首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study differentiated the kinematics of the beach flags sprint start between five elite (three males, two females; age = 21.2 ± 2.6 years; height = 1.71 ± 0.04 m; mass = 66.2 ± 5.9 kg) and five non-elite (three males, two females; age = 20.4 ± 1.7 years; height = 1.69 ± 0.08 meters [m]; mass = 61.6 ± 5.7 kilograms) sprinters. A high-speed camera filmed the start. Timing gates recorded the 0-2, 0-5, and 0-20 m intervals. Data included body position during the start and at take-off; start time; first step length; and sprint times. A Mann-Whitney U-test determined significant (p < 0.05) between-group differences; effect sizes (ES) were also calculated. Elite sprinters had a greater take-off trajectory angle (p = 0.01; ES = 2.57), and were faster over the 0-2 (p = 0.02; ES = 1.77), 0-5 (p = 0.05; ES = 1.20), and 0-20 m (p = 0.02; ES = 1.83) intervals. Large effects were found for: greater take-off swing leg hip flexion (ES = 1.13) and trunk lean (ES = 1.37); longer duration start time (ES = 1.33); and longer first step length (ES = 1.23) in elite sprinters. A longer start time assists with force generation, which in conjunction with increased hip flexion, could translate to a longer first step. Increased trunk lean shifts the take-off trajectory angle towards the horizontal. A greater trajectory angle at start take-off, which could be advantageous for force production during sprint performance, is likely necessary for beach flags.  相似文献   

2.
The aim of the present study was to measure during a sprint start the joint angular velocity and the kinetic energy of the different segments in elite sprinters. This was performed using a 3D kinematic analysis of the whole body. Eight elite sprinters (10.30±0.14 s 100 m time), equipped with 63 passive reflective markers, realised four maximal 10 m sprints start on an indoor track. An opto-electronic Motion Analysis® system consisting of 12 digital cameras (250 Hz) was used to collect the 3D marker trajectories. During the pushing phase on the blocks, the 3D angular velocity vector and its norm were calculated for each joint. The kinetic energy of 16 segments of the lower and upper limbs and of the total body was calculated. The 3D kinematic analysis of the whole body demonstrated that joints such as shoulders, thoracic or hips did not reach their maximal angular velocity with a movement of flexion–extension, but with a combination of flexion–extension, abduction–adduction and internal–external rotation. The maximal kinetic energy of the total body was reached before clearing block (respectively, 537±59.3 J vs. 514.9±66.0 J; p≤0.01). These results suggested that a better synchronization between the upper and lower limbs could increase the efficiency of pushing phase on the blocks. Besides, to understand low interindividual variances in the sprint start performance in elite athletes, a 3D complete body kinematic analysis shall be used.  相似文献   

3.
The purpose of this study was to investigate the discriminative ability of rebound jump squat force-time and power-time measures in differentiating speed performance and competition level in elite and elite junior rugby union players. Forty professional rugby union players performed 3 rebound jump squats with an external load of 40 kg from which a number of force-time and power-time variables were acquired and analyzed. Additionally, players performed 3 sprints over 30 m with timing gates at 5, 10, and 30 m. Significant differences (p < 0.05) between the fastest 20 and slowest 20 athletes, and elite (n = 25) and elite junior (n = 15) players in speed and force-time and power-time variables were determined using independent sample t-tests. The fastest and slowest sprinters over 10 m differed in peak power (PP) expressed relative to body weight. Over 30 m, there were significant differences in peak velocity and relative PP and rate of power development. There was no significant difference in speed over any distance between elite and elite junior rugby union players; however, a number of force and power variables including peak force, PP, force at 100 milliseconds from minimum force, and force and impulse 200 milliseconds from minimum force were significantly (p < 0.05) different between playing levels. Although only power values expressed relative to body weight were able to differentiate speed performance, both absolute and relative force and power values differentiated playing levels in professional rugby union players. For speed development in rugby union players, training strategies should aim to optimize the athlete's power to weight ratio, and lower body resistance training should focus on movement velocity. For player development to transition elite junior players to elite status, adding lean mass is likely to be most beneficial.  相似文献   

4.
Muscle ATP, creatine phosphate and lactate, and blood pH and lactate were measured in 7 male sprinters before and after running 40, 60, 80 and 100 m at maximal speed. The sprinters were divided into two groups, group 1 being sprinters who achieved a higher maximal speed (10.07 +/- 0.13 m X s-1) than group 2 (9.75 +/- 0.10 m X s-1), and who also maintained the speed for a longer time. The breakdown of high-energy phosphate stores was significantly greater for group 1 than for group 2 for all distances other than 100 m; the breakdown of creatine phosphate for group 1 was almost the same for 40 m as for 100 m. Muscle and blood lactate began to accumulate during the 40 m exercise. The accumulation of blood lactate was linear (0.55 +/- 0.02 mmol X s-1 X l-1) for all distances, and there were no differences between the groups. With 100 m sprints the end-levels of blood and muscle lactate were not high enough and the change in blood pH was not great enough for one to accept that lactate accumulation is responsible for the decrease in running speed over this distance. We concluded that in short-term maximal exercise, performance depends on the capacity for using high-energy phosphates at the beginning of the exercise, and the decrease in running speed begins when the high-energy phosphate stores are depleted and most of the energy must then be produced by glycolysis.  相似文献   

5.
The purpose of this study was to investigate the relationship between sprint performance and architectural characteristics of leg muscles in 26 female 100-m sprinters. Pennation angle and muscle thickness of the vastus lateralis (VL) and gastrocnemius medialis (GM) and lateralis (GL) muscles were measured by B-mode ultrasonography, and fascicle length was estimated. Sprinters had a significantly lower VL pennation angle, but GM and GL pennation angle was similar between sprinters and female control subjects (N = 22). There was no significant correlation between pennation angle and 100-m personal best performance. Sprinters had significantly greater absolute fascicle length in VL and GL than controls, which significantly correlated to 100-m best-record (r = -0.51 and r = -0.44, respectively). Relative fascicle length (VL and GL) were also significantly greater in sprinters than controls. However, there were no significant correlation between relative fascicle length and 100-m best-record (r = -0.36 and r = -0.29, respectively). No relationship was found between the sprint performance and fat-free mass (r = -0.26) or body mass index (r = -0.03). However, there was a significant correlation between percent (%) body fat and 100-m best-record (r = 0.62, p < 0.01). Adjusting the confounding effect of % fat, significant correlations were seen between relative fascicle length and 100-m best-record (VL; r = -0.39 and GL; r = -0.40). Absolute and relative fascicle length were similar in elite female sprinters compared with previous reported values for elite male sprinters (Kumagai et al., 2000). It was concluded that longer fascicle length is associated with greater sprinting performance in sprinters, but there is no gender differences in fascicle length for elite sprinters.  相似文献   

6.
7.
This study examined the effect of body segment parameter (BSP) perturbations on joint moments calculated using an inverse dynamics procedure and muscle forces calculated using computed muscle control (CMC) during gait. BSP (i.e. segment mass, center of mass location (com) and inertia tensor) of the left thigh, shank and foot of a scaled musculoskeletal model were perturbed. These perturbations started from their nominal value and were adjusted to ±40% in steps of 10%, for both individual as well as combined perturbations in BSP. For all perturbations, an inverse dynamics procedure calculated the ankle, knee and hip moments based on an identical inverse kinematics solution. Furthermore, the effect of applying a residual reduction algorithm (RRA) was investigated. Muscle excitations and resulting muscle forces were calculated using CMC. The results show only a limited effect of an individual parameter perturbation on the calculated moments, where the largest effect is found when perturbing the shank com (MScom,shank, the ratio of absolute difference in torque and relative parameter perturbation, is maximally −7.81 N m for hip flexion moment). The additional influence of perturbing two parameters simultaneously is small (MSmass+com,thigh is maximally 15.2 N m for hip flexion moment). RRA made small changes to the model to increase the dynamic consistency of the simulation (after RRA MScom,shank is maximally 5.01 N m). CMC results show large differences in muscle forces when BSP are perturbed. These result from the underlying forward integration of the dynamic equations.  相似文献   

8.
A novel, simple and fast reversed-phase HPLC/UV method was developed, optimized for various chromatographic conditions, and validated according to international guidelines for simultaneous determination of all-trans-retinol and α-tocopherol in human serum using retinyl acetate as internal standard in the concentration of 0.5 μg/ml. A liquid-phase extraction was applied to the 250 μl of serum with n-hexane–dichloromethane mixture (70:30, v/v), in two steps, using ethanol–methanol mixture (95:5, v/v) for protein precipitation and BHT (butylated hydroxy toluene) as stabilizer for sample preparation. Both analytes were analyzed on Kromasil 100 C18 column (150 mm × 4.6 mm, 5 μm), Brownlee analytical (Perkin Elmer) C18 column (150 mm × 4.6 mm, 5 μm), and Supelco (Supelcosil) LC-18 column (150 mm × 3 mm, 3 μm), protected by a Perkin Elmer C18 (30 mm × 4.6 mm, 10 μm; Norwalk, USA) pre-column guard cartridge, at 292 nm wavelength, using methanol–water (99:1, v/v), in isocratic mode as mobile phase applied at flow rate of 1.5 ml/min and 1 ml/min for both 5 μm and 3 μm columns, respectively. Complete separation of all the analytes was achieved in 3 and 6 min on 3 μm and 5 μm columns, respectively by injecting 20 μl of sample into the HPLC system by autosampler, keeping column oven temperature at 25 °C. Different particulate reversed-phase chromatographic columns were evaluated in order to select the best column in terms of sensitivity, selectivity, resolution and short run time of both the analytes and it was concluded that 3 μm columns are better to be used in clinical set up as well as in laboratories for the separation of these analytes in a shorter time as compared with 5 μm columns. The method was validated and applied for the analysis of all-trans-retinol and α-tocopherol in the serum of human volunteers.  相似文献   

9.
We examined the functional role of braking forces observed when humans execute turning maneuvers. Deceleration caused by braking forces contributes to changing the movement direction of the center of mass (COM) and maintaining constant velocity. We argue that braking forces also prevent over-rotation of the body about the vertical axis during maneuvers. We analyzed data from sidestep and crossover cuts at average initial running velocities of 3 m s(-1). Absent braking, lateral forces would result in body rotations 1.4-3 times the change in COM movement direction, causing the orientation of the body to be substantially mis-aligned with the direction of movement at the end of the step. A simple model based on the hypothesis that body rotation should match COM deflection can explain 70% of the variance in braking forces employed during running turns.  相似文献   

10.
Won SW  Park J  Mao J  Yun YS 《Bioresource technology》2011,102(4):3888-3893
A new type of biosorbent was developed for binding anionic precious metals through cross-linking waste biomass Corynebacterium glutamicum with polyethylenimine (PEI). This biomass was evaluated for the removal and recovery of palladium and compared to commercial adsorbents, such as Amberjet 4200 Cl, Lewatit Monoplus TP 214, SPC-100, and SPS-200. The kinetic experiments revealed that the sorption equilibrium was reached with 30 min for the PEI-modified biomass. The maximum uptake of the biosorbent was 176.8 mg/g, which was calculated using the Langmuir model. The Pd(II) maximum uptake exhibited the following order: Amberjet 4200 Cl > Lewatit Monoplus TP 214 > PEI-modified biomass > SPC-100 > SPS-200. Acidified thiourea in 1.0 M HCl was used to desorb Pd(II) from all of the sorbents examined.  相似文献   

11.
The purpose of this study was to examine the effects of non-resisted (NRS) and partner-towing resisted (RS) sprint training on legs explosive force, sprint performance and sprint kinematic parameters. Sixteen young elite soccer players (age 16.6 ± 0.2 years, height 175.6 ± 5.7 cm, and body mass 67.6 ± 8.2 kg) were randomly allocated to two training groups: resisted sprint RS (n = 7) and non-resisted sprint NRS (n = 9). The RS group followed a six-week sprint training programme consisting of two “sprint training sessions” per week in addition to their usual soccer training. The NRS group followed a similar sprint training programme, replicating the distances of sprints but without any added resistance. All players were assessed before and after training: vertical and horizontal jumping (countermovement jump (CMJ), squat jump (SJ), and 5-jump test (5JT)), 30 m sprint performance (5, 10, and 20 m split times), and running kinematics (stride length and frequency). In the RS group significant (p < 0.05) changes were: decreased sprint time for 0–5 m, 0–10 m and 0–30 m (-6.31, -5.73 and -2.00%; effect size (ES) = 0.70, 1.00 and 0.41, respectively); higher peak jumping height (4.23% and 3.59%; ES = 0.35 and 0.37, for SJ and CMJ respectively); and 5JT (3.10%; ES = 0.44); and increased stride frequency (3.96%; ES = 0.76). In the NRS group, significant (p < 0.05) changes were: decreased sprint time at 0–30 m (-1.34%, ES = 0.33) and increased stride length (1.21%; ES = 0.17). RS training (partner towing) for six weeks in young soccer players showed more effective performances in sprint, stride frequency and lower-limb explosive force, while NRS training improved sprint performance at 0–30 m and stride length. Consequently, coaches and physical trainers should consider including RS training as part of their sprint training to ensure optimal sprint performance.  相似文献   

12.
Whether the axonal framework is stationary or moves is a central debate in cell biology. To better understand this problem, we developed a mathematical model that incorporates force generation at the growth cone, the viscoelastic properties of the axon, and adhesions between the axon and substrate. Using force-calibrated needles to apply and measure forces at the growth cone, we used docked mitochondria as markers to monitor movement of the axonal framework. We found coherent axonal transport that decreased away from the growth cone. Based on the velocity profiles of movement and the force applied at the growth cone, and by varying the attachment of the axonal shaft to the coverslip, we estimate values for the axial viscosity of the axon (3 × 106 ± 2.4 × 106 Pa·s) and the friction coefficient for laminin/polyornithine-based adhesions along the axon (9.6 × 103 ± 7.5 × 103 Pa·s). Our model suggests that whether axons elongate by tip growth or stretching depends on the level of force generation at the growth cone, the viscosity of the axon, and the level of adhesions along the axon.  相似文献   

13.
Cell adhesion mechanically couples cells to surfaces. The durability of individual bonds between the adhesive receptors and their ligands in the presence of forces determines the cellular adhesion strength. For adhesive receptors such as integrins, it is a common paradigm that the cell regulates its adhesion strength by altering the affinity state of the receptors. However, the probability distribution of rupture forces is dependent not only on the affinity of individual receptor-ligand bonds but also on the mechanical compliance of the cellular anchorage of the receptor. Hence, by altering the anchorage, the cell can regulate its adhesion strength without changing the affinity of the receptor. Here, we analyze the anchorage of the integrin VLA-4 with its ligand VCAM-1. For this purpose, we develop a model based on the Kelvin body, which allows one to quantify the mechanical properties of the adhesive receptor's anchorage using atomic force microscopy on living cells. As we demonstrate, the measured force curves give valuable insight into the mechanics of the cellular anchorage of the receptor, which is described by the tether stiffness, the membrane rigidity, and the membrane viscosity. The measurements relate to a tether stiffness of kt = 1.6 μN/m, an initial membrane rigidity of ki = 260 μN/m, and a viscosity of μ = 5.9 μN·s/m. Integrins exist in different activation states. When activating the integrin with Mg2+, we observe altered viscoelastic parameters of kt = 0.9 μN/m, ki = 190 μN/m, and μ = 6.0 μ N·s/m. Based on our model, we postulate that anchorage-related effects are common regulating mechanisms for cellular adhesion beyond affinity regulation.  相似文献   

14.
Some macrophytes are transported to the deep-sea bottom and are utilized by heterotrophs in the deep-sea as a food source. We inferred the transport route of macrophytes toward the deep-sea based on similarity in the species compositions of macrophyte pieces collected from the dysphotic bottom off the Izu Peninsula and the drifting macroalgae reported for the study area. We also examined whether or not the macrophytes are buried in the sediment, based on stable isotope distributions of organisms. Macrophytes collected by dredging at a depth of 100-300 m included 93 species, whereas 43 species were found by trawling at depths from 200 to 400 m. Only 15 of 76 dredged species (19.7%) that were identified to the species level were identical to the drifting macroalgal species reported for this area, whereas 15 of the 29 trawled species (51.7%) that were identified to the species level were identical to the reported drifting species. It was thus inferred that macrophytes were mainly transported through sliding along the sea bottom for the macrophytes collected by dredging and through sinking from the surface water for the macrophytes collected by trawling. The δ13C of sedimentary organic matter (SOM) from the 200-300 m zone was similar to the δ13C distribution of particulate organic matter in the surface water reported for the study area. The SOM in the zone likely originated from almost exclusively phytoplankton. In contrast, the 13C of SOM was significantly more enriched in shallow areas ≤100 m deep. We infer that not only phytoplankton but also macrophytes could supply organic matter to heterotrophs on the shallow bottom.  相似文献   

15.
The adsorption behavior of drin pesticides from aqueous solution onto acid treated olive stones (ATOS) was investigated using stir bar sorptive extraction and gas chromatography coupled with mass spectroscopy. The effects of sorbent particle size, adsorbent dose, contact time, concentration of pesticide solution and temperature on the adsorption processes were systematically studied in batch shaking sorption experiments. Maximum removal efficiency (94.8%) was reached for aldrin (0.5 mg L−1) using the fraction 63–100 μm of ATOS (solid/liquid ratio: 1 g L−1). Experimental data were modeled by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherms. The Freundlich isotherm model (R2 = 0.98–0.99) fitted the equilibrium data better than the Langmuir and D–R isotherm models, with low sum of error values (SE = 1.4–9.2%). The mean adsorption free energy derived from the D–R isotherm model (R2 = 0.95–0.99) showed that the adsorption of drin pesticides was taken place by weak physical forces, such as van der Waals forces and hydrogen bonding. The calculated thermodynamic parameters, ΔH, ΔS and ΔG prove that drin pesticides adsorption on ATOS was feasible, spontaneous and exothermic under examined conditions. The pseudo first order, pseudo second order kinetic and the intra-particle diffusion models were used to describe the kinetic data and rate constants were evaluated.  相似文献   

16.
Ethyl acetate removal from an air stream was carried out by using a flat composite membrane bioreactor. The composite membrane consisted of a dense polydimethylsiloxane top layer with an average thickness of 0.3 μm supported in a porous polyacrylonitrile layer (50 μm). The membrane bioreactor (MBR) was operated during 3 months, and a maximum elimination capacity of 225 g m−3 h−1 at an empty bed residence time of 60 s was observed. Removal efficiencies higher than 95% were obtained for inlet loads lower than 200 g m−3 h−1 and empty bed residence times as short as 15 s. The estimated yield coefficient, determined from the carbon dioxide production, resulted in 0.82 g dry biomass synthesized per gram of ethyl acetate degraded. No data of ethyl acetate treatment in MBR have been found in the literature, but the results illustrate that membrane bioreactors can potentially be a good option for its treatment.  相似文献   

17.
The objectives of this study were to determine the effects of centrifugation on equine sperm total and progressive motility, viability, and acrosomal integrity. We hypothesized that although high centrifugation forces would be detrimental to equine Equus caballus sperm, recovery rates would increase. Ejaculates from six stallions were collected, extended to a concentration of 25 × 106 cells/mL, and subjected for 10 min to (1) no centrifugation (NC) or (2) centrifugation at 400 × g, (3) 900 × g, or (4) 4500 × g. Before and after centrifugation (Day 0), and after 24 h of cooling (Day 1), sperm motility was assessed by computer-assisted semen analysis, and samples were stained with SYBR-14/propidium iodide (PI) for viability and with PI/fluorescein isothiocyanate (FITC)-Peanut aglutinin (PNA) (Arachis hypogaea) for acrosomal integrity. The effect of treatment and day on motility, viability, and acrosomal integrity was determined using a mixed linear model. Compared with the other treatments, centrifugation at 4500 × g reduced all end points measured (P < 0.05). Both 400 × g and 900 × g yielded lower recovery rates than that of 4500 × g (NC = 100.0 ± 0.0%; 400 × g = 54.4 ± 8.6%; 900 × g = 75.0 ± 7.1%; 4500 × g = 97.9 ± 2.8%; P < 0.05). Centrifugation at 400 × g or 900 × g did not damage equine sperm. Based on these findings, further studies of centrifugal forces between 900 × g and 4500 × g are warranted to determine the optimal force that maximizes recovery rate, minimizes sperm damage, and does not affect fertility.  相似文献   

18.
Artificial insemination with doses containing low-sperm numbers has been utilized to optimize the use of elite bulls. Hen egg yolk is widely used as a cryoprotective agent in semen freezing extender protecting the spermatozoa. Its action is due to the presence of low-density lipoproteins (LDL) in the hen egg yolk. The objectives of the present study were to evaluate the effects of the semen dilution to low-sperm number/dose on sperm motility and integrity of sperm plasma membrane in the cryopreservation process, using two commercial extenders (Triladyl®, Bioxcell®) and LDL extender prepared in our laboratory, 97% purity. Fifteen ejaculates were collected from five fertile crossbred bulls (Bos taurus × Bos indicus). After collection, sperm motility was examined by Computer-Assisted Semen Analysis (Hamilton Thorne), morphological sperm characteristics were evaluated by differential interference microscopy and the integrity of plasma membranes was determined using the hypo-osmotic swelling test. The semen was subsequently divided into three aliquots and diluted with the three extenders into 120 × 106, 60 × 106 and 20 × 106 sperm/mL, corresponding to 30 × 106, 15 × 106 and 5 × 106 sperm/dose, respectively. This study revealed that LDL extender was more effective in preservation of motility and integrity of the plasma membrane of spermatozoa than Bioxcell® and Triladyl® (p < 0.05), but no significant difference was observed between Triladyl® and Bioxcell®. Therefore we can conclude that LDL extender could be used instead of Triladyl® or Bioxcell® at low semen concentration per dose for elite bulls, it also could be envisaged for the industry of sex-stored semen.  相似文献   

19.
20.
In a study of degree of lower body symmetry in 73 elite Jamaican track and field athletes we show that both their knees and ankles (but not their feet) are–on average–significantly more symmetrical than those of 116 similarly aged controls from the rural Jamaican countryside. Within the elite athletes, events ranged from the 100 to the 800 m, and knee and ankle asymmetry was lower for those running the 100 m dashes than those running the longer events with turns. Nevertheless, across all events those with more symmetrical knees and ankles (but not feet) had better results compared to international standards. Regression models considering lower body symmetry combined with gender, age and weight explain 27 to 28% of the variation in performance among athletes, with symmetry related to about 5% of this variation. Within 100 m sprinters, the results suggest that those with more symmetrical knees and ankles ran faster. Altogether, our work confirms earlier findings that knee and probably ankle symmetry are positively associated with sprinting performance, while extending these findings to elite athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号