首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impaired postural stability is associated with a variety of pathologies including sports-related concussion (SRC). Quantification of centre of pressure (COP) movement is the most common focus of instrumented assessment. Frequency-domain COP analyses have focused primarily on summary measures or pre-defined frequency bands but continuous analysis may provide novel and complementary insight into pathological control mechanisms. Our aims were (i) to compare post-SRC COP trajectory changes identified using clinician scores (Modified Balance Error Scoring System (M-BESS)), time-domain COP variables and continuous frequency spectral comparison; and (ii) to characterise frequency spectra changes. Male rugby players aged 15–19 years (n = 135) completed a pre-season baseline assessment comprising vision-obscured double-leg, single-leg and tandem stances on a force platform. Participants diagnosed with SRC during the season (n = 15) underwent repeat testing (median 4 days post-SRC; IQR 2.5–6.5). Baseline and post-SRC COP trajectories were compared using common time-domain COP variables, M-BESS scores and continuous frequency spectra. Post-SRC changes were identified using all three approaches. Spectral analysis revealed the largest effect size (Cliff’s delta 0.39) and was the only method to identify differences in all three stances and in double-leg stance. All post-SRC increases in spectral content were in the anteroposterior direction; all decreases were in the mediolateral direction. Changes were localised to higher frequencies (1.7–8 Hz) except for double-leg stance anteroposterior direction, for which increases were observed throughout the analysed range. Our findings suggest that this method of spectral comparison may provide a more responsive and meaningful measure of postural stability changes after SRC than other commonly-used variables.  相似文献   

2.
Starting stance plays an important role in influencing short-distance sprint speed and, therefore, the ability to reach a ball during sport play. The purpose of this study was to evaluate 4 different starting stances on sprint time. Twenty-six male and female collegiate volleyball players volunteered to participate in 1 testing session. Each subject performed 3 15-ft sprint trials at each of 4 different starting stances (P-parallel, FS-false step, S-staggered, and SFS-staggered false step) in random order. Analysis of variance revealed that there was no significant interaction of sex by stance, but there were main effects for sex (men were faster than women) and stance. The FS (1.18 ± 0.10 seconds), S (1.16 ± 0.07 seconds), and SFS (1.14 ± 0.06 seconds) stances were faster than the P (1.25 ± 0.09 seconds) stance, and the SFS stance was faster than the FS stance. This indicates that starting with a staggered stance (regardless of stepping back) produced the greatest sprinting velocity over the initial 15 feet. Although taking a staggered stance seems counterproductive, the resultant stretch-shortening cycle action and forward body lean likely increase force production of the push-off phase and place the total body center of mass ahead of the contacting foot, thereby, decreasing sprint time.  相似文献   

3.
The influence of foot position on standing balance   总被引:3,自引:0,他引:3  
To test the hypothesis that variations in foot position would significantly affect standing balance, we studied ten normal subjects on a Kistler force platform which measured the travel and center of pressure displacement. With the feet together there was substantially more mediolateral (ML) travel than with the axes of the feet 15, 30 or 45 cm apart and the mean ML position of the center of pressure was displaced toward the right; there was no consistent effect on anteroposterior (AP) travel or position. As the right foot was placed 10 and 30 cm forward or back, the least amount of ML and AP travel occurred with the feet even or at 10 cm either direction; the mean AP and ML position moved toward the foot which was placed more posteriorly. Of the five foot angles ranging from toes-out 45 degrees to toes-in 45 degrees, the extent of ML and AP travel was lowest in the toes-out 25 degrees position and greatest in the toes-in 45 degrees position; the mean AP and ML position was farthest forward and to the right with toes-in 45 degrees. These findings have implications for the prosthetic replacement of the lower limbs, sports, ergonomics and postural sway studies.  相似文献   

4.
This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.  相似文献   

5.
Accurate knowledge of the isolated contributions of joint movements to the three-dimensional displacement of the center of mass (COM) is fundamental for understanding the kinematics of normal walking and for improving the treatment of gait disabilities. Saunders et al. (1953) identified six kinematic mechanisms to explain the efficient progression of the whole-body COM in the sagittal, transverse, and coronal planes. These mechanisms, referred to as the major determinants of gait, were pelvic rotation, pelvic list, stance knee flexion, foot and knee mechanisms, and hip adduction. The aim of the present study was to quantitatively assess the contribution of each major gait determinant to the anteroposterior, vertical, and mediolateral displacements of the COM over one gait cycle. The contribution of each gait determinant was found by applying the concept of an ‘influence coefficient’, wherein the partial derivative of the COM displacement with respect to a prescribed determinant was calculated. The analysis was based on three-dimensional measurements of joint angular displacements obtained from 23 healthy young adults walking at slow, normal and fast speeds. We found that hip flexion, stance knee flexion, and ankle-foot interaction (comprised of ankle plantarflexion, toe flexion and the displacement of the center of pressure) are the major determinants of the displacements of the COM in the sagittal plane, while hip adduction and pelvic list contribute most significantly to the mediolateral displacement of the COM in the coronal plane. Pelvic rotation and pelvic list contribute little to the vertical displacement of the COM at all walking speeds. Pelvic tilt, hip rotation, subtalar inversion, and back extension, abduction and rotation make negligible contributions to the displacements of the COM in all three anatomical planes.  相似文献   

6.
Impaired control of mediolateral body motion during walking is an important health concern. Developing treatments to improve mediolateral control is challenging, partly because the mechanisms by which muscles modulate mediolateral ground reaction force (and thereby modulate mediolateral acceleration of the body mass center) during unimpaired walking are poorly understood. To investigate this, we examined mediolateral ground reaction forces in eight unimpaired subjects walking at four speeds and determined the contributions of muscles, gravity, and velocity-related forces to the mediolateral ground reaction force by analyzing muscle-driven simulations of these subjects. During early stance (0-6% gait cycle), peak ground reaction force on the leading foot was directed laterally and increased significantly (p<0.05) with walking speed. During early single support (14-30% gait cycle), peak ground reaction force on the stance foot was directed medially and increased significantly (p<0.01) with speed. Muscles accounted for more than 92% of the mediolateral ground reaction force over all walking speeds, whereas gravity and velocity-related forces made relatively small contributions. Muscles coordinate mediolateral acceleration via an interplay between the medial ground reaction force contributed by the abductors and the lateral ground reaction forces contributed by the knee extensors, plantarflexors, and adductors. Our findings show how muscles that contribute to forward progression and body-weight support also modulate mediolateral acceleration of the body mass center while weight is transferred from one leg to another during double support.  相似文献   

7.
Individuals with hereditary spastic paraparesis (HSP) are often impaired in their ability to control posture as a result of the neurological and musculoskeletal implications of their condition. This research aimed to assess postural stability during gait in a group of adults with HSP. Ten individuals with HSP and 10 healthy controls underwent computerized gait analysis while walking barefoot along a 10-m track. Two biomechanics methods were used to assess stability: the center of pressure and center of mass separation (COP-COM) method, and the extrapolated center of mass (XCOM) method. Spatiotemporal and kinematic variables were also investigated. The XCOM method identified deficits in mediolateral stability for the HSP group at both heel strike and mid-stance. The group with HSP also had slower walking velocity, lower cadence, more time spent in double stance, larger step widths, and greater lateral trunk flexion than the control group. These results suggest that individuals with HSP adjust characteristics of their gait to minimize the instability arising from their impairments but have residual deficits in mediolateral stability. This may result in an increased risk of falls, particularly in the sideways direction.  相似文献   

8.
The aim of this study was to describe and explain how individual muscles control mediolateral balance during normal walking. Biomechanical modeling and experimental gait data were used to quantify individual muscle contributions to the mediolateral acceleration of the center of mass during the stance phase. We tested the hypothesis that the hip, knee, and ankle extensors, which act primarily in the sagittal plane and contribute significantly to vertical support and forward progression, also accelerate the center of mass in the mediolateral direction. Kinematic, force plate, and muscle EMG data were recorded simultaneously for five healthy subjects who walked at their preferred speeds. The body was modeled as a 10-segment, 23 degree-of-freedom skeleton, actuated by 54 muscles. Joint moments obtained from inverse dynamics were decomposed into muscle forces by solving an optimization problem that minimized the sum of the squares of the muscle activations. Muscles contributed significantly to the mediolateral acceleration of the center of mass throughout stance. Muscles that generated both support and forward progression (vasti, soleus, and gastrocnemius) also accelerated the center of mass laterally, in concert with the hip adductors and the plantarflexor everters. Gravity accelerated the center of mass laterally for most of the stance phase. The hip abductors, anterior and posterior gluteus medius, and, to a much lesser extent, the plantarflexor inverters, actively controlled balance by accelerating the center of mass medially.  相似文献   

9.
This research was directed toward predicting postural equilibrium configurations in normal humans for asymmetric locations of the feet. The objective of the study was to identify trends in the variation of the location of ground center of pressure (COP) with increasing levels of asymmetry in the foot placement. The procedure developed here minimized the muscular effort (active torques) in the lower extremities while maximizing postural stability margins for given foot locations. Minimizing muscular effort led to fully extended knees, and maximal stability margin led to the COP moving toward the rear foot in asymmetric stance. A combined analytical-numerical optimization scheme was used to avoid singularities that can arise due to the fact that at equilibrium postural configurations, the torso lies at or near the workspace boundary of the lower extremities. Experiments were conducted and the results obtained were in keeping with the model predictions. This basic understanding of asymmetric stance is important for studying asymmetric postural mechanics in the presence of external disturbances, and for extending the results from normal subjects to humans at both ends of the life span.  相似文献   

10.
The custom of bound feet among Chinese women has existed for almost a century. This practice has influenced the daily life of Chinese women, especially during everyday locomotion. The primary aim of this study is to analyze the loading patterns of bound feet. Specifically, the plantar pressure and center of pressure were analyzed for peak pressure, contact area, force time integral, center of pressure displacement velocity and trajectory in the anterior-posterior direction via a comparison with normal feet. The key outcomes from this work were that the forefoot and rearfoot of bound feet bear the whole loading during stance phase. The center of pressure displacement velocity of bound feet was also greatly reduced with the shortening of trajectories. This suggests that the proprioceptive system adjusts motor function to adapt to new loading patterns while maintaining locomotive stability. A biomechanical understanding of bound feet may assist with prevention, treatment and rehabilitation of bound feet disorders.  相似文献   

11.
The study investigates the role of lateral muscles and changing stance conditions in anticipatory postural adjustments (APAs). Subjects stood laterally to an aluminum pendulum released by an experimenter and were required to stop it with their right or left hand. Stance conditions were manipulated by having the subjects stand in the following positions: on a single limb (SS), with feet together (narrow base of support, NB), and with feet shoulder width apart (regular base of support, RB). Bilateral EMG activity of dorsal, ventral, and lateral trunk and leg muscles and ground reaction forces were recorded and quantified within the time intervals typical of APAs. Anticipatory postural adjustments were seen in all experimental conditions, and their magnitudes depended on the stance and the side of perturbation. Accordingly, APAs in lateral muscles increased on the side of perturbation in SS condition, while simultaneous activation of dorsal muscles occurred on the contralateral side. Smaller APAs were seen in lateral muscles in conditions with a wider base of support (NB, RB) and APAs in dorsal muscles were smaller in NB – in comparison to RB – stance. The results of the present study provide new data on the role of lateral, ventral, and dorsal muscles in anticipatory postural control when dealing with lateral perturbations in conditions of postural instability.  相似文献   

12.

Background

Current international guidelines advocate achieving at least a 30 % reduction in maximum plantar pressure to reduce the risk of foot ulcers in people with diabetes. However, whether plantar pressures differ in cases with foot ulcers to controls without ulcers is not clear. The aim of this study was to assess if plantar pressures were higher in patients with active plantar diabetic foot ulcers (cases) compared to patients with diabetes without a foot ulcer history (diabetes controls) and people without diabetes or a foot ulcer history (healthy controls).

Methods

Twenty-one cases with diabetic foot ulcers, 69 diabetes controls and 56 healthy controls were recruited for this case-control study. Plantar pressures at ten sites on both feet and stance phase duration were measured using a pre-established protocol. Primary outcomes were mean peak plantar pressure, pressure-time integral and stance phase duration. Non-parametric analyses were used with Holm’s correction to correct for multiple testing. Binary logistic regression models were used to adjust outcomes for age, sex and body mass index. Median differences with 95 % confidence intervals and Cohen’s d values (standardised mean difference) were reported for all significant outcomes.

Results

The majority of ulcers were located on the plantar surface of the hallux and toes. When adjusted for age, sex and body mass index, the mean peak plantar pressure and pressure-time integral of toes and the mid-foot were significantly higher in cases compared to diabetes and healthy controls (p?<?0.05). The stance phase duration was also significantly higher in cases compared to both control groups (p?<?0.05). The main limitations of the study were the small number of cases studied and the inability to adjust analyses for multiple factors.

Conclusions

This study shows that plantar pressures are higher in cases with active diabetic foot ulcers despite having a longer stance phase duration which would be expected to lower plantar pressure. Whether plantar pressure changes can predict ulcer healing should be the focus of future research. These results highlight the importance of offloading feet during active ulceration in addition to before ulceration.
  相似文献   

13.

Objective

Previous studies have demonstrated that ankle muscle fatigue alters postural sway. Our aim was to better understand postural control mechanisms during upright stance following plantar flexor fatigue.

Method

Ten healthy young volunteers, 25.7 ± 2.2 years old, were recruited. Foot center-of-pressure (CoP) displacement data were collected during narrow base upright stance and eyes closed (i.e. blindfolded) conditions. Subjects were instructed to stand upright and as still as possible on a force platform under five test conditions: (1) non-fatigue standing on firm surface; (2) non-fatigue standing on foam; (3) ankle plantar flexor fatigue, standing on firm surface; (4) ankle plantar flexor fatigue, standing on foam; and (5) upper limb fatigue, standing on firm surface. An average of the ten 30-s trials in each of five test conditions was calculated to assess the mean differences between the trials. Traditional measures of postural stability and stabilogram-diffusion analysis (SDA) parameters were analyzed.

Results

Traditional center of pressure parameters were affected by plantar flexor fatigue, especially in the AP direction. For the SDA parameters, plantar flexor fatigue caused significantly higher short-term diffusion coefficients, and critical displacement in both mediolateral (ML) and anteroposterior (AP) directions. Long-term postural sway was different only in the AP direction.

Conclusions

Localized plantar flexor fatigue caused impairment to postural control mainly in the Sagittal plane. The findings indicate that postural corrections, on average, occurred at a higher threshold of sway during plantar flexor fatigue compared to non-fatigue conditions.  相似文献   

14.
Postural stability in standing balance results from the mechanics of body dynamics as well as active neural feedback control processes. Even when an animal or human has multiple legs on the ground, active neural regulation of balance is required. When the postural configuration, or stance, changes, such as when the feet are placed further apart, the mechanical stability of the organism changes, but the degree to which this alters the demands on neural feedback control for postural stability is unknown. We developed a robotic system that mimics the neuromechanical postural control system of a cat in response to lateral perturbations. This simple robotic system allows us to study the interactions between various parameters that contribute to postural stability and cannot be independently varied in biological systems. The robot is a 'planar', two-legged device that maintains compliant balance control in a variety of stance widths when subject to perturbations of the support surface, and in this sense reveals principles of lateral balance control that are also applicable to bipeds. Here we demonstrate that independent variations in either stance width or delayed neural feedback gains can have profound and often surprisingly detrimental effects on the postural stability of the system. Moreover, we show through experimentation and analysis that changing stance width alters fundamental mechanical relationships important in standing balance control and requires a coordinated adjustment of delayed feedback control to maintain postural stability.  相似文献   

15.
To question the relation between uni-and bipedal postural skills, 21 subjects were required to stand on a force platform through uni- and bipedal conditions. These two protocols are commonly used paradigms to assess the balance capacities of healthy and disabled patients. The recorded displacements of the center of pressure (CP) were decomposed along mediolateral and anteroposterior axes and assessed through variance positions and parameters obtained from fractional Brownian motion (fBm) modeling to determine the nature and the spatiotemporal organization of the successive controlling mechanisms. The variances underline the relative independence of the two tasks. Nevertheless, as highlighted by the fBm framework, postural correction is initiated for the unipedal stance after shorter time delays and longer covered distances. When compared to bipedal standing, one of the main characteristics of unipedal standing is to induce better-controlled CP trajectories, as deduced from the scaling regimes computed from the fBm modeling. Lastly, the control of the CP trajectories during the shortest time intervals along the anteroposterior axis appears identical for both uni- and bipedal conditions. Unipedal and bipedal standing controls should thus be viewed as two complementary tasks, each providing specific and complementary insights into the postural control organization.  相似文献   

16.
Fatigue and deficits in postural control may predispose musculoskeletal injury. The purpose of this study was to examine the effects of fatigue at the hip and ankle during frontal plane movements on postural control during single-leg stance. Thirteen healthy volunteers completed two testing sessions 1 week apart consisting of isokinetic fatigue of the frontal plane movers of either the ankle or hip with measures of static unipedal postural control taken before and after fatigue. Postural control was assessed during three 30-s trials of unilateral stance with eyes open before and after the fatigue protocol at each testing session. Mean center of pressure (COP) excursion velocity in the sagittal and frontal planes was compared between pre- and post-fatigue across the two joints. Fatigue of the hip musculature led to postural control impairments in the frontal and sagittal planes, while fatigue of the ankle musculature did not significantly impair postural control in either plane. Our results suggest that there is a greater effect of localized fatigue of the frontal plane movers of the hip compared to the ankle on maintenance of a postural control in single-leg stance.  相似文献   

17.
Human postural sway, as measured by fluctuations of the center of pressure (COP) under the feet of a quietly standing individual, can be characterized as a stochastic process. The fluctuation-dissipation theorem (FDT) provides a linear relationship between the fluctuations of a quasi-static, stochastic system to the same system's relaxation to equilibrium following a perturbation. We applied a similar linear relationship, based on the FDT, to the human postural control system to explore whether anterior-posterior (AP) fluctuations of the COP during quiet stance can be used to predict the AP response of the postural control system to a weak posteriorly directed mechanical perturbation (tug or pull at the waist). We tested 10 healthy elderly (mean age of 69yr) and 10 healthy young (mean age of 25yr) adult subjects. We found that this linear relationship was applicable to the postural control system of all 10 young and eight of the 10 elderly adult subjects. These results suggest that it is possible to predict an individual's dynamic response to a mild perturbation using quiet-stance data, regardless of age. The existence of this FDT-based linear relationship with respect to the human postural control system suggests that, for a given individual, the postural control system may use the same control mechanisms during quiet stance and mild-perturbation conditions, regardless of age.  相似文献   

18.
Diaphyseal morphology of long bones, in part, reflects in vivo loads experienced during the lifetime of an individual. The first metatarsal, as a cornerstone structure of the foot, presumably expresses diaphyseal morphology that reflects loading history of the foot during stance phase of gait. Human feet differ substantially from those of other apes in terms of loading histories when comparing the path of the center of pressure during stance phase, which reflects different weight transfer mechanisms. Here we use a novel approach for quantifying continuous thickness and cross-sectional geometric properties of long bones in order to test explicit hypotheses about loading histories and diaphyseal structure of adult chimpanzee, gorilla, and human first metatarsals. For each hallucal metatarsal, 17 cross sections were extracted at regularly-spaced intervals (2.5% length) between 25% and 65% length. Cortical thickness in cross sections was measured in one degree radially-arranged increments, while second moments of area were measured about neutral axes also in one degree radially-arranged increments. Standardized thicknesses and second moments of area were visualized using false color maps, while penalized discriminant analyses were used to evaluate quantitative species differences. Humans systematically exhibit the thinnest diaphyseal cortices, yet the greatest diaphyseal rigidities, particularly in dorsoplantar regions. Shifts in orientation of maximum second moments of area along the diaphysis also distinguish human hallucal metatarsals from those of chimpanzees and gorillas. Diaphyseal structure reflects different loading regimes, often in predictable ways, with human versus non-human differences probably resulting both from the use of arboreal substrates by non-human apes and by differing spatial relationships between hallux position and orientation of the substrate reaction resultant during stance. The novel morphological approach employed in this study offers the potential for transformative insights into form-function relationships in additional long bones, including those of extinct organisms (e.g., fossils).  相似文献   

19.
A novel approach to quantifying postural stability in single leg stance is assessment of time-to-boundary (TTB) of center of pressure (COP) excursions. TTB measures estimate the time required for the COP to reach the boundary of the base of support if it were to continue on its instantaneous trajectory and velocity, thus quantifying the spatiotemporal characteristics of postural control. Our purposes were to examine: (a) the intrasession reliability of TTB and traditional COP-based measures of postural control, and (b) the correlations between these measures. Twenty-four young women completed three 10-second trials of single-limb quiet standing on each limb. Traditional measures included mean velocity, standard deviation, and range of mediolateral (ML) and anterior-posterior (AP) COP excursions. TTB variables were the absolute minimum, mean of minimum samples, and standard deviation of minimum samples in the ML and AP directions. The intrasession reliability of TTB measures was comparable to traditional COP based measures. Correlations between TTB and traditional COP based measures were weaker than those within each category of measures, indicating that TTB measures capture different aspects of postural control than traditional measures. TTB measures provide a unique method of assessing spatiotemporal characteristics of postural control during single limb stance.  相似文献   

20.
The dynamic relationship among three major vascular control mechanisms that operate on large fractions of cardiac output: arterial baroreflex and renal and mesenteric autoregulation, was investigated in conscious rats. Wistar and spontaneously hypertensive rats were studied in their home cages 10 days after implantation of pulsed Doppler flow probes. There was an oscillation of blood pressure centered at 0.45 Hz that is associated with operation of arterial baroreflexes. Hindquarters blood flow displayed a featureless, "1/f' power spectrum, in which no autoregulatory or baroreflex signatures could be discerned, although active control of resistance over a wide range of frequencies was evident. The renal pressure - flow transfer function was dominated by an autoregulatory mechanism with a resonance peak at 0.25 +/- 0.01 Hz. In the mesenteric circulation an autoregulatory mechanism was seen with a resonance peak at 0.15 +/- 0.01 Hz and another active mechanism was seen above 0.2 Hz that appeared from its negative admittance phase to be a baroreflex. The center frequencies of mesenteric and renal autoregulation and of the arterial baroreflex were related in a ratio of 1 : 1.7 +/- 0.1 : 3.0 +/- 0.2 (approximately 4:7:12). Such relatively high order ratios can be expected to minimize the possibility of phase locking and (or) entrainment among the various control mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号