首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of blood biochemical parameters, including the activities of the plasma enzymes creatine kinase (CK), aspartate aminotransferase (ASAT), lactate dehydrogenase and alkaline phosphatase, were measured in 23 athletes before, and immediately after a 56-km running race. Of the 23 athletes, 18 had previously completed standard 42-km marathon or longer (up to 90-km) ultra-marathon races, whereas not one of the other five athletes had previously run in a long-distance race. After the race, plasma CK and ASAT activities had both risen at least 280% more in the novice runners despite their much slower mean running speed (9.8 +/- 0.4 vs. 13.8 +/- 0.3 hm/h). There were no other inter-group differences in the absolute levels of the other measured biochemical parameters, although the rise in plasma calcium during the race was significantly greater in the experienced marathon runners. This study shows that either higher levels of training, or previous ultra-marathon racing experience, or both, is associated with lower immediate post-exercise levels of plasma enzyme activity. This is compatible with the finding that physical training reduces post-exercise plasma enzyme levels.  相似文献   

2.
To investigate the hypothesis that endurance exercise may lead to a decrease in ventilatory chemosensitivity as possibly mediated by an increase in endogenous beta-endorphins, we measured hypercapnic ventilatory responsiveness (HCVR) and circulating beta-endorphin immunoreactivity in six runners before and after a marathon (42.2 km) race and after administration of 10 mg iv naloxone. Similar testing was performed at identical time periods on the day before the marathon as control data. On each occasion, HCVR was measured twice 15 min apart, and the mean value was used for analysis. Six active (training distance 50-104 km/wk) and experienced (no. of marathons completed, 1-25) runners participated in the study. There were no significant changes in beta-endorphin activity or HCVR on the control day. All runners experienced a rise in beta-endorphin activity from premarathon (21.3 +/- 16.0 pg/ml) to immediate postmarathon (89.6 +/- 84.9 pg/ml) values (P less than 0.05). However, HCVR showed no significant change at any of the three testing periods on the marathon day. To investigate whether a time delay may have affected the lack of response to naloxone, additional testing was performed in five subjects, except that 10 mg iv naloxone was given within 10 min after completion of the marathon, and then HCVR was measured. Although there was a greater than fourfold increase in beta-endorphin immunoreactivity after the marathon, there was no significant change in HCVR after naloxone administration. We conclude that natural increases in endogenous beta-endorphin activity associated with marathon running do not modulate central chemosensitivity.  相似文献   

3.
Female runners have a two-fold risk of sustaining certain running-related injuries as compared to their male counterparts. Thus, a comprehensive understanding of the sex-related differences in running kinematics is necessary. However, previous studies have either used discrete time point variables and inferential statistics and/or relatively small subject numbers. Therefore, the first purpose of this study was to use a principal component analysis (PCA) method along with a support vector machine (SVM) classifier to examine the differences in running gait kinematics between female and male runners across a large sample of the running population as well as between two age-specific sub-groups. Bilateral 3-dimensional lower extremity gait kinematic data were collected during treadmill running. Data were analysed on the complete sample (n = 483: female 263, male 220), a younger subject group (n = 56), and an older subject group (n = 51). The PC scores were first sorted by the percentage of variance explained and we also employed a novel approach wherein PCs were sorted based on between-gender statistical effect sizes. An SVM was used to determine if the sex and age conditions were separable and classifiable based on the PCA. Forty PCs explained 84.74% of the variance in the data and an SVM classification accuracy of 86.34% was found between female and male runners. Classification accuracies between genders for younger subjects were higher than a subgroup of older runners. The observed interactions between age and gender suggest these factors must be considered together when trying to create homogenous sub-groups for research purposes.  相似文献   

4.
The acute effects of running a 42.2 km marathon race on the concentration and composition of the plasma lipoproteins were studied in 56 men of varying fitness, training experience, age and physical characteristics. There was no change in the mean concentration of total serum cholesterol, but a 10.9% increase (P less than 0.001) in the mean concentrations of high-density lipoprotein cholesterol (HDL-TC), representing an 11.1% increase (P less than 0.001) in the cholesteryl ester (CE) and 9.9% increase (P less than 0.001) in the unesterified cholesterol (UC) moieties of HDL. The ratio of total serum cholesterol to HDL-TC decreased significantly (P less than 0.001) during the exercise. Changes in lipoprotein concentrations during the marathon varied considerably between individual subjects, with a small proportion of subjects exhibiting relatively large increases or decreases in HDL-TC, HDL-CE and HDL-UC. Small sub-populations of runners were identified who showed abnormally large decreases in HDL-UC and abnormally small increases in HDL-CE relative to HDL-UC. A correlation (P less than 0.05) was found between the average weekly mileage of training and the increase in HDL-TC, whilst faster runners (finishing time less than 3 h; n = 13) had a significantly greater (P less than 0.02) increase in HDL-TC than slower runners (greater than 4 h; n = 14).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Each year in the past three decades has seen hundreds of thousands of runners register to run a major marathon. Of those who attempt to race over the marathon distance of 26 miles and 385 yards (42.195 kilometers), more than two-fifths experience severe and performance-limiting depletion of physiologic carbohydrate reserves (a phenomenon known as 'hitting the wall'), and thousands drop out before reaching the finish lines (approximately 1-2% of those who start). Analyses of endurance physiology have often either used coarse approximations to suggest that human glycogen reserves are insufficient to fuel a marathon (making 'hitting the wall' seem inevitable), or implied that maximal glycogen loading is required in order to complete a marathon without 'hitting the wall.' The present computational study demonstrates that the energetic constraints on endurance runners are more subtle, and depend on several physiologic variables including the muscle mass distribution, liver and muscle glycogen densities, and running speed (exercise intensity as a fraction of aerobic capacity) of individual runners, in personalized but nevertheless quantifiable and predictable ways. The analytic approach presented here is used to estimate the distance at which runners will exhaust their glycogen stores as a function of running intensity. In so doing it also provides a basis for guidelines ensuring the safety and optimizing the performance of endurance runners, both by setting personally appropriate paces and by prescribing midrace fueling requirements for avoiding 'the wall.' The present analysis also sheds physiologically principled light on important standards in marathon running that until now have remained empirically defined: The qualifying times for the Boston Marathon.  相似文献   

6.
The objective of this study was to determine whether subject-specific or group-based models provided better classification accuracy to identify changes in biomechanical running gait patterns across different inclination conditions. The classification process was based on measurements from a single wearable sensor using a total of 41,780 strides from eleven recreational runners while running in real-world and uncontrolled environment. Biomechanical variables included pelvic drop, ground contact time, braking, vertical oscillation of pelvis, pelvic rotation, and cadence were recorded during running on three inclination grades: downhill, −2° to −7°; level, −0.2° to +0.2°; and uphill, +2° to +7°. An ensemble and non-linear machine learning algorithm, random forest (RF), was used to classify inclination condition and determine the importance of each of the biomechanical variables. Classification accuracy was determined for subject-specific and group-based RF models. The mean classification accuracy of all subject-specific RF models was 86.29%, while group-based classification accuracy was 76.17%. Braking was identified as the most important variable for all the runners using the group-based model and for most of the runners based on a subject-specific models. In addition, individual runners used different strategies across different inclination conditions and the ranked order of variable importance was unique for each runner. These results demonstrate that subject-specific models can better characterize changes in gait biomechanical patterns compared to a more traditional group-based approach.  相似文献   

7.
The purpose of this study was to investigate the effects of a concurrent strength and endurance training program on running performance and running economy of middle-aged runners during their marathon preparation. Twenty-two (8 women and 14 men) recreational runners (mean ± SD: age 40.0 ± 11.7 years; body mass index 22.6 ± 2.1 kg·m?2) were separated into 2 groups (n = 11; combined endurance running and strength training program [ES]: 9 men, 2 women and endurance running [E]: 7 men, and 4 women). Both completed an 8-week intervention period that consisted of either endurance training (E: 276 ± 108 minute running per week) or a combined endurance and strength training program (ES: 240 ± 121-minute running plus 2 strength training sessions per week [120 minutes]). Strength training was focused on trunk (strength endurance program) and leg muscles (high-intensity program). Before and after the intervention, subjects completed an incremental treadmill run and maximal isometric strength tests. The initial values for VO2peak (ES: 52.0 ± 6.1 vs. E: 51.1 ± 7.5 ml·kg?1·min?1) and anaerobic threshold (ES: 3.5 ± 0.4 vs. E: 3.4 ± 0.5 m·s?1) were identical in both groups. A significant time × intervention effect was found for maximal isometric force of knee extension (ES: from 4.6 ± 1.4 to 6.2 ± 1.0 N·kg?1, p < 0.01), whereas no changes in body mass occurred. No significant differences between the groups and no significant interaction (time × intervention) were found for VO2 (absolute and relative to VO2peak) at defined marathon running velocities (2.4 and 2.8 m·s?1) and submaximal blood lactate thresholds (2.0, 3.0, and 4.0 mmol·L?1). Stride length and stride frequency also remained unchanged. The results suggest no benefits of an 8-week concurrent strength training for running economy and coordination of recreational marathon runners despite a clear improvement in leg strength, maybe because of an insufficient sample size or a short intervention period.  相似文献   

8.
This paper examines current concepts concerning "limiting" factors in human endurance performance by modeling marathon running times on the basis of various combinations of previously reported values of maximal O2 uptake (VO2max), lactate threshold, and running economy in elite distance runners. The current concept is that VO2max sets the upper limit for aerobic metabolism while the blood lactate threshold is related to the fraction of VO2max that can be sustained in competitive events greater than approximately 3,000 m. Running economy then appears to interact with VO2max and blood lactate threshold to determine the actual running speed at lactate threshold, which is generally a speed similar to (or slightly slower than) that sustained by individual runners in the marathon. A variety of combinations of these variables from elite runners results in estimated running times that are significantly faster than the current world record (2:06:50). The fastest time for the marathon predicted by this model is 1:57:58 in a hypothetical subject with a VO2max of 84 ml.kg-1.min-1, a lactate threshold of 85% of VO2max, and exceptional running economy. This analysis suggests that substantial improvements in marathon performance are "physiologically" possible or that current concepts regarding limiting factors in endurance running need additional refinement and empirical testing.  相似文献   

9.
In human gastrocnemius muscle obtained from long-distance runners, mitochondrial creatine kinase (CK) activities were significantly greater than nonrunning control skeletal muscle and significantly increased during training for and after a marathon race. Thus skeletal muscle tended to become similar to heart muscle in its mitochondrial CK composition. Total muscle CK activity was significantly different in males and females, was unaffected by marathon training and racing, and was similar to gastrocnemius muscle obtained from nonrunning controls. There was an inverse correlation between the maximum O2 uptake and the percentage increase in mitochondrial CK activity after training. These studies suggest that mitochondrial CK may play a key role in the intracellular transport of energy from mitochondrial to myofibrils in skeletal muscle during endurance exercise such as long-distance running.  相似文献   

10.
Twenty-one experienced runners were studied before, during and immediately after a marathon race to ascertain whether either depletion of energy substrate or rise in body temperature, or both, contribute to late-race slowing of running pace. Seven runners drank a glucose/electrolyte (GE) solution ad libitum (Na+ 21 mmol l-1, K+ 2.5 mmol l-1, Cl- 17 mmol l-1, PO4(2-) 6 mmol l-1, glucose 28 mmol l-1) throughout the race; 6 drank water and 8 drank the GE solution diluted 1:1 with water. Although average running speeds for the three groups were not significantly different during the first two-thirds (29 km) of the race, rectal temperature was significantly higher (P < 0.05) and reduction of plasma volume was greater (P < 0.05) in runners who replaced sweat losses with water. During the last one-third of the race, the average running pace of the water-replacement group slowed by 37.2%; the pace slowed by 27.9% in the 8 runners who replaced their sweat loss with GE diluted 1:1 with water (1/2 GE) and 18.2% in runners who replaced fluid loss with full-strength solution (GE). Eleven runners (5 in the water group, 4 in the 1/2 GE group and 2 in the GE group) lapsed into a walk/run/walk pace during the last 6 miles of the race. Ten of these had a rectal temperature of 39 degrees C or greater after 29 km of running, and plasma volume in these runners was reduced by more than 10%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The aim of this study was to analyze footstrike patterns in elite marathon runners at the 2017 IAAF World Championships. Seventy-one men and 78 women were analyzed in their respective races. Athletes’ footstrike patterns were recorded (120 Hz) at approximately 8.5, 19, 29.5 and 40 km (“Laps 1 – 4”) and categorized as either rearfoot (RFS), midfoot or forefoot striking; the latter two were classified together as non-rearfoot striking (NRFS). The most common footstrike pattern was RFS, with proportions never less than 54% of men or 67% of women at any distance. There were no sex-based differences for proportion of footstrike patterns, and there were no differences between footstrike proportions when comparing the top and bottom 50% of men finishers, or between women during Laps 1 and 2. A greater proportion of the top 50% of women maintained NRFS than amongst the bottom 50%. The proportion of RFS increased with distance run in the men’s race, although more than 75% of athletes across both marathons had consistent footstrike patterns between laps (79 RFS and 36 NRFS). As most athletes were RFS (including the top four finishing men), there appears to be no clear advantage to NRFS in marathon running. Coaches should note that it is normal for elite marathon runners to be either RFS or NRFS; however, forefoot striking was rare. The high proportion of athletes who maintained their footstrike pattern reflected individualized preferences for a given footstrike pattern.  相似文献   

12.
Adrenal-sympathico function, blood carbohydrates and lipids, and water and electrolyte balance were studied in six highly trained male marathon runners prior to and after running a marathon (26.2 miles; 42.2 km) and on control days corresponding to the above times. Fluid intake was not sufficient to maintain body weight, the runners losing approximately 2.8 kg. Estimated plasma volume losses (161 ml, 4.4%) indicated that most of the fluid loss was extravascular. Tre rose an average 2.4 degrees C and a significant negative correlation between running time and rise in Tre was observed. Glucose, fatty acids, glycerol, hemoglobin, and plasma proteins were significantly elevated after the race. Small but statistically significant increments in lactate and pyruvate were also observed. Alterations in adrenal-sympathico function were indicated by increased levels of cortisol, epinephrine, and norepinephrine.  相似文献   

13.
Visual biofeedback of tibial peak positive acceleration (PPA) during running has been used successfully as a method of gait retraining to reduce PPAs. Audio biofeedback generated from PPA may present a novel, portable alternative. The purpose of this study was to investigate the feasibility of using PPA-generated audio biofeedback to reduce PPAs while running. Nine runners were fitted with a wireless accelerometer on their left tibia. PPAs were recorded and a custom LabVIEW program was used to emit a single beep once the PPA reached a preset threshold. The numerical difference between this threshold and peak PPA during running was scaled to the pitch of the beep, such that a foot strike with greater PPA would result in a beep with higher pitch. Subjects were then instructed to (1) run without any beeps, and/or (2) keep the pitch of the beep as low as possible. Subjects participated in a single testing session that included a five minute warm-up and two rounds of biofeedback, which consisted of five minutes of running with biofeedback followed by five minutes of running without biofeedback. Subjects were able to significantly reduce PPAs during exposure to audio biofeedback. In addition, two rounds of biofeedback were sufficient for subjects to retain a reduction in PPAs without biofeedback. PPA-generated audio biofeedback therefore appears to be a feasible method of gait retraining to reduce PPAs in runners.  相似文献   

14.
Total creatine kinase (CK) and CK MB activities were determined in gastrocnemius muscle and serum obtained from 14 female marathon runners. The level of CK MB in muscle increased significantly (p less than 0.05) after chronic exercise training from 5.3% to 10.5% of the total CK activity, but not after acute exercise (post-marathon 8.9%). No significant differences in total CK activities were detected. However, the total CK activity in the muscles were significantly (p less than 0.05) less than those previously reported from the muscle of men runners (1800 U/g, 3000 U/g respectively). No significant correlation existed between fiber type and muscle CK MB activity. Additionally, trace amounts of mitochondrial CK and CK BB were present in muscle homogenates. A significant correlation was observed in the increase in mean serum total CK (597 UL-1) and CK MB (23 UL-1) activities 24 h after the race (r = 0.97, p less than 0.05). These results suggest that gastrocnemius muscle in women adapts to training with increased CK MB activities and imply that skeletal muscle is the major source of elevated serum CK MB activities in women marathon runners.  相似文献   

15.

Purpose

Walking is purported to reduce the risk of atrial fibrillation by 48%, whereas jogging is purported to increase its risk by 53%, suggesting a strong anti-arrhythmic benefit of walking over running. The purpose of these analyses is to compare incident self-reported physician-diagnosed cardiac arrhythmia to baseline energy expenditure (metabolic equivalent hours per day, METhr/d) from walking, running and other exercise.

Methods

Proportional hazards analysis of 14,734 walkers and 32,073 runners.

Results

There were 1,060 incident cardiac arrhythmias (412 walkers, 648 runners) during 6.2 years of follow-up. The risk for incident cardiac arrhythmias declined 4.4% per baseline METhr/d walked by the walkers, or running in the runners (P = 0.0001). Specifically, the risk declined 14.2% (hazard ratio: 0.858) for 1.8 to 3.6 METhr/d, 26.5% for 3.6 to 5.4 METhr/d, and 31.7% for ≥5.4 METhr/d, relative to <1.8 METhr/d. The risk reduction per METhr/d was significantly greater for walking than running (P<0.01), but only because walkers were at 34% greater risk than runners who fell below contemporary physical activity guideline recommendations; otherwise the walkers and runners had similar risks for cardiac arrhythmias. Cardiac arrhythmias were unrelated to walking and running intensity, and unrelated to marathon participation and performance.

Conclusions

The risk for cardiac arrhythmias was similar in walkers and runners who expended comparable METhr/d during structured exercise. We found no significant risk increase for self-reported cardiac arrhythmias associated with running distance, exercise intensity, or marathon participation. Rhythm abnormalities were based on self-report, precluding definitive categorization of the nature of the rhythm disturbance. However, even if the runners’ arrhythmias include sinus bradycardia due to running itself, there was no increase in arrhythmias with greater running distance.  相似文献   

16.
The aim of this study was to verify the influence of the combination of different running speeds and slopes based on main kinematic parameters in both groups of elite (RE) and amateur (RA) marathon runners. All subjects performed various tests on a treadmill at 0, 2, and 7% slopes at different speeds: 3.89, 4.17, 4.44, 4.72, and 5.00 m·s. A high speed digital camera, 210 Hz, has been used to record; Dartfish 5.5Pro has been used to perform a 2D video analysis. Step length (SL), step frequency (SF), flight time (FT), and contact time (CT) were determined and used for comparison. SL, SF, and FT parameters increased, and CT parameter decreased as speed increased. As slopes increased, SL and FT decreased and SF increased in both groups and only CT decreased in RE, whereas in RA, it increased. Data were fitted to the linear regression line (R > 0.95). The 2 groups were significantly different (p < 0.05) in FT, SL, and SF at all speeds in level running. A significant difference between the 2 groups was found in FT at 2 and 7% slopes at all speeds (p < 0.05). Percentage alterations in all variables were greater in the RA group. In conclusion, the choice of optimum SL and SF, through efficient running can be maintained, is influenced not only by speed but also by slopes. Elite runners perform more efficiently than amateur runners who have less experience.  相似文献   

17.
This study examined energy expenditure and physiologic determinants for marathon performance in recreational runners. Twenty recreational marathon runners participated (10 males aged 41 +/- 11.3 years, 10 females aged 42.7 +/- 11.7 years). Each subject completed a V(.-)O2max and a 1-hour treadmill run at recent marathon pace, and body composition was indirectly determined via dual energy X-ray absorptiometry. The male runners exhibited higher V(.-)O2max (ml x kg(-1) x min(-1)) values (52.6 +/- 5.5) than their female counterparts (41.9 +/- 6.6), although ventilatory threshold (T-vent) values were similar between groups (males: 76.2 +/- 6.1 % of V(.-)O2max, females: 75.1 +/- 5.1%). The male runners expended more energy (2,792 +/- 235 kcal) for their most recent marathon as calculated from the 1-hour treadmill run at marathon pace than the female runners (2,436 +/- 297 kcal). Body composition parameters correlated moderately to highly (r ranging from 0.50 to 0.87) with marathon run time. Also, V(.-)O2max (r = -0.73) and ventilatory threshold (r = -0.73) moderately correlated with marathon run time. As a group, the participants ran near their ventilatory threshold for their most recent marathon (r = 0.74). These results indicate the influence of body size on marathon run performance. In general, the larger male and female runners ran slower and expended more kilocalories than smaller runners. Regardless of marathon finishing time, the runners maintained a pace near their T-vent, and as T-vent or V(.-)O2max increased, marathon performance time decreased.  相似文献   

18.
Single muscle fiber adaptations with marathon training.   总被引:1,自引:0,他引:1  
The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P < 0.05) with the training program. Muscle fiber size declined (P < 0.05) by approximately 20% in both fiber types after training. P(o) was maintained in both fiber types with training and increased (P < 0.05) by 18% in the MHC IIa fibers after taper. This resulted in >60% increase (P < 0.05) in force per cross-sectional area in both fiber types. Fiber V(o) increased (P < 0.05) by 28% in MHC I fibers with training and was unchanged in MHC IIa fibers. Peak power increased (P < 0.05) in MHC I and IIa fibers after training with a further increase (P < 0.05) in MHC IIa fiber power after taper. These data show that marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.  相似文献   

19.

Introduction

Physical activity is beneficial for individual health, but endurance sport is associated with the development of arrhythmias like atrial fibrillation. The underlying mechanisms leading to this increased risk are still not fully understood. MicroRNAs are important mediators of proarrhythmogenic remodeling and have potential value as biomarkers in cardiovascular diseases. Therefore, the objective of our study was to determine the value of circulating microRNAs as potential biomarkers for atrial remodeling in marathon runners (miRathon study).

Methods

30 marathon runners were recruited into our study and were divided into two age-matched groups depending on the training status: elite (ER, ≥55 km/week, n = 15) and non-elite runners (NER, ≤40 km/week, n = 15). All runners participated in a 10 week training program before the marathon. MiRNA plasma levels were measured at 4 time points: at baseline (V1), after a 10 week training period (V2), immediately after the marathon (V3) and 24h later (V4). Additionally, we obtained clinical data including serum chemistry and echocardiography at each time point.

Results

MiRNA plasma levels were similar in both groups over time with more pronounced changes in ER. After the marathon miR-30a plasma levels increased significantly in both groups. MiR-1 and miR-133a plasma levels also increased but showed significant changes in ER only. 24h after the marathon plasma levels returned to baseline. MiR-26a decreased significantly after the marathon in elite runners only and miR-29b showed a non-significant decrease over time in both groups. In ER miRNA plasma levels showed a significant correlation with LA diameter, in NER miRNA plasma levels did not correlate with echocardiographic parameters.

Conclusion

MiRNAs were differentially expressed in the plasma of marathon runners with more pronounced changes in ER. Plasma levels in ER correlate with left atrial diameter suggesting that circulating miRNAs could potentially serve as biomarkers of atrial remodeling in athletes.  相似文献   

20.
The creatine kinase (CK) isoenzyme composition was determined in serial gastrocnemius muscle biopsies obtained from 12 male marathon runners. The mean muscle CK-MB composition significantly increased after chronic exercise (training) from 5.3% (pretraining) to 7.7% (premarathon) as well as after acute exercise (postmarathon) to 10.5% of the total CK activity (P less than 0.05). However, no significant differences in total CK activities were detected. Additionally, mitochondrial CK and CK-BB isoenzymes were present in muscle homogenates. A significant correlation was observed in the increase in mean serum total CK (3,322 U/l) and CK-MB (174 U/l) activities 24 h after the race (r = 0.98, P less than 0.05). These results show that gastrocnemius muscle adapts to long-distance training and racing with increased CK-MB activities and imply that skeletal muscle is the major source of elevated serum CK-MB activities in marathon runners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号