首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to determine the longitudinal and transverse material properties of the human medial collateral ligament (MCL) and to evaluate the ability of three existing constitutive models to describe the material behavior of MCL. Uniaxial test specimens were punched from ten human cadaveric MCLs and tensile tested along and transverse to the collagen fiber direction. Using load and optical strain analysis information, the tangent modulus, tensile strength and ultimate strain were determined. The material coefficients for each constitutive model were determined using nonlinear regression. All specimens failed within the substance of the tissue. Specimens tested along the collagen fiber direction exhibited the typical nonlinear behavior reported for ligaments. This behavior was absent from the stress-strain curves of the transverse specimens. The average tensile strength, ultimate strain, and tangent modulus for the longitudinal specimens was 38.6 +/- 4.8 MPa, 17.1 +/- 1.5 percent, and 332.2 +/- 58.3 MPa, respectively. The average tensile strength, ultimate strain, and tangent modulus for the transverse specimens was 1.7 +/- 0.5 MPa, 11.7 +/- 0.9 percent, and 11.0 +/- 3.6 MPa, respectively. All three constitutive models described the longitudinal behavior of the ligament equally well. However, the ability of the models to describe the transverse behavior of the ligament varied.  相似文献   

2.
The mechanical response of the bovine periodontal ligament (PDL) subjected to uniaxial tension and compression is reported. Several sections normal to the longitudinal axis of bovine incisors and molars were extracted from different depths. Specimens with dimensions 10 x 5 x 2 mm including dentine, PDL and alveolar bone were obtained from these sections. Scanning electron microscopy suggested a strong similarity between the bovine PDL and the human PDL microstructure described in the literature. The prepared specimens were tested in a custom made uniaxial testing machine. They were clamped on their bone and dentine extremities and immersed in a saline solution at 37 degrees C. Stress-strain curves indicated that the PDL is characterized by a non-linear and time-dependent mechanical behaviour with the typical features of collagenous soft tissues. The curves exhibited hysteresis and preconditioning effects. The mechanical parameters evaluated in tension were maximum tangent modulus, strength, maximizer strain and strain energy density. For the molars, all these parameters increased with depth except for the apical region. For the incisors, all parameters increased with depth except ultimate strain which decreased. It was assumed that collagen fibre density and orientation were responsible for these findings.  相似文献   

3.
The renal capsule is an important determinant of whole kidney volume/pressure relationships. To gain further insights into its possible role we examined the mechanical properties of the dog renal capsule using standard materials testing procedures. From each of four locations on the kidney surface, the following mechanical properties of the renal capsule were determined: elastic modulus (force/unit of cross-sectional area theoretically required to double the length of the specimen), tensile stiffness (force/unit width theoretically required to double the length of the specimen), ultimate strength (stress at time of fracture of the specimen), and maximum strain (percent strain at time of the fracture of the specimen). We found that the elastic modulus of the renal capsule from all capsular sites was substantially greater than values previously reported for dog aorta. The stiffness of the capsule covering the anterior-posterior surface of the kidney was found to be about 50% greater than the stiffness of the capsule covering the lateral and polar surfaces of the kidney. The ultimate strength of the anterior-posterior capsule was significantly greater than that of the lateral or polar capsule. This finding may explain the clinical observation that the spontaneous rupture of the renal capsule and parenchyma associated with the acute swelling of transplant rejection is confined almost exclusively to the lateral and polar portions of the renal capsule and cortex. The mean maximum strain at each capsular site was about 35%. This degree of circumferential expansion corresponds to about a doubling of kidney volume. Thus, this observation suggests that the renal capsule is at risk to undergo spontaneous rupture when renal volume increases of this magnitude are observed.  相似文献   

4.
Tendon allografts, when autograft options are limited or when obtaining an autograft is not aligned with the patients’ best interest, play an important role in tendon and ligament reconstruction. To minimize the risk of infectious disease transmission tissue banks perform screening tests and the allografts cleaned are sterilized. The current study examines and compares the initial mechanical properties and histological appearance of supercritical CO2 (SCCO2)-treated and gamma-irradiated porcine extensor tendons. Thirty intact porcine forelimb extensor tendons randomized equally into three groups: control group, gamma-irradiation group, and SCCO2-treated group. Once treated, histological assessment and histomorphologic measurements were made on the histological sections obtained from each tendon while stiffness and ultimate failure loads were evaluated from tensile testing. Histological evaluation of gamma-irradiated tendons showed significant disruption to the hierarchical morphology of the fascicle bundles, which was not evident in SCCO2-treated specimens. Histomorphologic measurements showed a significant increase for measured dead space (void) between tendon fibrils of the gamma-irradiated group comparing to both control and SCCO2 treated groups (p?<?0.01). There was a significant reduction in the ultimate failure load for tendons treated by gamma-irradiation compared to the control group (p?<?0.05). No statistically significant difference was detected between control and SCCO2-treated tendons in the ultimate failure load. Stiffness values were not significantly different between three-study groups. This study suggests that while gamma-irradiation has a deleterious effect on mechanical properties of tendon tissue, SCCO2 does not alter the biomechanical properties and the histological structure of porcine extensor tendons.  相似文献   

5.
The ability to assess the elastic and failure properties of cortical bone at the radial diaphysis has a clinical importance. A new generation of quantitative ultrasound (QUS) devices and peripheral quantitative computed tomography (p-QCT) has been developed to assess non-invasively bone material and structural properties at the distal radius. This anatomical site is characterized by a thin cortical thickness that complicates traditional mechanical testing methods on specimens. Until now, mechanical properties of cortical bone at distal radius (e.g., elastic modulus, yield stress and strain) remain rarely studied probably due to experimental difficulties. The present study introduces an inverse finite-element method strategy to measure the elastic modulus and yield properties of human cortical specimens of the radial diaphysis. Twenty millimeter-thick portions of diaphysis were cut from 40 human radii (ages 45-90) for biomechanical test. Subsequently the same portion was modeled in order to obtain a specimen-specific three dimensional finite-element model (3D-FEM). Longitudinal elastic constants at the apparent level and stress characterizations were performed by coupling mechanical parameters with isotropic linear-elastic simulations. The results indicated that the mean apparent Young's modulus for radial cortical bone was 16 GPa (SD 1.8) and the yield stress was 153 MPa (SD 33). Breaking load was 12,946 N (SD 3644), cortical thickness 2.9 mm (SD 0.6), structural effective strain at the yield (epsilon(y)=0.0097) and failure (epsilon(u)=0.0154) load were also calculated. The 3D-FEM strategy described here may help to investigate bone mechanical properties when some difficulties arise from machining mechanical sample.  相似文献   

6.
Murine bone specimens are used extensively in skeletal research to assess the effects of environmental, physiologic and pathologic factors on their mechanical properties. Given the destructive nature of mechanical testing, it is normally performed as a terminal procedure, where specimens must be preserved without affecting their mechanical properties. To this end, we aimed to study the effects of tissue preservation (freezing and formalin fixation) on the elastic and viscoelastic mechanical properties of murine femur and vertebrae. A total of 120 femurs and 180 vertebral bodies (L3–L5) underwent non-destructive cyclic loading to assess their viscoelastic properties followed by mono-cyclic loading to failure to assess their elastic properties. All specimens underwent re-hydration in 0.9% saline for 30 min prior to mechanical testing. Analysis indicated that stiffness, modulus of elasticity, yield load, yield strength, ultimate load and ultimate strength of frozen and formalin-fixed femurs and vertebrae were not different from fresh specimens. Cyclic loading of both femurs and vertebrae indicated that loss, storage and dynamic moduli were not affected by freezing. However, formalin fixation altered their viscoelastic properties. Our findings suggest that freezing and formalin fixation over a 2-week period do not alter the elastic mechanical properties of murine femurs and vertebrae, provided that specimens are re-hydrated for at least half an hour prior to testing. However, formalin fixation weakened the viscoelastic properties of murine bone by reducing its ability to dissipate viscous energy. Future studies should address the long-term effects of both formalin fixation and freezing on the mechanical properties of murine bone.  相似文献   

7.
Early loosening and implant migration are two problems that lead to failures in cementless (press-fit) femoral knee components of total knee replacements. To begin to address these early failures, this study determined the anterior-posterior mechanical properties from four locations in the human distal femur. Thirty-three cylindrical specimens were removed perpendicular to the press-fit surface after the surgical cuts on 10 human cadaveric femurs (age 71.5+/-14.2 years) had been made. Compression testing was performed that utilized methods to reduce the effects of end-artifacts. The bone mineral apparent density (BMAD), apparent modulus of elasticity, yield and ultimate stress, and yield and ultimate strain were measured for 28 cylindrical specimens. The apparent modulus, yield and ultimate stress, and yield and ultimate strain each significantly differed (p<0.05) in the superior and inferior locations. Linear and power law relationships between superior and inferior mechanical properties and BMAD were determined. The inferior apparent modulus and stresses were higher than those in the superior locations. These results show that the press-fit fixation characteristics of the femoral knee component differ on the anterior shield and posterior condyles. This information will be useful in the assignment of mechanical properties in finite element models for further investigations of femoral knee components. The property-density relations also have applications for implant design and preoperative assessment of bone strength using clinically available tools.  相似文献   

8.
Tensile and compressive properties of cancellous bone   总被引:3,自引:0,他引:3  
The relationship between the mechanical properties of trabecular bone in tension and compression was investigated by non-destructive testing of the same specimens in tension and compression, followed by random allocation to a destructive test in either tension or compression. There was no difference between Young's modulus in tension and compression, and there was a strong positive correlation between the values (R = 0.97). Strength, ultimate strain and work to failure was significantly higher in tensile testing than in compressive testing.  相似文献   

9.
We investigated the possibility that tendons that normally experience relatively high stresses and function as springs during locomotion, such as digital flexors, might develop different mechanical properties from those that experience only relatively low stresses, such as digital extensors. At birth the digital flexor and extensor tendons of pigs have identical mechanical properties, exhibiting higher extensibility and mechanical hysteresis and lower elastic modulus, tensile strength, and elastic energy storage capability than adult tendons. With growth and aging these tendons become much stronger, stiffer, less extensible, and more resilient than at birth. Furthermore, these alterations in elastic properties occur to a significantly greater degree in the high-load-bearing flexors than in the low-stress extensors. At maturity the pig digital flexor tendons have twice the tensile strength and elastic modulus but only half the strain energy dissipation of the corresponding extensor tendons. A morphometric analysis of the digital muscles provides an estimate of maximal in vivo tendon stresses and suggests that the muscle-tendon unit of the digital flexor is designed to function as an elastic energy storage element whereas that of the digital extensor is not. Thus the differences in material properties between mature flexor and extensor tendons are correlated with their physiological functions, i.e., the flexor is much better suited to act as an effective biological spring than is the extensor.  相似文献   

10.
A novel technique to estimate the contribution of finger extensor tendons to joint moment generation was proposed. Effective static moment arms (ESMAs), which represent the net effects of the tendon force on joint moments in static finger postures, were estimated for the 4 degrees of freedom (DOFs) in the index finger. Specifically, the ESMAs for the five tendons contributing to the finger extensor apparatus were estimated by directly correlating the applied tendon force to the measured resultant joint moments in cadaveric hand specimens. Repeated measures analysis of variance revealed that the finger posture, specifically interphalangeal joint angles, had significant effects on the measured ESMA values in 7 out of 20 conditions (four DOFs for each of the five muscles). Extensor digitorum communis and extensor indicis proprius tendons were found to have greater MCP ESMA values when IP joints are flexed, whereas abduction ESMAs of all muscles except extensor digitorum profundus were mainly affected by MCP flexion. The ESMAs were generally smaller than the moment arms estimated in previous studies that employed kinematic measurement techniques. Tendon force distribution within the extensor hood and dissipation into adjacent structures are believed to contribute to the joint moment reductions, which result in smaller ESMA values.  相似文献   

11.
The purpose of this study was to determine the effect of Haversian remodeling on the tensile properties of human cortical bone by testing specimens containing, as far a possible, a single type of bone tissue. Fifty-one specimens were prepared from sixteen fresh tibias, removed at autopsy. Age range was 19-35. Regions were selected so that the specimens would consist almost exclusively of either primary bone or Haversian bone. The ultimate tensile strength, ultimate strain and Young's modulus of elasticity were determined at a loading rate of 0.05 mm s-1. The primary bone specimens were found to have a significantly higher ultimate tensile strength and modulus of elasticity than those formed of Haversian bone.  相似文献   

12.
Cylindrical bone specimens from the proximal epiphysis of ten normal human proximal tibiae were randomly assigned to a destructive axial compression test-series (N = 94) or to a protocol of standardized mechanical conditioning followed by non-destructive repeated testing to 0.6% strain and a final destructive test (N = 121). Specimen X-ray quantitative computed tomography (QCT) obtained at different scanning energies (100, 120 and 140 kVp) yielded closely related results (r = 1.00). Accordingly, predictions of physically measured densities or mechanical properties were not improved by using more than one scanning energy. QCT and physically measured densities were intimately related (QCT at 140 kVp to apparent density using linear regression: r = 0.94, and to apparent ash density: r = 0.95) and did not differ significantly in their ability to predict the mechanical properties, thus favouring the more easily implemented QCT for routine work. Evaluation of the relation of apparent density to Young's modulus and ultimate strength suggested that a power law regression model is preferable to a linear model, although linear model prediction of mechanical properties does not have significantly worse accuracy within the narrow density range investigated. The effect of conditioning on the behaviour of bone specimens subjected to destructive compression tests was to increase the stiffness and strength by approximately 50 and 20% respectively.  相似文献   

13.
The material properties of articular cartilage in the rabbit tibial plateau were determined using biphasic indentation creep tests. Cartilage specimens from matched-pair hind limbs of rabbits approximately 4 months of age and greater than 12 months of age were tested on two locations within each compartment using a custom built materials testing apparatus. A three-way ANOVA was used to determine the effect of leg, compartment, and test location on the material properties (aggregate modulus, permeability, and Poisson's ratio) and thickness of the cartilage for each set of specimens. While no differences were observed in cartilage properties between the left and right legs, differences between compartments were found in each set of specimens. For cartilage from the adolescent group, values for aggregate modulus were 40% less in the medial compartment compared to the lateral compartment, while values for permeability and thickness were greater in the medial compartment compared to the lateral compartment (57% and 30%, respectively). Values for Poisson's ratio were 19% less in the medial compartment compared to the lateral compartment. There was also a strong trend for thickness to differ between test locations. Similar findings were observed for cartilage from the mature group with values for permeability and thickness being greater in the medial compartment compared to the lateral compartment (66% and 34%, respectively). Values for Poisson's ratio were 22% less in the medial compartment compared to the lateral compartment.  相似文献   

14.
Stress wave velocities in bovine patellar tendon.   总被引:1,自引:0,他引:1  
The velocity of longitudinal stress waves in an elastic body is given by the square root of the ratio of its elastic modulus to its density. In tendinous and ligamentous tissue, the elastic modulus increases with strain and with strain rate. Therefore, it was postulated that stress wave velocity would also increase with increasing strain and strain rate. The purpose of this study was to determine the velocity of stress waves in tendinous tissue as a function of strain and to compare these values to those predicted using the elastic modulus derived from quasi-static testing. Five bovine patellar tendons were harvested and potted as bone-tendon-bone specimens. Quasi-static mechanical properties were determined in tension at a deformation rate of 100 mm/s. Impact loading was employed to determine wave velocity at various strain levels, achieved by preloading the tendon. Following impact, there was a measurable delay in force transmission across the specimen and this delay decreased with increasing tendon strain. The wave velocities at tendon strains of 0.0075, 0.015, and 0.0225 were determined to be 260 +/- 52 m/s, 360 +/- 71 m/s, and 461 +/- 94 m/s, respectively. These velocities were significantly (p < 0.01) faster than those predicted using elastic moduli derived from the quasi-static tests by 52, 45, and 41 percent, respectively. This study has documented that stress wave velocity in patellar tendon increases with increasing strain and is underestimated with a modulus estimated from quasi-static testing.  相似文献   

15.
Due to ready availability, decreased cost, and freedom from transmissible diseases in humans such as hepatitis and AIDS, it would be advantageous to use tendon grafts from farm animals as a substitute for human tendon grafts in in vitro experiments aimed at improving the outcome of anterior cruciate ligament (ACL) reconstructive surgery. Thus the objective of this study was to determine whether an anterior cruciate ligament (ACL) graft composed of two loops of bovine common digital extensor tendon has the same viscoelastic, structural, and material properties as a graft composed of a double loop of semitendinosus and gracilis tendons from humans. To satisfy this objective, grafts were constructed from each tissue source. The cross-sectional area was measured using an area micrometer, and each graft was then pulled using a materials testing system while submerged in a saline bath. Using two groups of tendon grafts (n = 10), viscoelastic tests were conducted over a three-day period during which a constant displacement load relaxation test was followed by a constant amplitude, cyclic load creep test (first day), a constant load creep test (second day), and an incremental cyclic load creep test (third day). Load-to-failure tests were performed on two different groups of grafts (n = 8). When the viscoelastic behavior was compared, there were no significant differences in the rate of load decay or the final load (relaxation test) and rates of displacement increase or final displacements (creep tests) (p > 0.115). To compare both the structural and material properties in the toe region (i.e., < 250 N) of the load-elongation curve, the tangent stiffness and modulus functions were computed from parameters used in an exponential model fit to the load (stress)-elongation (strain) data. Although one of the two parameters in the functions was different statistically, this difference translated into a difference of only 0.03 mm in displacement at 250 N of load. In the linear region (i.e., 50-75 percent of ultimate load) of the load-elongation curve, the linear stiffness of the two graft types compared closely (444 N/mm for bovine and 418 N/mm for human) (p = 0.341). At failure, the ultimate loads (2901 N and 2914 N for bovine and human, respectively) and the ultimate stresses (71.8 MPa and 65.6 MPa for bovine and human, respectively) were not significantly different (p > 0.261). The theoretical effect of any differences in properties between these two grafts on the results of two types of in vitro experiments (i.e., effect of surgical variables on knee laxity and structural properties of fixation devices) are discussed. Despite some statistical differences in the properties evaluated, these differences do not translate into important effects on the dependent variables of interest in the experiments. Thus the bovine tendon graft can be substituted for the human tendon graft in both types of experiments.  相似文献   

16.
Elastic moduli, yield stress and ultimate compressive stress were determined for cancellous bone from the femoral head and neck regions of the canine femur. Unconfined compression tests were performed on 5 mm cubic samples which were cut from two femurs. Elastic moduli were measured in three orthogonal directions, and the yield stress and ultimate stress were measured along the proximal-distal axis. The results from this investigation support previous assumptions that the mechanical behavior of canine cancellous bone is qualitatively similar to human cancellous bone. The canine cancellous bone was observed to be anisotropic in elastic modulus. For two thirds of the cubic specimens tested, the elastic modulus was largest in the load-bearing, proximal-distal direction. A linear relationship between yield stress and elastic modulus was observed for canine bone, as is typical of human bone. A similar linear relationship between ultimate stress and elastic modulus was observed. Thus, for canine bone as well as for human bone, failure appears to be governed by a strain level which is position independent. The yield strain of 0.0259 and ultimate strain of 0.0288 for canine bone were both less than the yield strain of 0.0395 reported for human bone.  相似文献   

17.
The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter, m(FFT)=-1.70 degrees /% strain for non-degenerated and -0.95 degrees /% strain for degenerated tissue). Toe-region modulus was significantly correlated with age (r=0.6). Paired t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration.  相似文献   

18.
Tendon-to-bone healing following acute injury is generally poor and often fails to restore normal tendon biomechanical properties. In recent years, the murine patellar tendon (PT) has become an important model system for studying tendon healing and repair due to its genetic tractability and accessible location within the knee. However, the mechanical properties of native murine PT, specifically the regional differences in tissue strains during loading, and the biomechanical outcomes of natural PT-to-bone healing have not been well characterized. Thus, in this study, we analyzed the global biomechanical properties and regional strain patterns of both normal and naturally healing murine PT at three time points (2, 5, and 8 weeks) following acute surgical rupture of the tibial enthesis. Normal murine PT exhibited distinct regional variations in tissue strain, with the insertion region experiencing approximately 2.5 times greater strain than the midsubstance at failure (10.80±2.52% vs. 4.11±1.40%; mean±SEM). Injured tendons showed reduced structural (ultimate load and linear stiffness) and material (ultimate stress and linear modulus) properties compared to both normal and contralateral sham-operated tendons at all healing time points. Injured tendons also displayed increased local strain in the insertion region compared to contralateral shams at both physiologic and failure load levels. 93.3% of injured tendons failed at the tibial insertion, compared to only 60% and 66.7% of normal and sham tendons, respectively. These results indicate that 8 weeks of natural tendon-to-bone healing does not restore normal biomechanical function to the murine PT following injury.  相似文献   

19.
Spatial distribution of hip capsule structural and material properties   总被引:8,自引:0,他引:8  
Contemporary computational models potentially allow the practical incorporation of the effects of a joint capsule on both motion and the loads transmitted to the other parts of the joint. However, the required material properties have not been available for this purpose. To determine these properties we took both hip joints from five fresh-frozen, nondiseased cadavers. Following dissection and potting of the hemi-pelvis, distraction of the intact joint was conducted to measure the structural tangent stiffness of the joint capsule. Anatomical insertion points of the hip capsule were then recorded, and a complete capsulectomy was performed. Once excised, the capsule was sectioned into eight, approximately even sectors, and initial geometrical measurements were recorded for material property calculations. Material properties (i.e., structural tangent stiffness, failure load, ultimate strength, tangent modulus) were calculated using the load-displacement and geometric data collected for each of the sectors. This specimen-to-specimen thickness variability reveals significantly lower (p<0.01) average tangent structural stiffness values in the posterior-inferior portion of the capsule. Explorations of hip stability using numerical models can now be enhanced by incorporation of these experimental capsule data.  相似文献   

20.
This study was designed to compare the compressive mechanical properties of filler materials, Wood's metal, dental stone, and polymethylmethacrylate (PMMA), which are widely used for performing structural testing of whole vertebrae. The effect of strain rate and specimen size on the mechanical properties of the filler materials was examined using standardized specimens and mechanical testing. Because Wood's metal can be reused after remelting, the effect of remelting on the mechanical properties was tested by comparing them before and after remelting. Finite element (FE) models were built to simulate the effect of filler material size and properties on the stiffness of vertebral body construct in compression. Modulus, yield strain, and yield strength were not different between batches (melt-remelt) of Wood's metal. Strain rate had no effect on the modulus of Wood's metal, however, Young's modulus decreased with increasing strain rate in dental stone whereas increased in PMMA. Both Wood's metal and dental stone were significantly stiffer than PMMA (12.7 +/- 1.8 GPa, 10.4 +/- 3.4 GPa, and 2.9 +/- 0.4 GPa, respectively). PMMA had greater yield strength than Wood's metal (62.9 +/- 8.7 MPa and 26.2 +/- 2.6 MPa). All materials exhibited size-dependent modulus values. The FE results indicated that filler materials, if not accounted for, could cause more than 9% variation in vertebral body stiffness. We conclude that Wood's metal is a superior moldable bonding material for biomechanical testing of whole bones, especially whole vertebrae, compared to the other candidate materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号