, Ontario, Canada) was evaluated for its potential use in measuring 3-D in vivo joint kinematics. Distances between different sets of piezoelectric crystals were measured through a salt solution using ultrasound technology. We evaluated crystal-to-crystal distance under simulated in vivo conditions of changing crystal orientation and displacement magnitude. Crystal-to-crystal distance was also evaluated under changing solution temperature, since the crystals may be used at different temperatures. The 2 mm round and peg crystals were accurate to within 0.5mm for 0 through 180 degrees rotations, but the 2mm round suture loop crystals were only reliable at 0 degrees rotation. The speed of sound through a salt solution (and hence the distance between crystals) versus temperature was fit using a second order polynomial, C=1421.1+3.9808T-3.09x10(-2)T2, with an R2 value of 0.9998. The translational error was less than 0.072 mm for crystal displacements of 0.012, 0.2, 1.0, and 5.0 mm. The system was also accurate under dynamic conditions with translational errors that were less than 0.045 mm under 0.65 Hz motion. These results suggest that the Sonometrics crystals possess attributes (translational accuracy and rotational independence) that could provide the basis for a system capable of measuring joint kinematics.  相似文献   

10.
The standard method used to calculate the ankle joint power contains deficiencies when applied to dynamic elastic response prosthetic feet. The standard model, using rotational power and inverse dynamics, assumes a fixed joint center and cannot account for energy storage, dissipation, and return. This study compared the standard method with new analysis models. First, assumptions of inverse dynamics were avoided by directly measuring ankle forces and moments. Second, the ankle center of rotation was corrected by including translational power terms. Analysis with below-knee amputees revealed that the conventional method overestimates ankle forces and moments as well as prosthesis energy storage and return. Results for efficiency of energy return were varied. Large differences between models indicate the standard method may have serious inadequacies in the analysis of certain prosthetic feet. This research is the first application of the new models to prosthetic feet, and suggests the need for additional research in gait analysis with energy-storing prostheses.  相似文献   

11.
目的:探讨和比较截肢术和微波射频保肢术治疗胫骨远端骨肉瘤的临床效果和安全性。方法:选择2000年-2013年我院收治的明确诊断为胫骨远端骨肉瘤的患者79例,其中27例给予截肢治疗(截肢组),52例给予微波射频保肢和重建治疗(保守治疗组)。评价和比较两组患者的生存情况、局部复发情况、MSTS关节功能评分及并发症的发生情况。结果:两组患者的生存曲线、局部复发率和并发症的发生率比较均无统计学差异(P0.05),但保守治疗组的MSTS关节功能评分显著高于截肢组,差异有统计学意义(P0.05)。结论:微波射频保肢术治疗胫骨远端骨肉瘤患者不会降低患者的生存几率,且在改善患者的关节功能方面有明显的优势。  相似文献   

12.
Three frequently used methods for estimating the synonymous and nonsynonymous substitution rates (Ks and Ka) were evaluated and compared for their accuracies; these methods are denoted by LWL85, LPB93, and GY94, respectively. For this purpose, we used a codon-evolution model to obtain the expected Ka and Ks values for the above three methods and compared the values with those obtained by the three methods. We also proposed some modifications of LWL85 and LPB93 to increase their accuracies. Our computer simulations under the codon-evolution model showed that for sequences < or =300 codons, the performance of GY94 may not be reliable. For longer sequences, GY94 is more accurate for estimating the Ka/Ks ratio than the modified LPB93 and LWL85 in the majority of the cases studied. This is particularly so when k > or = 3, which is the transition/transversion (mutation) rate ratio. However, when k is approximately 2 and when the sequence divergence is relatively large, the modified LWL85 performed better than GY94 and the modified LPB93. The inferiority of LPB93 to LWL85 is surprising because LPB93 was intended to improve LWL85. Also, it has been thought that the codon-based method of GY94 is better than the heuristic method of LWL85, but our simulation results showed that in many cases, the opposite was true, even though our simulation was based on the codon-evolution model.  相似文献   

13.
We compared visual survey and seining methods for estimating abundance of endangered Okaloosa darters, Etheostoma okaloosae, in 12 replicate stream reaches during August 2001. For each 20-m stream reach, two divers systematically located and marked the position of darters and then a second crew of three to five people came through with a small-mesh seine and exhaustively sampled the same area. Visual surveys required little extra time to complete. Visual counts (24.2 ± 12.0; mean ± one SD) considerably exceeded seine captures (7.4 ± 4.8), and counts from the two methods were uncorrelated. Visual surveys, but not seines, detected the presence of Okaloosa darters at one site with low population densities. In 2003, we performed a depletion removal study in 10 replicate stream reaches to assess the accuracy of the visual survey method. Visual surveys detected 59% of Okaloosa darters present, and visual counts and removal estimates were positively correlated. Taken together, our comparisons indicate that visual surveys more accurately and precisely estimate abundance of Okaloosa darters than seining and more reliably detect presence at low population densities. We recommend evaluation of visual survey methods when designing programs to monitor abundance of benthic fishes in clear streams, especially for threatened and endangered species that may be sensitive to handling and habitat disturbance.  相似文献   

14.
Based on inversion of gap fraction data (Poisson model of foliage distribution), three optical methods using the Demon, the Plant Canopy Analyzer LAI-2000 (PCA) and hemispherical photographs, have been compared to estimate canopy openness (CO) and leaf area index (LAI) in a mature, neutrophil, oak-beech-hornbeam forest on mull in eastern France. Mean CO over the whole hemisphere was similar for PCA (7.9%) and hemispherical photographs (8.0%). The needle method, a vertical point quadrat method, applied to the litter after leaf fall has served as a reference to LAI (4.7). The Demon provided the estimate (4.9) closest to the reference value. The PCA and hemispherical photographs underestimate mean LAI by 30% (3.3) and 19% (3.8), respectively, if used without correction. Based on fish-eye sensors, LAI estimates can be improved if 3 annuli (4.2) or 2 annuli (4.5) are used in place of 5 with the PCA, or by means of logarithmic averaging of gap fractions over azimuth at an appropriate angular resolution (180 degrees: 4.6, or 120 degrees: 5.2) with hemispherical photographs. Not taking into account azimuthal variation in gap fraction distribution generates a more important error than the error induced by light scattering near horizon. In order to improve LAI estimates, an original iterative procedure is presented, which allows the simultaneous calculation of LAI over a broad range of angular azimuthal resolutions.  相似文献   

15.
A three-dimensional musculoskeletal model of the lower limb was developed to study the influence of biarticular muscles on the muscle force distribution and joint loads during walking. A complete walking cycle was recorded for 9 healthy subjects using the standard optoelectronic motion tracking system. Ground contact forces were also measured using a 6-axes force plate. Inverse dynamics was used to compute net joint reactions (forces and torques) in the lower limb. A static optimization method was then used to estimate muscle forces. Two different approaches were used: in the first one named global method, the biarticular muscles exerted a torque on the two joints they spanned at the same time, and in the second one called joint-by-joint method, these biarticular muscles were divided into two mono-articular muscles with geometrical (insertion, origin, via points) and physiological properties remained unchanged. The hip joint load during the gait cycle was then calculated taking into account the effect of muscle contractions. The two approaches resulted in different muscle force repartition: the biarticular muscles were favoured over any set of single-joint muscles with the same physiological function when using the global method. While the two approaches yielded only little difference in the resultant hip load, the examination of muscle power showed that biarticular muscles could produce positive work at one joint and negative work at the other, transferring energy between body segments and thus decreasing the metabolic cost of movement.  相似文献   

16.
17.
Abstract

Background: Closely approximating the functional flexion-extension (FE) axis of the tibiofemoral joint in 3D models of the femur is important when computing joint motions which are physiologic. The objectives were to 1) develop methods to approximate the functional FE axis based on fitting circles, a tapered cylinder, and spheres to the posterior condyles, 2) determine the repeatability and reproducibility of each method, and 3) determine limits of agreement between pairs of axes.

Methods: For each method, the respective axis was determined in forty 3D bone models of the distal femur. Varus-valgus angles and internal-external axial angles were computed relative to standard planes.

Results: Repeatability and reproducibility were comparable for the tapered cylinder-based and sphere-based methods and better than that for the circle-based method. Limits of agreement were tightest when comparing the sphere-based and tapered cylinder-based axes. However, limits of agreement for the internal-external axial angle were wide at +3.6° to ?3.9° whereas limits of agreement were tighter at +1.4° to ?0.7° for the varus-valgus angle.

Conclusion: The tapered cylinder-based and sphere-based methods offer advantages of better repeatability and reproducibility over the circle-based method. However, the sphere-based and tapered cylinder-based axes are not interchangeable owing to wide limits of agreement for the internal-external axial angle. The tapered cylinder-based axis is preferred intuitively over the sphere-based axis because the spheres require fitting in both the sagittal and coronal planes whereas the tapered cylinder requires fitting in the sagittal plane only which is the plane of motion in flexion-extension.  相似文献   

18.
Methods for measuring prevalence of Neozygites floridana in a Tetranychus urticae population collected from strawberries were developed and compared. T. urticae were extracted from leaves using a soapy water solution (0.5 ml washing detergent : 8 L water) and then placed into 80% alcohol for use in Methods 1 and 2. Method 1: N. floridana-sporulating T. urticae cadavers were observed and quantified under a compound microscope (40-80x). Method 2: Adult females were mounted in lactophenol cotton blue and observed for the presence or absence of N. floridana hyphal bodies under a microscope (200-400x). Method 3: Live T. urticae females were incubated at 25 degrees C and 75% RH and observed for mortality and N. floridana infection under a compound microscope (6.4-40x). Method 1 was the most time-efficient method and it also allows processing of samples as time permits. Method 2 quantified significantly higher fungal prevalence than Methods 1 and 3, but Method 2 is not considered to be reliable because hyphal bodies are difficult to detect. No significant differences were found between Methods 1 and 3.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号