首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frictionless specimen/platen contact in unconfined compression tests has traditionally been assumed in determining material properties of soft tissues via an analytical solution. In the present study, the suitability of this assumption was examined using a finite element method. The effect of the specimen/platen friction on the mechanical characteristics of soft tissues in unconfined compression was analyzed based on the published experimental data of three different materials (pigskin, pig brain, and human calcaneal fat). The soft tissues were considered to be nonlinear and viscoelastic; the friction coefficient at the contact interface between the specimens and platens was assumed to vary from 0.0 to 0.5. Our numerical simulations show that the tissue specimens are, due to the specimen/platen friction, not compressed in a uniform stress/strain state, as has been traditionally assumed in analytical analysis. The stress of the specimens obtained with the specimen/platen friction can be greater than those with the frictionless specimen/platen contact by more than 50%, even in well-controlled test conditions.  相似文献   

2.
Previous studies have shown that stress relaxation behavior of calf ulnar growth plate and chondroepiphysis cartilage can be described by a linear transverse isotropic biphasic model. The model provides a good fit to the observed unconfined compression transients when the out-of-plane Poisson's ratio is set to zero. This assumption is based on the observation that the equilibrium stress in the axial direction (deltaz) is the same in confined and unconfined compression, which implies that the radial stress deltar = 0 in confined compression. In our study, we further investigated the ability of the transversely isotropic model to describe confined and unconfined stress relaxation behavior of calf cartilage. A series of confined and unconfined stress relaxation tests were performed on calf articular cartilage (4.5 mm diameter, approximately 3.3 mm height) in a displacement-controlled compression apparatus capable of measuring delta(z) and delta(r). In equilibrium, delta(r) > 0 and delta(z) in confined compression was greater than in unconfined compression. Transient data at each strain were fitted by the linear transversely isotropic biphasic model and the material parameters were estimated. Although the model could provide good fits to the unconfined transients, the estimated parameters overpredicted the measured delta(r). Conversely, if the model was constrained to match equilibrium delta(r), the fits were poor. These findings suggest that the linear transversely isotropic biphasic model could not simultaneously describe the observed stress relaxation and equilibrium behavior of calf cartilage.  相似文献   

3.
Li LP  Herzog W 《Biorheology》2004,41(3-4):181-194
The relative importance of fluid-dependent and fluid-independent transient mechanical behavior in articular cartilage was examined for tensile and unconfined compression testing using a fibril reinforced model. The collagen matrix of articular cartilage was modeled as viscoelastic using a quasi-linear viscoelastic formulation with strain-dependent elastic modulus, while the proteoglycan matrix was considered as linearly elastic. The collagen viscoelastic properties were obtained by fitting experimental data from a tensile test. These properties were used to investigate unconfined compression testing, and the sensitivity of the properties was also explored. It was predicted that the stress relaxation observed in tensile tests was not caused by fluid pressurization at the macroscopic level. A multi-step tensile stress relaxation test could be approximated using a hereditary integral in which the elastic fibrillar modulus was taken to be a linear function of the fibrillar strain. Applying the same formulation to the radial fibers in unconfined compression, stress relaxation could not be simulated if fluid pressurization were absent. Collagen viscoelasticity was found to slightly weaken fluid pressurization in unconfined compression, and this effect was relatively more significant at moderate strain rates. Therefore, collagen viscoelasticity appears to play an import role in articular cartilage in tensile testing, while fluid pressurization dominates the transient mechanical behavior in compression. Collagen viscoelasticity plays a minor role in the mechanical response of cartilage in unconfined compression if significant fluid flow is present.  相似文献   

4.
Constitutive models facilitate investigation into load bearing mechanisms of biological tissues and may aid attempts to engineer tissue replacements. In soft tissue models, a commonly made assumption is that collagen fibers can only bear tensile loads. Previous computational studies have demonstrated that radially aligned fibers stiffen a material in unconfined compression most by limiting lateral expansion while vertically aligned fibers buckle under the compressive loads. In this short communication, we show that in conjunction with swelling, these intuitive statements can be violated at small strains. Under such conditions, a tissue with fibers aligned parallel to the direction of load initially provides the greatest resistance to compression. The results are further put into the context of a Benninghoff architecture for articular cartilage. The predictions of this computational study demonstrate the effects of varying fiber orientations and an initial tare strain on the apparent material parameters obtained from unconfined compression tests of charged tissues.  相似文献   

5.
Inverse analysis of constitutive models: biological soft tissues   总被引:1,自引:0,他引:1  
The paper describes a procedure for estimating the material parameters of biological soft tissue by fitting model prediction to experimental load-deformation data. This procedure minimizes the error between data and theoretical model prediction through systematically adjusting the parameters in the latter. The procedure uses commercially available software and is not specific to any particular model; nevertheless, for illustration purposes, we employ a six parameter fibril-reinforced poroelastic cartilage model. We are able to estimate any and all of these parameters by the procedure. Convergence of the parameters and convergence of the arbitrary initial stress relaxation to the data was demonstrated in all cases. Though we illustrate the optimization procedure here for unconfined compression only, it can be adapted easily to other experimental configurations such as confined compression, indentation and tensile test. Furthermore, the procedure can be applied in other areas of biomechanics where material parameters need to be extracted from experimental data.  相似文献   

6.
A biphasic-CLE-QLV model proposed in our recent study [2001, J. Biomech. Eng., 123, pp. 410-417] extended the biphasic theory of Mow et al. [1980, J. Biomech. Eng., 102, pp. 73-84] to include both tension-compression nonlinearity and intrinsic viscoelasticity of the cartilage solid matrix by incorporating it with the conewise linear elasticity (CLE) model [1995, J. Elasticity, 37, pp. 1-38] and the quasi-linear viscoelasticity (QLV) model [Biomechanics: Its foundations and objectives, Prentice Hall, Englewood Cliffs, 1972]. This model demonstrates that a simultaneous prediction of compression and tension experiments of articular cartilage, under stress-relaxation and dynamic loading, can be achieved when properly taking into account both flow-dependent and flow-independent viscoelastic effects, as well as tension-compression nonlinearity. The objective of this study is to directly test this biphasic-CLE-QLV model against experimental data from unconfined compression stress-relaxation tests at slow and fast strain rates as well as dynamic loading. Twelve full-thickness cartilage cylindrical plugs were harvested from six bovine glenohumeral joints and multiple confined and unconfined compression stress-relaxation tests were performed on each specimen. The material properties of specimens were determined by curve-fitting the experimental results from the confined and unconfined compression stress relaxation tests. The findings of this study demonstrate that the biphasic-CLE-QLV model is able to describe the strain-rate-dependent mechanical behaviors of articular cartilage in unconfined compression as attested by good agreements between experimental and theoretical curvefits (r2 = 0.966 +/- 0.032 for testing at slow strain rate; r2 = 0.998 +/- 0.002 for testing at fast strain rate) and predictions of the dynamic response (r2 = 0.91 +/- 0.06). This experimental study also provides supporting evidence for the hypothesis that both tension-compression nonlinearity and intrinsic viscoelasticity of the solid matrix of cartilage are necessary for modeling the transient and equilibrium responses of this tissue in tension and compression. Furthermore, the biphasic-CLE-QLV model can produce better predictions of the dynamic modulus of cartilage in unconfined dynamic compression than the biphasic-CLE and biphasic poroviscoelastic models, indicating that intrinsic viscoelasticity and tension-compression nonlinearity of articular cartilage may play important roles in the load-support mechanism of cartilage under physiologic loading.  相似文献   

7.
We describe a modeling methodology intended as a preliminary step in the identification of appropriate constitutive frameworks for the time-dependent response of biological tissues. The modeling approach comprises a customizable rheological network of viscous and elastic elements governed by user-defined 1D constitutive relationships. The model parameters are identified by iterative nonlinear optimization, minimizing the error between experimental and model-predicted structural (load-displacement) tissue response under a specific mode of deformation. We demonstrate the use of this methodology by determining the minimal rheological arrangement, constitutive relationships, and model parameters for the structural response of various soft tissues, including ex vivo perfused porcine liver in indentation, ex vivo porcine brain cortical tissue in indentation, and ex vivo human cervical tissue in unconfined compression. Our results indicate that the identified rheological configurations provide good agreement with experimental data, including multiple constant strain rate load/unload tests and stress relaxation tests. Our experience suggests that the described modeling framework is an efficient tool for exploring a wide array of constitutive relationships and rheological arrangements, which can subsequently serve as a basis for 3D constitutive model development and finite-element implementations. The proposed approach can also be employed as a self-contained tool to obtain simplified 1D phenomenological models of the structural response of biological tissue to single-axis manipulations for applications in haptic technologies.  相似文献   

8.
Cartilage exhibits nonlinear viscoelastic behaviour. Various models have been proposed to explain cartilage stress relaxation, but it is unclear whether explicit modelling of fluid flow in unconfined compression is needed. This study compared Fung's quasi-linear viscoelastic (QLV) model with a stretched-exponential model of cartilage stress relaxation and examined each of these models both alone and in combination with a fluid-flow model in unconfined compression. Cartilage explants were harvested from bovine calf patellofemoral joints and equilibrated in tissue culture for 5 days before stress-relaxation testing in unconfined compression at 5% nominal strain. The stretched exponential models fit as well as the QLV models. Furthermore, the average stretched exponential relaxation time determined by this model lies within the range of experimentally measured relaxation times for extracted proteoglycan aggregates, consistent with the hypothesis that the stretched exponential model represents polymeric mechanisms of cartilage viscoelasticity.  相似文献   

9.
A finite element analysis is used to study a previously unresolved issue of the effects of platen-specimen friction on the response of the unconfined compression test; effects of platen permeability are also determined. The finite element formulation is based on the linear KLM biphasic model for articular cartilage and other hydrated soft tissues. A Galerkin weighted residual method is applied to both the solid phase and the fluid phase, and the continuity equation for the intrinsically incompressible binary mixture is introduced via a penalty method. The solid phase displacements and fluid phase velocities are interpolated for each element in terms of unknown nodal values, producing a system of first order differential equations which are solved using a standard numerical finite difference technique. An axisymmetric element of quadrilateral cross-section is developed and applied to the mechanical test problem of a cylindrical specimen of soft tissue in unconfined compression. These studies show that interfacial friction plays a major role in the unconfined compression response of articular cartilage specimens with small thickness to diameter ratios.  相似文献   

10.
Using the biphasic theory for hydrated soft tissues (Mow et al., 1980) and a transversely isotropic elastic model for the solid matrix, an analytical solution is presented for the unconfined compression of cylindrical disks of growth plate tissues compressed between two rigid platens with a frictionless interface. The axisymmetric case where the plane of transverse isotropy is perpendicular to the cylindrical axis is studied, and the stress-relaxation response to imposed step and ramp displacements is solved. This solution is then used to analyze experimental data from unconfined compression stress-relaxation tests performed on specimens from bovine distal ulnar growth plate and chondroepiphysis to determine the biphasic material parameters. The transversely isotropic biphasic model provides an excellent agreement between theory and experimental results, better than was previously achieved with an isotropic model, and can explain the observed experimental behavior in unconfined compression of these tissues.  相似文献   

11.
The time-dependent lateral expansion and load relaxation of cartilage cylinders subjected to unconfined compression were simultaneously recorded. These measurements were used to (1) test the assumption of incompressibility for articular cartilage, (2) measure the Poisson's ratio of articular cartilage in compression and (3) investigate the relationship between stress relaxation and volumetric change. Mechanical tests were performed on fetal, calf, and adult humeral head articular cartilage. The instantaneous Poisson's ratio of adult cartilage was 0.49+/-0.08 (mean+S.D.), thus confirming the assumption of incompressibility for this tissue. The instantaneous Poisson's ratio was significantly lower for calf (0. 38+/-0.04) and fetal cartilage (0.36+/-0.04). The equilibrium Poisson's ratio, i.e. true Poisson's ratio of the solid matrix, was significantly higher for the adult tissue (0.26+/-0.11) compared to both the fetal (0.09+/-0.02) and calf (0.11+/-0.03) cartilage. A linear relationship between time-matched load and lateral expansion after the first minute of stress relaxation was observed.  相似文献   

12.
The lack of standardization in experimental protocols for unconfined compression tests of intervertebral discs (IVD) tissues is a major issue in the quantification of their mechanical properties. Our hypothesis is that the experimental protocols influence the mechanical properties of both annulus fibrosus and nucleus pulposus. IVD extracted from bovine tails were tested in unconfined compression stress-relaxation experiments according to six different protocols, where for each protocol, the initial swelling of the samples and the applied preload were different. The Young's modulus was calculated from a viscoelastic model, and the permeability from a linear biphasic poroviscoelastic model. Important differences were observed in the prediction of the mechanical properties of the IVD according to the initial experimental conditions, in agreement with our hypothesis. The protocol including an initial swelling, a 5% strain preload, and a 5% strain ramp is the most relevant protocol to test the annulus fibrosus in unconfined compression, and provides a permeability of 5.0 ± 4.2e(-14)m(4)/N[middle dot]s and a Young's modulus of 7.6 ± 4.7 kPa. The protocol with semi confined swelling and a 5% strain ramp is the most relevant protocol for the nucleus pulposus and provides a permeability of 10.7 ± 3.1 e(-14)m(4)/N[middle dot]s and a Young's modulus of 6.0 ± 2.5 kPa.  相似文献   

13.
This study investigated the abilities of the linear biphasic poroviscoelastic (BPVE) model and the linear biphasic poroelastic (BPE) model to simulate the effect of variable ramp strain rates on the unconfined compression stress relaxation response of articular cartilage. Curve fitting of experimental data showed that the BPVE model was able to successfully account for the ramp strain rate-dependent viscoelastic behavior of articular cartilage under unconfined compression, while the BPE model was able to account for the complete viscoelastic response at a slow strain rate, but only the long-term viscoelastic response at faster strain rates. We concluded that the short-term viscoelastic behavior of articular cartilage, when subjected to a fast ramp strain rate, is primarily governed by a fluid flow-independent (intrinsic) viscoelastic mechanism, whereas the long-term viscoelastic behavior is governed by a fluid flow-dependent (biphasic) viscoelastic mechanism. Furthermore, a linear viscoelastic representation of the solid stress was found to be a valid model assumption for the simulation of ramp strain rate-dependent relaxation behaviors of articular cartilage within the range of ramp strain rates investigated.  相似文献   

14.
Models of post-traumatic osteoarthritis where early degenerative changes can be monitored are valuable for assessing potential therapeutic strategies. Current methods for evaluating cartilage mechanical properties may not capture the low-grade cartilage changes expected at these earlier time points following injury. In this study, an explant model of cartilage injury was used to determine whether streaming potential measurements by manual indentation could detect cartilage changes immediately following mechanical impact and to compare their sensitivity to biomechanical tests. Impacts were delivered ex vivo, at one of three stress levels, to specific positions on isolated adult equine trochlea. Cartilage properties were assessed by streaming potential measurements, made pre- and post-impact using a commercially available arthroscopic device, and by stress relaxation tests in unconfined compression geometry of isolated cartilage disks, providing the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Histological sections were stained with Safranin-O and adjacent unstained sections examined in polarized light microscopy. Impacts were low, 17.3?±?2.7 MPa (n?=?15), medium, 27.8?±?8.5 MPa (n?=?13), or high, 48.7?±?12.1 MPa (n?=?16), and delivered using a custom-built spring-loaded device with a rise time of approximately 1 ms. SPI was significantly reduced after medium (p?=?0.006) and high (p<0.001) impacts. Ef, representing collagen network stiffness, was significantly reduced in high impact samples only (p?相似文献   

15.
Characterising the mechanisms causing viscoelastic mechanical properties of human cortical bone, as well as understanding sources of variation, is important in predicting response of the bone to creep and fatigue loads. Any better understanding, when incorporated into simulations including finite element analysis, would assist bioengineers, clinicians and biomedical scientists. In this study, we used an empirically verified model of creep strain accumulation, in a simulation of 10 non-homogeneous samples, which were created from micro-CT scans of human cortical bone of the femur midshaft obtained from a 74-year-old female cadaver. These non-homogeneous samples incorporate the presence of Haversian canals and resorption cavities. The influence of inhomogeneity on the response and variation in the samples in both creep and stress relaxation tests are examined. The relationship between steady-state creep rate, applied loads (stress relaxation and creep tests) and microstructure, that is bone apparent porosity, is obtained. These relations may provide insight into damage accumulation of whole human bones and be relevant to studies on osteoporosis.  相似文献   

16.
We previously reported an ultrasound method for measuring the depth-dependent equilibrium mechanical properties of articular cartilage using quasi-static compression. The objective of this paper was to introduce our recent development for nondestructively measuring the transient depth-dependent strains of full-thickness articular cartilage specimens prepared from bovine patellae. A 50 MHz focused ultrasound transducer was used to collect ultrasound echoes from articular cartilage specimens (n=8) and sponge phantoms with open pores (n=10) during tests of compression and subsequent stress-relaxation. The transient displacements of the tissues at different depths along the compression direction were calculated from the ultrasound echoes using a cross-correlation tracking technique. An LVDT sensor and a load cell were used to measure the overall deformation of the tissue and the applied force, respectively. Results showed that the tissues inside the cartilage layer continued to move during the stress-relaxation phase after the compression was completed. In the equilibrium state, the displacements of the cartilage tissues at the depths of 1/4, 1/2, and 3/4 of the full-thickness reduced by 51%+/-22%, 54%+/-17%, and 50+/-17%, respectively, in comparison with its peak value. However, no similar phenomenon was observed in the sponge phantoms. Our preliminary results demonstrated that this ultrasound method may provide a potential tool for the nondestructive measurement of the transient depth-dependent processes involved in biological and bioengineered soft tissues as well as soft biomaterials under dynamic loading.  相似文献   

17.
Mechanical properties of very soft tissues, such as brain, liver, kidney and prostate have recently joined the mainstream research topics in biomechanics. This has happened in spite of the fact that these tissues do not bear mechanical loads. The interest in the biomechanics of very soft tissues has been motivated by the developments in computer-integrated and robot-aided surgery--in particular, the emergence of automatic surgical tools and robots-as well as advances in virtual reality techniques. Mechanical testing of very soft tissues provides a formidable challenge for an experimenter. Very soft tissues are usually tested in compression using an unconfined compression set-up, which requires ascertaining that friction between sample faces and stress-strain machine platens is close to zero. In this paper a more reliable method of testing is proposed. In the proposed method top and bottom faces of a cylindrical specimen with low aspect ratio are rigidly attached to the platens of the stress-strain machine (e.g. using surgical glue). This arrangement allows using a no-slip boundary condition in the analysis of the results. Even though the state of deformation in the sample cannot be treated as orthogonal the relationships between total change of height (measured) and strain are obtained. Two important results are derived: (i) deformed shape of a cylindrical sample subjected to uniaxial compression is independent on the form of constitutive law, (ii) vertical extension in the plane of symmetry lambda(z) is proportional to the total change of height for strains as large as 30%. The importance and relevance of these results to testing procedures in biomechanics are highlighted.  相似文献   

18.
Characterising the mechanisms causing viscoelastic mechanical properties of human cortical bone, as well as understanding sources of variation, is important in predicting response of the bone to creep and fatigue loads. Any better understanding, when incorporated into simulations including finite element analysis, would assist bioengineers, clinicians and biomedical scientists. In this study, we used an empirically verified model of creep strain accumulation, in a simulation of 10 non-homogeneous samples, which were created from micro-CT scans of human cortical bone of the femur midshaft obtained from a 74-year-old female cadaver. These non-homogeneous samples incorporate the presence of Haversian canals and resorption cavities. The influence of inhomogeneity on the response and variation in the samples in both creep and stress relaxation tests are examined. The relationship between steady-state creep rate, applied loads (stress relaxation and creep tests) and microstructure, that is bone apparent porosity, is obtained. These relations may provide insight into damage accumulation of whole human bones and be relevant to studies on osteoporosis.  相似文献   

19.
20.
The porous properties of brain tissue are important for understanding normal and abnormal cerebrospinal fluid flow in the brain. In this study, a poroviscoelastic model was fitted to the stress relaxation response of white matter in unconfined compression performed under a range of low strain rates. A set of experiments was also performed on the tissue samples using a no-slip boundary condition. Results from these experiments demonstrated that the rheological response of the white matter is primarily governed by the intrinsic viscoelastic properties of the solid phase. The permeability of white matter was found to be of the order of 10(-12) m4/Ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号