首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures.  相似文献   

2.
Studies seeking to determine the effects of gait retraining through biofeedback on peak tibial acceleration (PTA) assume that this biometric trait is a valid measure of impact loading that is reliable both within and between sessions. However, reliability and validity data were lacking for axial and resultant PTAs along the speed range of over-ground endurance running. A wearable system was developed to continuously measure 3D tibial acceleration and to detect PTAs in real-time. Thirteen rearfoot runners ran at 2.55, 3.20 and 5.10 m·s−1 over an instrumented runway in two sessions with re-attachment of the system. Intraclass correlation coefficients (ICCs) were used to determine within-session reliability. Repeatability was evaluated by paired T-tests and ICCs. Concerning validity, axial and resultant PTAs were correlated to the peak vertical impact loading rate (LR) of the ground reaction force. Additionally, speed should affect impact loading magnitude. Hence, magnitudes were compared across speeds by RM-ANOVA. Within a session, ICCs were over 0.90 and reasonable for clinical measurements. Between sessions, the magnitudes remained statistically similar with ICCs ranging from 0.50 to 0.59 for axial PTA and from 0.53 to 0.81 for resultant PTA. Peak accelerations of the lower leg segment correlated to LR with larger coefficients for axial PTA (r range: 0.64–0.84) than for the resultant PTA per speed condition. The magnitude of each impact measure increased with speed. These data suggest that PTAs registered per stand-alone system can be useful during level, over-ground, rearfoot running to evaluate impact loading in the time domain when force platforms are unavailable in studies with repeated measurements.  相似文献   

3.
Maintenance of conditioning of 40-Hz EEG activity was investigated in six adults 1 to 3 years after they had experienced biofeedback training to increase 40-Hz EEG. Subjects were first retrained to alternately increase and suppress 40-Hz EEG. All six subjects achieved a preset performance criterion in 16–20 minutes. Five of these subjects also subsequently demonstrated significant control of 40-Hz EEG without feedback. The sixth subject did not demonstrate control after 76 minutes and four sessions of attempted retraining with feedback. Transfer of 40-Hz EEG control to a problem-solving task was tested in all subjects in a final session. Cognitive test items were presented and subjects were instructed to alternately increase and suppress 40-Hz EEG while solving the problems. Rates of 40-Hz EEG in suppression periods during problem solving were significantly greater than during suppression periods without problems. No significant differences in problem-solving performance were found comparing 40-Hz increase and suppression periods. This study supports previous research suggesting an association between 40-Hz EEG and mental activity, and suggests methods for further study of transfer of EEG biofeedback effects.  相似文献   

4.
Running is a popular sport and recreational physical activity worldwide. Musculoskeletal injuries in runners are common and may be attributed to the inability to control pelvic equilibrium in the coronal plane. This lack of pelvic control in the frontal plane can stem from dysfunction of the gluteus medius. The aim of this systematic review was therefore to: (i) compile evidence of the activity profile of gluteus medius when running; (ii) identify how gluteus medius activity (electromyography) varies with speed, cadence and gender when running; (iii) compare gluteus medius activity in injured runners to matched controls. Seven electronic databases were searched from their earliest date until March 2015. Thirteen studies met our eligibility criteria. The activity profile was mono-phasic with a peak during initial loading (four studies). Gluteus medius amplitude increases with running speed; this is most evident in females. The muscles’ activity has been recorded in injured runners with Achilles tendinopathy (two studies) and patellofemoral pain syndrome (three studies). The strongest evidence indicates a moderate and significant reduction in gluteus medius duration of activity when running in people with patellofemoral pain syndrome. This dysfunction can potentially be mediated with running retraining strategies.  相似文献   

5.
Ground reaction forces in running: a reexamination   总被引:6,自引:0,他引:6  
  相似文献   

6.
Accelerometers are increasingly used tools for gait analysis, but there remains a lack of research on their application to running and their ability to classify running patterns. The purpose of this study was to conduct an exploratory examination into the capability of a tri-axial accelerometer to classify runners of different training backgrounds and experience levels, according to their 3-dimensional (3D) accelerometer data patterns. Training background was examined with 14 competitive soccer players and 12 experienced marathon runners, and experience level was examined with 16 first-time and the same 12 experienced marathon runners. Discrete variables were extracted from 3D accelerations during a short run using root mean square, wavelet transformation, and autocorrelation procedures. A principal component analysis (PCA) was conducted on all variables, including gait speed to account for covariance. Eight PCs were retained, explaining 88% of the variance in the data. A stepwise discriminant analysis of PCs was used to determine the binary classification accuracy for training background and experience level, with and without the PC of Speed. With Speed, the accelerometer correctly classified 96% of runners for both training background and experience level. Without Speed, the accelerometer correctly classified 85% of runners based on training background, but only 68% based on experience level. These findings suggest that the accelerometer is effective in classifying athletes of different training backgrounds, but is less effective for classifying runners of different experience levels where gait speed is the primary discriminator.  相似文献   

7.
Patellofemoral pain is common amongst recreational runners and associated with altered running kinematics. However, it is currently unclear how sex may influence kinematic differences previously reported in runners with patellofemoral pain. This case-control study aimed to evaluate lower limb kinematics in males and females with and without patellofemoral pain during running. Lower limb 3D kinematics were assessed in 20 runners with patellofemoral pain (11 females, 9 males) and 20 asymptomatic runners (11 females, 9 males) during a 3 km treadmill run. Variables of interest included peak hip adduction, internal rotation and flexion angles; and peak knee flexion angle, given their previously reported association with patellofemoral pain. Age, height, mass, weekly run distance and step rate were not significantly different between groups. Mixed-sex runners with patellofemoral pain were found to run with a significantly greater peak hip adduction angle (mean difference = 4.9°, d = 0.91, 95% CI 1.4–8.2, p = 0.01) when compared to matched controls, but analyses for all other kinematic variables were non-significant. Females with patellofemoral pain ran with a significantly greater peak hip adduction angle compared to female controls (mean difference = 6.6°, p = 0.02, F = 3.41, 95% CI 0.4–12.8). Analyses for all other kinematic variables between groups (males and females with/without PFP) were non-significant. Differences in peak hip adduction between those with and without patellofemoral pain during running appear to be driven by females. This potentially highlights different kinematic treatment targets between males and females. Future research is encouraged to report lower limb kinematic variables in runners with patellofemoral pain separately for males and females.  相似文献   

8.
9.
The external knee adduction moment (KAM) measured during gait is an indicator of tibiofemoral joint osteoarthritis progression and various strategies have been proposed to lower it. Gait retraining has been shown to be an effective, noninvasive approach for lowering the KAM. We present a new gait retraining approach in which the KAM is fed back to subjects in real-time during ambulation. A study was conducted in which 16 healthy subjects learned to alter gait patterns to lower the KAM through visual or tactile (vibration) feedback. Participants converged on a comfortable gait in just a few minutes by using the feedback to iterate on various kinematic modifications. All subjects adopted altered gait patterns with lower KAM compared with normal ambulation (average reduction of 20.7%). Tactile and visual feedbacks were equally effective for real-time training, although subjects using tactile feedback took longer to converge on an acceptable gait. This study shows that real-time feedback of the KAM can greatly increase the effectiveness and efficiency of subject-specific gait retraining compared with conventional methods.  相似文献   

10.
The purpose of this feasibility study was to examine changes in frontal plane knee and hip walking biomechanics following a gait retraining strategy focused on increasing lateral trunk lean and to quantify reports of difficulty and joint discomfort when performing such a gait modification. After undergoing a baseline analysis of normal walking, 9 young, healthy participants were trained to modify their gait to exhibit small (4°), medium (8°), and large (12°) amounts of lateral trunk lean. Training was guided by the use of real-time biofeedback of the actual trunk lean angle. Peak frontal plane external knee and hip joint moments were compared across conditions. Participants were asked to report the degree of difficulty and the presence of any joint discomfort for each amount of trunk lean modification. Small (4°), medium (8°), and large (12°) amounts of lateral trunk lean reduced the peak external knee adduction moment (KAM) by 7%, 21%, and 25%, respectively, though the peak KAM was only significantly less in the medium and large conditions (p<0.001). Increased trunk lean also significantly reduced the peak external hip adduction moments (p<0.001). All participants reported at least some difficulty performing the exaggerated trunk lean pattern and three participants reported ipsilateral knee, hip, and/or lower spine discomfort. Results from this study indicate that a gait pattern with increased lateral trunk lean can effectively reduce frontal plane joint moments. Though these findings have implications for pathological populations, learning this gait pattern was associated with some difficulty and joint discomfort.  相似文献   

11.
Stiffness adaptations in shod running   总被引:3,自引:0,他引:3  
When mechanical parameters of running are measured, runners have to be accustomed to testing conditions. Nevertheless, habituated runners could still show slight evolutions of their patterns at the beginning of each new running bout. This study investigated runners' stiffness adjustments during shoe and barefoot running and stiffness evolutions of shoes. Twenty-two runners performed two 4-minute bouts at 3.61 m.s-1 shod and barefoot after a 4-min warm-up period. Vertical and leg stiffness decreased during the shoe condition but remained stable in the barefoot condition, p < 0.001. Moreover, an impactor test showed that shoe stiffness increased significantly during the first 4 minutes, p < 0.001. Beyond the 4th minute, shoe properties remained stable. Even if runners were accustomed to the testing condition, as running pattern remained stable during barefoot running, they adjusted their leg and vertical stiffness during shoe running. Moreover, as measurements were taken after a 4-min warm-up period, it could be assumed that shoe properties were stable. Then the stiffness adjustment observed during shoe running might be due to further habituations of the runners to the shod condition. To conclude, it makes sense to run at least 4 minutes before taking measurements in order to avoid runners' stiffness alteration due to shoe property modifications. However, runners could still adapt to the shoe.  相似文献   

12.
Wearable technology can be used to quantify running biomechanical patterns in a runner’s natural environment, however, changes in external factors during outdoor running may influence a runner’s typical gait pattern. Therefore, the purpose of this study was to determine how many runs are needed to define a stable or typical running pattern. Six biomechanical variables were recorded using a single wearable sensor placed on the lower back during ten outdoor runs for twelve runners. Univariate and multivariate distributions were created and based on the probability density function, the percent of similar data points (within 95%) from each unique run for the same runner were determined. Stability was defined when the addition of data from a new run resulted in less than a 5% change in the probability density function. To cross-validate, the percent of similar data points at stability was compared between the same and different runners using a repeated-measures MANOVA (Bonferroni-corrected α = 0.007). The maximum number of runs needed to reach stability for univariate and multivariate analyses was four and five, respectively. There was a significant overall effect on similar data points between the same and different runners (p = 0.001), with a greater percent of similar data points for the same runner compared to other runners (p < 0.007). Based on biomechanical data collected using a single wearable sensor placed on the lower back, this is the first study to show that four (univariate) to five (multivariate) runs are needed to establish a stable running pattern in real-world settings.  相似文献   

13.
Knee varus position and motion have been correlated with increased medial knee loading during gait. The purpose of this study is to determine whether runners with excessive varus excursion (EVE) at the knee demonstrate frontal plane knee and hip kinetics that are different from those of runners with normal varus excursion (NVE). Twelve runners with EVE were compared with 12 NVE subjects using three-dimensional kinematics and kinetics. Frontal plane angles and moments were compared at the knee and hip. Runners with EVE had significantly greater abductor moment of the knee (p = .004) and lower peak abductor moment of the hip (p = .047). Runners with EVE demonstrate knee and hip mechanics thought to be associated with increased medial tibiofemoral loading. Further understanding of how changing hip abductor moments may affect changes in knee abductor moments during running may potentially lead to interventions that augment long-term risk of injury.  相似文献   

14.
Knee osteoarthritis is a progressive disease mediated by high joint loads. Foot progression angle modifications that reduce the knee adduction moment (KAM), a surrogate of knee loading, have demonstrated efficacy in alleviating pain and improving function. Although changes to the foot progression angle are overall beneficial, KAM reductions are not consistent across patients. Moreover, customized interventions are time-consuming and require instrumentation not commonly available in the clinic. We present a regression model that uses minimal clinical data—a set of six features easily obtained in the clinic—to predict the extent of first peak KAM reduction after toe-in gait retraining. For such a model to generalize, the training data must be large and variable. Given the lack of large public datasets that contain different gaits for the same patient, we generated this dataset synthetically. Insights learned from a ground-truth dataset with both baseline and toe-in gait trials (N = 12) enabled the creation of a large (N = 138) synthetic dataset for training the predictive model. On a test set of data collected by a separate research group (N = 15), the first peak KAM reduction was predicted with a mean absolute error of 0.134% body weight * height (%BW*HT). This error is smaller than the standard deviation of the first peak KAM during baseline walking averaged across test subjects (0.306%BW*HT). This work demonstrates the feasibility of training predictive models with synthetic data and provides clinicians with a new tool to predict the outcome of patient-specific gait retraining without requiring gait lab instrumentation.  相似文献   

15.
The purpose of this study was to examine the running performances and associated thermoregulatory responses of African and Caucasian runners in cool and warm conditions. On two separate occasions, 12 (n = 6 African, n = 6 Caucasian) well-trained men ran on a motorized treadmill at 70% of peak treadmill running velocity for 30 min followed by an 8-km self-paced performance run (PR) in cool (15 degrees C) or warm (35 degrees C) humid (60% relative humidity) conditions. Time to complete the PR in the cool condition was not different between groups ( approximately 27 min) but was significantly longer in warm conditions for Caucasian (33.0 +/- 1.6 min) vs. African (29.7 +/- 2.3 min, P < 0.01) runners. Rectal temperatures were not different between groups but were higher during warm compared with cool conditions. During the 8-km PR, sweat rates for Africans (25.3 +/- 2.3 ml/min) were lower compared with Caucasians (32.2 +/- 4.1 ml/min; P < 0.01). Relative rates of heat production were less for Africans than Caucasians in the heat. The finding that African runners ran faster only in the heat despite similar thermoregulatory responses as Caucasian runners suggests that the larger Caucasians reduce their running speed to ensure an optimal rate of heat storage without developing dangerous hyperthermia. According to this model, the superior running performance in the heat of these African runners can be partly attributed to their smaller size and hence their capacity to run faster in the heat while storing heat at the same rate as heavier Caucasian runners.  相似文献   

16.
Researchers conduct gait analyses utilizing both overground and treadmill modes of running. Previous studies comparing these modes analyzed discrete variables. Recently, techniques involving quantitative pattern analysis have assessed kinematic curve similarity in gait. Therefore, the purpose of this study was to compare hip, knee and rearfoot 3-D kinematics between overground and treadmill running using quantitative kinematic curve analysis. Twenty runners ran at 3.35 m/s ± 5% during treadmill and overground conditions while right lower extremity kinematics were recorded. Kinematics of the hip, knee and rearfoot at footstrike and peak were compared using intraclass correlation coefficients. Kinematic curves during stance phase were compared using the trend symmetry method within each subject. The overall average trend symmetry was high, 0.94 (1.0 is perfect symmetry) between running modes. The transverse plane and knee frontal plane exhibited lower similarity (0.86-0.90). Other than a 4.5 degree reduction in rearfoot dorsiflexion at footstrike during treadmill running, all differences were ≤1.5 degrees. 17/18 discrete variables exhibited modest correlations (>0.6) and 8/18 exhibited strong correlations (>0.8). In conclusion, overground and treadmill running kinematic curves were generally similar when averaged across subjects. Although some subjects exhibited differences in transverse plane curves, overall, treadmill running was representative of overground running for most subjects.  相似文献   

17.
Stress fractures are a common and serious overuse injury in runners, particularly female runners. They may be related to loading characteristics of the lower extremity during running stance. Some tibial stress fractures (TSFs) are spiral in nature and, therefore, may be related to torque. Free moment (FM) is a measure of torque about a vertical axis at the interface with the shoe and ground. Increases in FM variables may be related to a history of TSF in runners. The purpose of this cross-sectional study was to investigate differences in FM between female distance runners with and without a history of TSF and, additionally, to investigate the relationship between absolute FM and the occurrence of TSF. A group of 25 currently uninjured female distance runners with a history of TSF (28+/-10 years, 46+/-15 km week(-1)) and an age- and mileage-matched control group of 25 healthy runners with no previous lower extremity fractures (26+/-9 years, 46+/-19 km week(-1)) participated in this study. Ground reaction forces and foot placement on the force platform were recorded during running at 3.7 ms(-1) (+/-5%). Peak adduction, braking peak and absolute peak FM and impulse were compared between groups using one-tailed t-tests. The predictive value of absolute peak FM was investigated via a binary logistic regression. All variables, except impulse, were significantly greater in runners with a history of TSF. Absolute peak FM had a significant predictive relationship with history of TSF. There is a significant relationship between higher values for FM variables and a history of TSF.  相似文献   

18.
The purpose of this study was to examine the accuracy of tests that may be used by distance runners to estimate the lactate threshold. Competitive distance runners/triathletes (N = 27) performed a criterion test that directly measured (blood lactate of 4.0 mmol.L(-1)) the lactate threshold. Subjects then performed 4 tests (VDOT, 3,200-m time trial, 30-minute time trial, Conconi) that estimate the threshold. Mean estimations of the running velocity at the lactate threshold from the 30-minute time trial (standard error of the estimate, SEE, 0.21 m.s(-1)) and VDOT (SEE 0.41 m.s(-1)) methods did not differ (P>0.05) from the criterion. In terms of heart rate, the 30-minute time trial estimation did not significantly differ (SEE 8.0 b.min(-1)) from criterion. These findings suggest that the 30-minute time-trial method should be considered by coaches and distance runners/triathletes as a method for estimating both the running velocity and heart rate at the lactate threshold.  相似文献   

19.
Gait asymmetry may be linked to the tendency for runners to sustain chronic overuse injuries. This paper compares gait asymmetry in female runners who have never sustained a running-related injury to those who have sustained unilateral tibial stress fractures. The symmetry index was used to characterize asymmetry in the kinetics of both subject groups. There were three aims to this study: (1) to report natural levels of asymmetry for healthy, never-injured female runners, (2) to compare asymmetry levels between never-injured runners and those who have sustained stress fractures, and (3) to examine the kinetics between the involved and uninvolved limbs of runners who have sustained stress fractures. In all three aims, peak medial, lateral, braking, vertical impact, and vertical ground reaction forces, average and peak instantaneous vertical loading rates, and peak shock were examined. In the never-injured runner group, natural levels of asymmetry ranged from 3.1% for peak vertical ground reaction force up to 49.8% for peak lateral ground reaction force. Symmetry indices were not significantly different in the runners who had previously sustained stress fractures. The involved limb of the previously injured runners demonstrated higher values for braking and vertical impact ground reaction force and peak shock. Interestingly, these runners appeared to have bilaterally-elevated lateral ground reaction forces and loading rates as compared to the never-injured group, although this was not statistically tested. This suggests that previously injured runners may be closer to the injury threshold and, thus, more susceptible. Asymmetry may simply influence the side on which they become injured.  相似文献   

20.
IntroductionThe purpose of this study was to examine the changes of lower extremity kinetics during walk-to-run (WR) transition and if the changes would follow a non-linear trend within the five strides before WR transition using a constant acceleration protocol.MethodsFourteen participants performed gait transition on the instrumented treadmill at a constant acceleration. Peak, time to peak, and movement and power of hip, knee and ankle joints were recorded and analyzed in sagittal plane for five strides before gait transition. Three Two-way MANOVA were employed to examine the differences of kinetic measures among the five strides. Univariate analysis and Post-Hoc Tukey’s test would be applied if needed. Also, Post hoc polynomial trend analyses were used to examine the trend of the kinetic measures that significantly changed during the five strides.ResultsCompared to the first four strides, significant differences were observed for peaks moments, joint powers, and time to peaks in the last stride before running at ankle, knee, and hip joints respectively. In general, the changes of kinetic variables were following a quadratic trend during the five strides before running.ConclusionJoint kinetic measures actively change in non-linear patterns during the five strides before running to prepare for the gait transition, indicating that the gait transition is an active reorganization rather than a passive reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号