首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concussion has been linked to the presence of injurious strains in the brain tissues. Research investigating severe brain injury has reported that strains in the brain may be affected by two parameters: magnitude of the acceleration, and duration of that acceleration. However, little is known how this relationship changes in terms of creating risk for brain injury for magnitudes and durations of acceleration common in sporting environments. This has particular implications for the understanding and prevention of concussive risk of injury in sporting environments. The purpose of this research was to examine the interaction between linear and rotational acceleration and duration on maximum principal strain in the brain tissues for loading conditions incurred in sporting environments. Linear and rotational acceleration loading curves of magnitudes and durations similar to those from impact in sport were used as input to the University College Brain Trauma Model and maximum principal strain (MPS) was measured for the different curves. The results demonstrated that magnitude and duration do have an effect on the strain incurred by the brain tissue. As the duration of the acceleration increases, the magnitude required to achieve strains reflecting a high risk of concussion decreases, with rotational acceleration becoming the dominant contributor. The magnitude required to attain a magnitude of MPS representing risk of brain injury was found to be as low as 2500 rad/s2 for impacts of 10–15 ms; indicating that interventions to reduce the risk of concussion in sport must consider the duration of the event while reducing the magnitude of acceleration the head incurs.  相似文献   

2.
Concussion can occur from a variety of events (falls to ice, collisions etc) in ice hockey, and as a result it is important to identify how these different impact sources affect the relationship between impact kinematics and strain that has been found to be associated to this injury. The purpose of this research was to examine the relationship between kinematic variables and strain in the brain for impact sources that led to concussion in ice hockey. Video of professional ice hockey games was analyzed for impacts that resulted in reported clinically diagnosed concussions. The impacts were reconstructed using physical models/ATDs to determine the impact kinematics and then simulated using finite element modelling to determine maximum principal strain and cumulative strain damage measure. A stepwise linear regression was conducted between linear acceleration, change in linear velocity, rotational acceleration, rotational velocity, and strain response in the brain. The results for the entire dataset was that rotational acceleration had the highest r2 value for MPS (r2 = 0.581) and change in rotational velocity for cumulative strain damage measure (r2 = 450). When the impact source (shoulder, elbow, boards, or ice impacts) was isolated the rotational velocity and acceleration r2 value increased, indicating that when evaluating the relationships between kinematics and strain based metrics the characteristics of the impact is an important factor. These results suggest that rotational measures should be included in future standard methods and helmet innovation and design in ice hockey as they have the highest association with strain in the brain tissues.  相似文献   

3.
American football reports high incidences of head injuries, in particular, concussion. Research has described concussion as primarily a rotation dominant injury affecting the diffuse areas of brain tissue. Current standards do not measure how helmets manage rotational acceleration or how acceleration loading curves influence brain deformation from an impact and thus are missing important information in terms of how concussions occur. The purpose of this study was to investigate a proposed three-dimensional impact protocol for use in evaluating football helmets. The dynamic responses resulting from centric and non-centric impact conditions were examined to ascertain the influence they have on brain deformations in different functional regions of the brain that are linked to concussive symptoms. A centric and non-centric protocol was used to impact an American football helmet; the resulting dynamic response data was used in conjunction with a three-dimensional finite element analysis of the human brain to calculate brain tissue deformation. The direction of impact created unique loading conditions, resulting in peaks in different regions of the brain associated with concussive symptoms. The linear and rotational accelerations were not predictive of the brain deformation metrics used in this study. In conclusion, the test protocol used in this study revealed that impact conditions influences the region of loading in functional regions of brain tissue that are associated with the symptoms of concussion. The protocol also demonstrated that using brain deformation metrics may be more appropriate when evaluating risk of concussion than using dynamic response data alone.  相似文献   

4.
Prediction of traumatic and mild traumatic brain injury is an important factor in managing their prevention. Currently, the prediction of these injuries is limited to peak linear and angular acceleration loading curves derived from laboratory reconstructions. However it remains unclear as to what aspect of these loading curves contributes to brain tissue damage. This research uses the University College Dublin Brain Trauma Model (UCDBTM) to analyse three distinct loading curve shapes meant to represent different helmet loading scenarios. The loading curves were applied independently in each axis of linear and angular acceleration and their effect on currently used predictors of TBI and mTBI was examined. Loading curve shape A had a late time to peak, B an early time to peak and C had a consistent plateau. The areas under the curve for all three loading curve shapes were identical. The results indicate that loading curve A produced consistently higher maximum principal strains and Von Mises stress than the other two loading curve types. Loading curve C consistently produced the lowest values of maximum principal strain and Von Mises stress, with loading curve B being lowest in only 2 cases. The areas of peak Von Mises stress and Principal strain also varied depending on loading curve shape and acceleration input.  相似文献   

5.
Abstract

Sporting helmets with linear attenuating strategies are proficient at reducing the risk of traumatic brain injury. However, the continued high incidence of concussion in American football, has led researchers to investigate novel helmet liner strategies. These strategies typically supplement existing technologies by adding or integrating head-helmet decoupling mechanisms. Decoupling strategies aim to redirect or redistribute impact force around the head, reducing impact energy transferred to the brain. This results in decreased brain tissue strain, which is beneficial in injury risk reduction due to the link between tissue strain and concussive injury.

The purpose of this study was to mathematically demonstrate the effect of ten cases, representing theoretical redirection and redistribution helmet liner strategies, on brain tissue strain resulting from impacts to the head. The kinematic response data from twenty head impacts collected in the laboratory was mathematically modified to represent the altered response of the ten different cases and used as input parameters to determine the effect on maximum principal strain (MPS) values, calculated using finite element modeling. The results showed that a reduced dominant coordinate component (contributes the greatest to resultant) of rotational acceleration decreased maximum principal strain in American football helmets. The study theoretically demonstrates that liner strategies, if applied correctly, can influence brain motion, reduce brain tissue strain, and could decrease injury risk in an American football helmet.  相似文献   

6.
Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI seen in humans. However, little is known of the biomechanics of the WDIA method and, to address this, we have developed a four-degrees-of-freedom multi-body mass-spring-damper model for the WDIA test in rats. An analytical expression of the maximum skull acceleration, one of the important head injury predictor, was derived and it shows that the maximum skull acceleration is proportional to the impact velocity but independent of the impactor mass. Furthermore, a dimensional analysis disclosed that the maximum force on the brain and maximum relative displacement between brain and skull are also linearly proportional to impact velocity. Additionally, the effects of the impactor mass were examined through a parametric study from the developed multi-body dynamics model. It was found that increasing impactor mass increased these two brain injury predictors.  相似文献   

7.
Traumatic brain injury (TBI) is an important public health problem, comparable to stroke in incidence and prevalence. Few interventions have proven efficacy in TBI, and clinical trials are, therefore, necessary to advance management in TBI. We describe the current clinical trial landscape in traumatic brain injury and compare it with the trial efforts for stroke. For this, we analysed all stroke and TBI studies registered on the US Clinical Trials (www.clinicaltrials.gov) database over a 10-year period (01/01/2000 to 01/31/2013). This methodology has been previously used to analyse clinical trial efforts in other specialties. We describe the research profile in each area: total number of studies, total number of participants and change in number of research studies over time. We also analysed key study characteristics, such as enrolment number and scope of recruitment. We found a mismatch between relative public health burden and relative research effort in each disease. Despite TBI having comparable prevalence and higher incidence than stroke, it has around one fifth of the number of clinical trials and participant recruitment. Both stroke and TBI have experienced an increase in the number of studies over the examined time period, but the rate of growth for TBI is one third that for stroke. Small-scale (<1000 participants per trial) and single centre studies form the majority of clinical trials in both stroke and TBI, with TBI having significantly fewer studies with international recruitment. We discuss the consequences of these findings and how the situation might be improved. A sustained research effort, entailing increased international collaboration and rethinking the methodology of running clinical trials, is required in order to improve outcomes after traumatic brain injury.  相似文献   

8.
Molecular mechanisms in the pathogenesis of traumatic brain injury   总被引:15,自引:0,他引:15  
Traumatic brain injury (TBI) is a serious neurodisorder commonly caused by car accidents, sports related events or violence. Preventive measures are highly recommended to reduce the risk and number of TBI cases. The primary injury to the brain initiates a secondary injury process that spreads via multiple molecular mechanisms in the pathogenesis of TBI. The events leading to both neurodegeneration and functional recovery after TBI are generalized into four categories: (i) primary injury that disrupts brain tissues; (ii) secondary injury that causes pathophysiology in the brain; (iii) inflammatory response that adds to neurodegeneration; and (iv) repair-regeneration that may contribute to neuronal repair and regeneration to some extent following TBI. Destructive multiple mediators of the secondary injury process ultimately dominate over a few intrinsic protective measures, leading to activation of cysteine proteases such as calpain and caspase-3 that cleave key cellular substrates and cause cell death. Experimental studies in rodent models of TBI suggest that treatment with calpain inhibitors (e.g., AK295, SJA6017) and neurotrophic factors (e.g., NGF, BDNF) can prevent neuronal death and dysfunction in TBI. Currently, there is still no precise therapeutic strategy for the prevention of pathogenesis and neurodegeneration following TBI in humans. The search continues to explore new therapeutic targets and development of promising drugs for the treatment of TBI.  相似文献   

9.
The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies.  相似文献   

10.
Objective To explore the expression of HIF-1α, neuronal apoptosis and the influence of traditional Chinese medicine Sanqi on hematoma after brain injury in rats. Methods Ninety SD rats were divided into 3 groups randomly: blank control group, traumatic brain injury (TBI) group and Sanqi intervention group, and they were decapitated after brain injury at different time points: 6 h, 1 d, 2 d, 3 d, 5 d, 7 d. The model of cerebral hemorrhage was made by autologous non-coagulation in stereotactic locator, the expression of HIF-1α and TUNEL-positive cells (apoptotic cells) in the perihematomal area was detected by immunohistochemistry. Results In blank control group, a small amount of HIF-1α was expressed and apoptotic cells were observed. The expression of HIF-1α was up-regulated in the brain injury group from 6 h, and the apoptotic cells increased in abundance. The peak of HIF-1α was reached at 3 d, then decreased, and remained at the high level on the 7 d. Compared with blank control group, the TBI group was statistically significant (P < 0.05). The Chinese medicine Sanqi intervention group significantly up-regulated HIF-1α’expression and decreased neuronal apoptosis, which was statistically significant (P < 0.05). Conclusion HIF-1α’s expression was up-regulated around the hematoma after brain injury, and the apoptosis of nerve cells was obviously increased. The traditional Chinese medicine Sanqi can significantly increase the expression of HIF-1α, reduce the apoptosis around the hematoma, and thus play a neuroprotective role.  相似文献   

11.
《IRBM》2019,40(4):244-252
BackgroundMany head injury indices and finite element (FE) head models have been proposed to predict traumatic brain injury (TBI). Although FE head models are suitable methods with high accuracy, they are computationally intensive. Head motion-based brain injury criteria are usually fast tools with lower accuracy. So, the objective of this study is to propose new criteria along with an artificial neural network model to predict TBI risks, which can be fast and accurate.MethodsFor this purpose, 250 FE head simulations have been carried out at 5 magnitudes and 50 rotational impact directions using the SIMon model. The effects of directions and magnitudes of rotational impacts were assessed for cumulative strain damage measure (CSDM) values. Next, statistical analysis and neural network were applied to predict CSDM values.ResultsThe results of the present research showed that the direction of rotation in the sagittal and frontal planes had a considerable effect on the CSDM values. Furthermore, new brain injury indices and a radial basis function neural network have been proposed to predict CSDM values which having high correlation coefficients with SIMon responses.ConclusionsThe results of this research demonstrated that rotational impact directions should be used to develop new head injury criteria being able to predict CSDM values. However, findings of present research proved that head motion-based brain injury criteria and RBF network can be used to predict FE head model responses with high speed and accuracy.  相似文献   

12.
BackgroundTraumatic brain injury (TBI) is an important global public health burden, where those injured by high-energy transfer (e.g., road traffic collisions) are assumed to have more severe injury and are prioritised by emergency medical service trauma triage tools. However recent studies suggest an increasing TBI disease burden in older people injured through low-energy falls. We aimed to assess the prevalence of low-energy falls among patients presenting to hospital with TBI, and to compare their characteristics, care pathways, and outcomes to TBI caused by high-energy trauma.Methods and findingsWe conducted a comparative cohort study utilising the CENTER-TBI (Collaborative European NeuroTrauma Effectiveness Research in TBI) Registry, which recorded patient demographics, injury, care pathway, and acute care outcome data in 56 acute trauma receiving hospitals across 18 countries (17 countries in Europe and Israel). Patients presenting with TBI and indications for computed tomography (CT) brain scan between 2014 to 2018 were purposively sampled. The main study outcomes were (i) the prevalence of low-energy falls causing TBI within the overall cohort and (ii) comparisons of TBI patients injured by low-energy falls to TBI patients injured by high-energy transfer—in terms of demographic and injury characteristics, care pathways, and hospital mortality. In total, 22,782 eligible patients were enrolled, and study outcomes were analysed for 21,681 TBI patients with known injury mechanism; 40% (95% CI 39% to 41%) (8,622/21,681) of patients with TBI were injured by low-energy falls. Compared to 13,059 patients injured by high-energy transfer (HE cohort), the those injured through low-energy falls (LE cohort) were older (LE cohort, median 74 [IQR 56 to 84] years, versus HE cohort, median 42 [IQR 25 to 60] years; p < 0.001), more often female (LE cohort, 50% [95% CI 48% to 51%], versus HE cohort, 32% [95% CI 31% to 34%]; p < 0.001), more frequently taking pre-injury anticoagulants or/and platelet aggregation inhibitors (LE cohort, 44% [95% CI 42% to 45%], versus HE cohort, 13% [95% CI 11% to 14%]; p < 0.001), and less often presenting with moderately or severely impaired conscious level (LE cohort, 7.8% [95% CI 5.6% to 9.8%], versus HE cohort, 10% [95% CI 8.7% to 12%]; p < 0.001), but had similar in-hospital mortality (LE cohort, 6.3% [95% CI 4.2% to 8.3%], versus HE cohort, 7.0% [95% CI 5.3% to 8.6%]; p = 0.83). The CT brain scan traumatic abnormality rate was 3% lower in the LE cohort (LE cohort, 29% [95% CI 27% to 31%], versus HE cohort, 32% [95% CI 31% to 34%]; p < 0.001); individuals in the LE cohort were 50% less likely to receive critical care (LE cohort, 12% [95% CI 9.5% to 13%], versus HE cohort, 24% [95% CI 23% to 26%]; p < 0.001) or emergency interventions (LE cohort, 7.5% [95% CI 5.4% to 9.5%], versus HE cohort, 13% [95% CI 12% to 15%]; p < 0.001) than patients injured by high-energy transfer. The purposive sampling strategy and censorship of patient outcomes beyond hospital discharge are the main study limitations.ConclusionsWe observed that patients sustaining TBI from low-energy falls are an important component of the TBI disease burden and a distinct demographic cohort; further, our findings suggest that energy transfer may not predict intracranial injury or acute care mortality in patients with TBI presenting to hospital. This suggests that factors beyond energy transfer level may be more relevant to prehospital and emergency department TBI triage in older people. A specific focus to improve prevention and care for patients sustaining TBI from low-energy falls is required.

In a cohort study, Fiona Lecky and colleagues investigate the factors associated with traumatic brain injury resulting from low energy falls compared with injuries from high energy transfer mechanisms among patients across Europe and Israel.  相似文献   

13.
Due to the high mortality incident brought about by traumatic brain injury (TBI), methods that would enable one to better understand the underlying mechanisms involved in it are useful for treatment. There are both in vivo and in vitro methods available for this purpose. In vivo models can mimic actual head injury as it occurs during TBI. However, in vivo techniques may not be exploited for studies at the cell physiology level. Hence, in vitro methods are more advantageous for this purpose since they provide easier access to the cells and the extracellular environment for manipulation.Our protocol presents an in vitro model of TBI using stretch injury in brain microvascular endothelial cells. It utilizes pressure applied to the cells cultured in flexible-bottomed wells. The pressure applied may easily be controlled and can produce injury that ranges from low to severe. The murine brain microvascular endothelial cells (cEND) generated in our laboratory is a well-suited model for the blood brain barrier (BBB) thus providing an advantage to other systems that employ a similar technique. In addition, due to the simplicity of the method, experimental set-ups are easily duplicated. Thus, this model can be used in studying the cellular and molecular mechanisms involved in TBI at the BBB.  相似文献   

14.
Proper diagnosis and treatment of traumatic brain injury (TBI) in children is becoming an increasingly problematic issue in China. This study investigated Chinese clinicians to provide information about their knowledge and experiences in diagnosis and treatment of pediatric TBI. We conducted a questionnaire survey among clinicians in the emergency departments and neurosurgery departments at 9 major hospitals in China. The questionnaire included demographic information, and knowledge and experiences regarding the diagnosis and treatment of pediatric TBI. A total of 235 clinicians completed questionnaires. 43.8% of the surveyed clinicians reported children with only scalp hematoma without any other signs and symptoms of concussion as TBI cases. Most clinicians (85.1%) reported no existing uniform diagnostic criteria for children with TBI in China. The majority of clinicians (91.9%) reported that CT scans were performed in all patients with suspected head injury as a routine procedure in their hospitals. Only 20.9% of clinicians believed that radiation from CT scanning may increase cancer risk in children. About 33.6% of the clinicians reported that they ordered CT scans to investigate suspected head injury due to the poor doctor-patient relationship in China, and to protect themselves against any medical lawsuits in the future. About 80% of the clinicians reported that there are no existing pediatric TBI treatment guidelines in China. Instead a senior doctor’s advice is the most reported guidelines regarding treating pediatric TBI (66.0%). All of the surveyed clinicians reported that the lack of diagnosis and/or treatment standard is the biggest problem in effectively diagnosing and treating pediatric TBI in China. Developing guidelines for the diagnosis and treatment of children with TBI is a high priority in China. The extremely high usage of CT for pediatric TBI in China suggests that it is important to establish evidence-based clinical decision rules to help Chinese clinicians make diagnostic and therapeutic decisions during their practice in order to identify children unlikely to have a clinically-important TBI who can be safely discharged without a CT scan.  相似文献   

15.
The purpose of this research was to examine how four different types of baseball helmets perform for baseball impacts when performance was measured using variables associated with concussion. A helmeted Hybrid III headform was impacted by a baseball, and linear and rotational acceleration as well as maximum principal strain were measured for each impact condition. The method was successful in distinguishing differences in design characteristics between the baseball helmets. The results indicated that there is a high risk of concussive injury from being hit by a ball regardless of helmet worn.  相似文献   

16.
Head injury resulting from blast loading, including mild traumatic brain injury, has been identified as an important blast-related injury in modern conflict zones. A study was undertaken to investigate potential protective ballistic helmet liner materials to mitigate primary blast injury using a detailed sagittal plane head finite element model, developed and validated against previous studies of head kinematics resulting from blast exposure. Five measures reflecting the potential for brain injury that were investigated included intracranial pressure, brain tissue strain, head acceleration (linear and rotational) and the head injury criterion. In simulations, these measures provided consistent predictions for typical blast loading scenarios. Considering mitigation, various characteristics of foam material response were investigated and a factor analysis was performed which showed that the four most significant were the interaction effects between modulus and hysteretic response, stress–strain response, damping factor and density. Candidate materials were then identified using the predicted optimal material values. Polymeric foam was found to meet the density and modulus requirements; however, for all significant parameters, higher strength foams, such as aluminum foam, were found to provide the highest reduction in the potential for injury when compared against the unprotected head.  相似文献   

17.

Introduction

Traumatic brain injury (TBI) is physical injury to brain tissue that temporarily or permanently impairs brain function.

Objectives

Evaluate the use of metabolomics for the development of biomarkers of TBI for the diagnosis and timing of injury onset.

Methods

A validated model of closed injury TBI was employed using 10 TBI mice and 8 sham operated controls. Quantitative LC–MS/MS metabolomic analysis was performed on the serum.

Results

Thirty-six (24.0 %) of 150 metabolites were altered with TBI. Principal component analysis (PCA) and Partial least squares discriminant analysis (PLS-DA) analyses revealed clear segregation between TBI versus control sera. The combination of methionine sulfoxide and the lipid PC aa C34:4 accurately diagnosed TBI, AUC (95 % CI) 0.85 (0.644–1.0). A combination of metabolite markers were highly accurate in distinguishing early (4 h post TBI) from late (24 h) TBI: AUC (95 % CI) 1.0 (1.0–1.0). Spermidine, which is known to have an antioxidant effect and which is known to be metabolically disrupted in TBI, was the most discriminating biomarker based on the variable importance ranking in projection (VIP) plot. Several important metabolic pathways were found to be disrupted including: pathways for arginine, proline, glutathione, cysteine, and sphingolipid metabolism.

Conclusion

Using serum metabolomic analysis we were able to identify novel putative serum biomarkers of TBI. They were accurate for detecting and determining the timing of TBI. In addition, pathway analysis provided important insights into the biochemical mechanisms of brain injury. Potential clinical implications for diagnosis, timing, and monitoring brain injury are discussed.
  相似文献   

18.
Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injured controls (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10–15 years post-injury, and Phase III (30–35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery.  相似文献   

19.
《Biophysical journal》2021,120(16):3272-3282
Chronic traumatic encephalopathy is a neurodegenerative disease associated with repeated traumatic brain injury (TBI). Chronic traumatic encephalopathy is a tauopathy, in which cognitive decline is accompanied by the accumulation of neurofibrillary tangles of the protein tau in patients’ brains. We recently found that mechanical force alone can induce tau mislocalization to dendritic spines and loss of synaptic function in in vitro neuronal cultures with random cell organization. However, in the brain, neurons are highly aligned, so here we aimed to determine how neuronal organization influences early-stage tauopathy caused by mechanical injury. Using microfabricated cell culture constructs to control the growth of neurites and an in vitro simulated TBI device to apply controlled mechanical deformation, we found that neuronal orientation with respect to the direction of a uniaxial high-strain-rate stretch injury influences the degree of tau pathology in injured neurons. We found that a mechanical stretch applied parallel to the neurite alignment induces greater mislocalization of tau proteins to dendritic spines than does a stretch with the same strain applied perpendicular to the neurites. Synaptic function, characterized by the amplitude of miniature excitatory postsynaptic currents, was similarly decreased in neurons with neurites aligned parallel to stretch, whereas in neurons aligned perpendicular to stretch, it had little to no functional loss. Experimental injury parameters (strain, strain rate, direction of stretch) were combined with a standard viscoelastic solid model to show that in our in vitro model, neurite work density during stretch correlates with tau mislocalization. These findings suggest that in a TBI, the magnitude of brain deformation is not wholly predictive of neurodegenerative consequences of TBI but that deformation relative to local neuronal architecture and the neurite mechanical energy during injury are better metrics for predicting trauma-induced tauopathy.  相似文献   

20.
The aim of this study was to investigate the neuroprotective effects of quercetin in mouse models of traumatic brain injury (TBI) and the potential role of the PGC‐1α pathway in putative neuroprotection. Wild‐type mice were randomly assigned to four groups: the sham group, the TBI group, the TBI+vehicle group and the TBI+quercetin group. Quercetin, a dietary flavonoid used as a food supplement, significantly reduced TBI‐induced neuronal apoptosis and ameliorated mitochondrial lesions. It significantly accelerated the translocation of PGC‐1α protein from the cytoplasm to the nucleus. In addition, quercetin restored the level of cytochrome c, malondialdehyde and superoxide dismutase in mitochondria. Therefore, quercetin administration can potentially attenuate brain injury in a TBI model by increasing the activities of mitochondrial biogenesis via the mediation of the PGC‐1α pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号