首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Left ventricular (LV) longitudinal and transverse geometric changes during isovolumic contraction and relaxation are still controversial. This confusion is compounded by traditional definitions of these phases of the cardiac cycle. High-resolution sonomicrometry studies might clarify these issues. Crystals were implanted in six sheep at the LV apex, fibrous trigones, lateral and posterior mitral annulus, base of the aortic right coronary sinus, anterior and septal endocardial wall, papillary muscle tips, and edge of the anterior and posterior mitral leaflets. Changes in distances were time related to LV and aortic pressures and to mitral valve opening. At the beginning of isovolumic contraction, while the mitral valve was still open, the LV endocardial transverse diameter started to shorten while the endocardial longitudinal diameter increased. During isovolumic relaxation, while the mitral valve was closed, LV transverse diameter started to increase while the longitudinal diameter continued to decrease. These findings are inconsistent with the classic definitions of the phases of the cardiac cycle.  相似文献   

3.
The structure and distribution of collagen fibres in chordae tendineae, anterior leaflet and annulus fibrous of human mitral valve has been investigated using high and small angle X-ray diffraction. The molecular packing of collagen in native mitral valve components is very similar to that in native rat tail tendon. The distribution and orientation of collagen fibres in unstretched and stretched specimens has been deduced by the arcing of the high and small angle meridional reflections. Collagen fibres, which are aligned along the chordae tendineae, are preferentially distributed along the branchings of the chordae into the anterior leaflet and then course towards the annulus fibrous. However, in the anterior leaflet a considerable amount of collagen fibres are organized in a tridimensional isotropic network even after high deformation of the tissue.  相似文献   

4.
Mitral valve (MV) annulus mechanics and its effect on annulus dilatation are not well understood. The objective of the current study was to understand annulus tension (AT) during valve closure. A porcine MV rested on top of annulus rings with papillary muscles (PMs) held at slack, normal and taut conditions. The annulus was held by strings in the periphery during valve closure under static trans-mitral pressures. String tensions were measured and further used to calculate the anterior and posterior ATs. Three rings of different sizes were used to simulate normal and dilatated annuli. Fourteen MVs were tested. The anterior ATs were 37.21+/-11.03, 53.86+/-14.98 and 58.87+/-15.72N/m, respectively, at the slack, normal and taut PM positions in the normal annulus at the trans-mitral pressure of 16.3kPa (122mmHg). The posterior ATs were 24.52+/-5.68, 36.29+/-8.89 and 42.32+/-11.82N/m, respectively, at the slack, normal and taut PM positions in the normal annulus at the trans-mitral pressure of 16.3kPa (122mmHg). AT increased as the PM changed from slack to normal, then to taut PM positions. The AT increases with the increase of annulus area and linearly with the increase of trans-mitral pressure. The AT increases with the increases of apical PM displacement and dilatated annulus area, and reduces the potential of annulus dilatation. Low trans-mitral pressure due to existent mitral regurgitation, and MV prolapse increase the potential of annulus dilatation.  相似文献   

5.
This study presents a three-dimensional finite element model of the mitral apparatus using a hyperelastic transversely isotropic material model for the leaflets. The objectives of this study are to illustrate the effects of the annulus shape on the chordal force distribution and on the mitral valve response during systole, to investigate the role of the anterior secondary (strut) chordae and to study the influence of thickness of the leaflets on the leaflets stresses. Hence, analyses are conducted with a moving and fixed saddle shaped annulus and with and without anterior secondary chordae. We found that the tension in the secondary chordae represents 31% of the load carried by the papillary muscles. When removing the anterior secondary chordae, the tension in the primary anterior chordae is almost doubled, the displacement of the anterior leaflet toward the left atrium is also increased. The moving annulus configuration with an increasing annulus saddle height does not give significant changes in the chordal force distribution and in the leaflet stress compared to the fixed annulus. The results also show that the maximum principle stresses in the anterior leaflet are carried by the collagen fibers. The stresses calculated in the leaflets are very sensitive to the thickness employed.  相似文献   

6.
The mitral valve is a highly heterogeneous tissue composed of two leaflets, anterior and posterior, whose unique composition and regional differences in material properties are essential to overall valve function. While mitral valve mechanics have been studied for many decades, traditional testing methods limit the spatial resolution of measurements and can be destructive. Optical coherence elastography (OCE) is an emerging method for measuring viscoelastic properties of tissues in a noninvasive, nondestructive manner. In this study, we employed air-pulse OCE to measure the spatial variation in mitral valve elastic properties with micro-scale resolution at 1 mm increments along the radial length of the leaflets. We analyzed differences between the leaflets, as well as between regions of the valve. We found that the anterior leaflet has a higher elastic wave velocity, which is reported as a surrogate for stiffness, than the posterior leaflet, most notably at the annular edge of the sample. In addition, we found a spatial elastic gradient in the anterior leaflet, where the annular edge was found to have a greater elastic wave velocity than the free edge. This gradient was less pronounced in the posterior leaflet. These patterns were confirmed using established uniaxial tensile testing methods. Overall, the anterior leaflet was stiffer and had greater heterogeneity in its mechanical properties than the posterior leaflet. This study measures differences between the two mitral leaflets with greater resolution than previously feasible and demonstrates a method that may be suitable for assessing valve mechanics following repair or during the engineering of synthetic valve replacements.  相似文献   

7.
Bacterial endocarditis, caused mainly by Staphylococcus aureus, was found at autopsy in five patients who had a calcified posterior mitral valve annulus. Clincopathologic correlation indicates that the infection should be suspected in elderly patients with a calcified mitral annulus, the murmur of mitral insufficiency, fever, anemia, polymorphonuclear leukocytosis and a positive blood culture, regardless of evidence of peripheral embolism or of another disease that could cause the last four features. Pertinent pathologic findings are a calcified mitral valve annulus, vegetations of bacterial endocarditis towards the base of the posterior leaflet associated with leaflet perforation and an annulus abscess, and no other valvular disease. The infection may develop on the atrial aspect of a leaflet ulcerated by the calcium mass or may begin on its ventricular aspect, subsequently perforating the leaflet and infecting its atrial surface.  相似文献   

8.
Knowledge of mitral valve (MV) mechanics is essential for the understanding of normal MV function, and the design and evaluation of new surgical repair procedures. In the present study, we extended our investigation of MV dynamic strain behavior to quantify the dynamic strain on the central region of the posterior leaflet. Native porcine MVs were mounted in an in-vitro physiologic flow loop. The papillary muscle (PM) positions were set to the normal, taut, and slack states to simulate physiological and pathological PM positions. Leaflet deformation was measured by tracking the displacements of 16 small markers placed in the central region of the posterior leaflet. Local leaflet tissue strain and strain rates were calculated from the measured displacements under dynamic loading conditions. A total of 18 mitral valves were studied. Our findings indicated the following: (1) There was a rapid rise in posterior leaflet strain during valve closure followed by a plateau where no additional strain (i.e., no creep) occurred. (2) The strain field was highly anisotropic with larger stretches and stretch rates in the radial direction. There were negligible stretches, or even compression (stretch < 1) in the circumferential direction at the beginning of valve closure. (3) The areal strain curves were similar to the stretches in the trends. The posterior leaflet showed no significant differences in either peak stretches or stretch rates during valve closure between the normal, taut, and slack PM positions. (4) As compared with the anterior leaflet, the posterior leaflet demonstrated overall lower stretch rates in the normal PM position. However, the slack and taut PM positions did not demonstrate the significant difference in the stretch rates and areal strain rates between the posterior leaflet and the anterior leaflet. The MV posterior leaflet exhibited pronounced mechanically anisotropic behavior Loading rates of the MV posterior leaflet were very high. The PM positions influenced neither peak stretch nor stretch rates in the central area of the posterior leaflet. The stretch rates and areal strain rates were significantly lower in the posterior leaflet than those measured in the anterior leaflet in the normal PM position. However, the slack and taut PM positions did not demonstrate the significant differences between the posterior leaflet and the anterior leaflet. We conclude that PM positions may influence the posterior strain in a different way as compared to the anterior leaflet.  相似文献   

9.
To estimate frequency of the posterior mitral valve leaflet prolapse in routinely performed left ventriculography, 1000 consecutive ventriculograms of the right anterior oblique projection were analyzed. A group of patients consisted of 511 women and 489 men at mean age 46,5 years. Clinical diagnosis of heart lesions, myocardial disease, pulmonary hypertension or arrhythmias were indications for hemodynamic studies. In the investigated group of patients, there were no patients with clinical diagnosis of the coronary artery disease. Prolapse of the posterior mitral valve leaflet was diagnosed in 59 patients. Idiopathic mitral valve prolapse was diagnosed in 10 patients. Prolapse of the posterior mitral valve leaflet was most frequent in atrial septal defect (16.6%), myocardial lesion (12.5%), and after mitral commissurotomy (8.9%). Posterior mitral valve leaflet prolapse is not a frequent anomaly in routinely performed left ventriculography. Relatively often occurrence of the mitral valve prolapse in atrial septal defect and only occasional in the aortic lesions and dilated cardiomyopathy seems to point out at a role of the left ventricle size in pathogenesis of this syndrome.  相似文献   

10.
Mitral valve repair is preferable to mitral valve replacement because of low rate of thromboembolism, resistance to endocarditis, excellent late durability, and no need for anticoagulation in the majority of patients. This article describes 2 novel techniques for repairing the anterior mitral leaflet prolapse. The extended chordal transfer is achieved by transferring an extended segment of posterior mitral leaflet and, rotational chordal transfer, by rotating the transferred segment either vertical or horizontal. Both techniques are simple and reproducible. It uses patient's own natural chorda and eliminates the problem of knotting and determination of appropriate chordal length faced with other techniques.  相似文献   

11.
12.
Damage of the annulus fibrosus is implicated in common spinal pathologies. The objective of this study was to obtain a quantitative relationship between both the number of cycles and the magnitude of tensile strain resulting in damage to the annulus fibrosus. Four rectangular tensile specimens oriented in the circumferential direction were harvested from the outer annulus of 8 bovine caudal discs (n = 32) and subjected to one of four tensile testing protocols: (i) ultimate tensile strain (UTS) test; (ii) baseline cyclic test with 4 series of 400 cycles of baseline cyclic loading (peak strain = 20% UTS); (iii & iv) acute and fatigue damage cyclic tests consisting of 4 x 400 cycles of baseline cyclic loading with intermittent loading to 1 and 100 cycles, respectively, with peak tensile strain of 40%, 60%, and 80% UTS. Normalized peak stress for all mechanically loaded specimens was reduced from 0.89 to 0.11 of the baseline control levels, and depended on the magnitude of damaging strain and number of cycles at that damaging strain. Baseline, acute, and fatigue protocols resulted in permanent deformation of 3.5%, 6.7% and 9.6% elongation, respectively. Damage to the laminate structure of the annulus in the absence of biochemical activity in this study was assessed using histology, transmission electron microscopy, and biochemical measurements and was most likely a result of separation of annulus layers (i.e., delamination). Permanent elongation and stress reduction in the annulus may manifest in the motion segment as sub-catastrophic damage including increased neutral zone, disc bulging, and loss of nucleus pulposus pressure. The preparation of rectangular tensile strip specimens required cutting of collagen fibers and may influence absolute values of results, however, it is not expected to affect the comparisons between loading groups or dose-response reported.  相似文献   

13.
A 74-year-old man after multiple mitral valve surgeries underwent catheter ablation of a bi-atrial tachycardia (BiAT). Ultra-high resolution activation mapping exhibited a reentrant circuit propagating around the inferior to anterior mitral annulus and right atrial (RA) septum with two interatrial connections. At the transeptal puncture site, continuous fractionated electrograms were recorded during the BiAT, and entrainment pacing revealed a post-pacing interval similar to the tachycardia cycle length, which suggested that the interatrial conduction from the RA to the left atrium (LA) was located just at the transseptal puncture site. A radiofrequency application inside the transseptal puncture hole could successfully eliminate the BiAT. The ablation target for BiATs propagating around the mitral annulus and RA septum is generally the anatomical mitral isthmus (MI). Since the present case had multiple incisions on both the RA and LA septum due to mitral valve surgeries, there was the possibility of the occurrence of a BiAT including the RA and LA septum after performing an MI linear ablation. Therefore, the preferable ablation target for the BiAT in the present case appeared to be the interatrial connection. Ultra-high resolution detailed mapping not only on the atrial endocardium but also in the transseptal puncture hole may be useful for identifying a critical interatrial connection of BiAT circuits.  相似文献   

14.
In two patients with atypical myxomas of the left atrium, two-dimensional echocardiography furnished valuable diagnostic information. In one patient, who had previously developed an embolism at the right brachial artery, M-mode echocardiography revealed an abnormal band of echoes within the left atrium. Two-dimensional echocardiography showed a globular cluster of echoes that remained within the left atrial cavity throughout the cardiac cycle; left ventricular angiography confirmed the ultrasonic findings of an intraatrial mass. At surgery, a calcified, nonprolapsing myxoma was excised from the interatrial septum. The second patient had clinical as well as M-mode echographic features of mitral stenosis. Cardiac catheterization showed a significant gradient across the mitral valve, but the left ventriculogram was normal except for an unusual pattern of mitral regurgitation. Subsequent two-dimensional echocardiography revealed a mass of echoes that prolapsed through the mitral valve during diastole. At surgery, a left atrial myxoma was found attached to the posterior mitral annulus. Our experience indicates that two-dimensional ultrasound is superior to conventional echocardiography for detecting unusual cardiac masses.  相似文献   

15.
The material properties of the mitral valve chordae tendineae are important for the understanding of leaflet coaptation configuration and chordal pathology. There is limited information about the mechanical properties of the chordae during physiologic loading. Dual camera stereo photogrammetry was used to measure strains of the chordae in vitro under physiologic loading conditions. Two high-speed, high-resolution cameras captured the movement of graphite markers attached to the central section of the chordae. A uniaxial test simulating the same loading conditions was conducted on the same chordae using the same markers. The maximum strain experienced during the cardiac cycle was 4.29% +/- 3.43%. The loading rate was higher at 75.3% +/- 48.6% strain per second than the unloading rate at -54.8% +/- -56.6% strain per second. The anterior lateral strut chordae had a higher maximum strain (5.7% +/- 3.8%) and loading rate (80.5% +/- 51.9% strain per second) than the posterior medial strut chordae (5.5% +/- 2.3% strain and 68.1% +/- 48.3% strain per second). The posterior medial strut chordae had a higher unloading rate (-68.5% +/- -59.1% strain per second) than the anterior lateral strut chordae (-44.9% +/- -57.2% strain per second). Although the anterior lateral and posterior medial strut chordae have a significantly different diameter and length, they experience a similar strain, strain rate, and tension. In conclusion, a non-destructive technique was developed to measure in vitro chordal strain in the mitral valve. This technique allows the investigation of the behavior of biological tissues under physiologic loading conditions.  相似文献   

16.
The aim of this randomized, prospective, study was to evaluate postoperative hospital mortality and morbidity after mitral valve repair by comparing two surgical techniques for resolving mitral valve insufficiency in elderly patients. In comparison were: mitral valve repair vs. mitral valve replacement in patients older than 70 years. In period from January 1st 2006 until August 30th 2009. Eighty patients with mitral valve disease, isolated or associated with other comorbidities, were scheduled for mitral valve repair or mitral valve replacement in our institution. Patients were randomized in two groups, one scheduled for mitral valve repair and another one for mitral valve replacement using the envelope method with random numbers. Results show no difference in hospital mortality and morbidity postoperatively in both groups. In group undergoing valve replacement we had one significant complication of ventricle rupture in emphatically calcified posterior part of mitral valve annulus. In conclusion we found no distinction in postoperative hospital mortality and morbidity after using one of two surgical techniques.  相似文献   

17.
Annuloplasty ring repair is a common procedure for the correction of mitral valve regurgitation. Commercially available rings vary in dimensions and material properties. Annuloplasty ring suture dehiscence from the native annulus is a catastrophic yet poorly understood phenomenon that has been reported across ring types. Recognizing that sutures typically dehisce from the structurally weaker posterior annulus, our group is conducting a multi-part study in search of ring design parameters that influence forces acting on posterior annular sutures in the beating heart. Herein, we report the effect of ring rigidity on suture forces. Measurements utilized custom force sensors, attached to annuloplasty rings and implanted in normal ovine subjects via standard surgical procedure. Tested rings included the semi-rigid Physio (Edwards Lifesciences) and rigid and flexible prototypes of matching geometry. While no significant differences due to ring stiffness existed for sutures in the anterior region, posterior forces were significantly reduced with use of the flexible ring (rigid: 1.95 ± 0.96 N, semi-rigid: 1.76 ± 1.19 N, flexible: 1.04 ± 0.63 N; p < 0.001). The ratio of anterior to posterior FC scaled positively with increasing flexibility (p < 0.001), and posterior forces took more time to reach their peak load when a flexible ring was used (p < 0.001). This suggests a more rigid ring enables more rapid/complete force equilibration around the suture network, transferring higher anterior forces to the weaker posterior tissue. For mitral annuloplasties requiring ring rigidity, we propose a ring design concept to potentially disrupt this force transfer and improve suture retention.  相似文献   

18.
Despite continued progress in the treatment of aortic valve (AV) disease, current treatments continue to be challenged to consistently restore AV function for extended durations. Improved approaches for AV repair and replacement rests upon our ability to more fully comprehend and simulate AV function. While the elastic behavior the AV leaflet (AVL) has been previously investigated, time-dependent behaviors under physiological biaxial loading states have yet to be quantified. In the current study, we performed strain rate, creep, and stress-relaxation experiments using porcine AVL under planar biaxial stretch and loaded to physiological levels (60 N/m equi-biaxial tension), with strain rates ranging from quasi-static to physiologic. The resulting stress-strain responses were found to be independent of strain rate, as was the observed low level of hysteresis ( approximately 17%). Stress relaxation and creep results indicated that while the AVL exhibited significant stress relaxation, it exhibited negligible creep over the 3h test duration. These results are all in accordance with our previous findings for the mitral valve anterior leaflet (MVAL) [Grashow, J.S., Sacks, M.S., Liao, J., Yoganathan, A.P., 2006a. Planar biaxial creep and stress relaxatin of the mitral valve anterior leaflet. Annals of Biomedical Engineering 34 (10), 1509-1518; Grashow, J.S., Yoganathan, A.P., Sacks, M.S., 2006b. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering 34 (2), 315-325], and support our observations that valvular tissues are functionally anisotropic, quasi-elastic biological materials. These results appear to be unique to valvular tissues, and indicate an ability to withstand loading without time-dependent effects under physiologic loading conditions. Based on a recent study that suggested valvular collagen fibrils are not intrinsically viscoelastic [Liao, J., Yang, L., Grashow, J., Sacks, M.S., 2007. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. Journal of Biomechanical Engineering 129 (1), 78-87], we speculate that the mechanisms underlying this quasi-elastic behavior may be attributed to inter-fibrillar structures unique to valvular tissues. These mechanisms are an important functional aspect of native valvular tissues, and are likely critical to improve our understanding of valvular disease and help guide the development of valvular tissue engineering and surgical repair.  相似文献   

19.
Unusual echocardiographic findings in a 58-year-old woman with a history of rheumatic fever and an angiographically demonstrated prolapsing left atrial myxoma are presented. With variations of gain and damping controls, it was possible to isolate a more distinct anterior mitral leaflet echo, or a more posterior linear echo, thought to represent the prolapsing tumor. The tumor, instead of presenting as a cloud of echoes behind the anterior mitral valve leaflet, demonstrated an alternate pattern of a single linear dense echo at this location. Echocardiography, though very useful in the diagnosis of left atrial tumors, can be fallible at times.  相似文献   

20.
Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号