首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors' aim was to evaluate the response of the intracranial venous system to application of functional tests. In 46 healthy volunteers, the basal veins were examined using venous transcranial color-coded duplex sonography. We evaluated angle-corrected venous peak-systolic flow velocities (V(vb)) in response to hypercapnia (I group: 29 subjects) and the orthostatic test (II group: 17 subjects). We have found that hypercapnia inducesa significant increase of the flow velocities in the basal veins, on average 60 +/- 22.7% (p < 0.00001). The reaction prevents venous hyperaemia, i. e., significant increase of the cerebral blood flow volume and the drainage of the brain. In contrast to hypercapnia, the orthostatic test led to decrease in the flow velocities in the basal veins. The percentage of velocity decrease ranged from 16to 32% (p < 0.001). Posturally induced reduction of the venous flow volume prevents excessive drainage from the brain. Thus, we have shown that both tests can be used for evaluation of reactivity of the intracranial venous system and they can complement each other.  相似文献   

2.
We assessed the hemodynamic effects induced by the thoracic pump in the intra- and extracranial veins of the cerebral venous system on healthy volunteers. Activation of the thoracic pump was standardized among subjects by setting the deep inspiration at 70% of individual vital capacity. Peak velocity (PV), time average velocity (TAV), vein area (VA), and flow quantification (Q) were assessed by means of echo color Doppler in supine posture. Deep respiration significantly increases PV, TAV, and Q, but it is limited to the extracranial veins. To the contrary, no significant hemodynamic changes were recorded at the level of the intracranial venous network. Moreover, at rest TAV in the jugular veins was significantly correlated with Q of the intracranial veins. We conclude that the modulation of the atmospheric pressure operated by the thoracic pump significantly modifies the hemodynamics of the jugular veins and of the reservoir of the neck and facial veins, with no effect on the vein network of the intracranial compartment.  相似文献   

3.
This investigation was undertaken to determine whether a Starling resistor or venous waterfall effect exists between the sagittal sinus and the cerebral veins such that increases in sagittal sinus pressure (Pss) do not abolish cerebral venous outflow and to examine two possible contributions of extracranial venous valves in regulating outflow. Anesthetized dogs were subjected to positive end-expiratory pressure (PEEP) before and after intracranial pressure (Pic) was elevated by inflation of an epidural balloon. PEEP raised Pss equally in all animals, but Pic and cerebral venous pressure (Pcv) increased less in the presence of intracranial hypertension. When Pss was low, passage of a catheter in the cerebral vein in and out of the sagittal sinus demonstrated an abrupt drop in pressure as the sinus was entered. When Pss was raised and lowered independently of superior vena caval pressure (Psvc) the changes in Pic and Pcv were less when Pss was decreased than when it was increased. Sustained increases and decreases in Psvc caused increases and decreases in Pcv, Pic, Pss, and external jugular venous pressure (Pejv) regardless of whether external jugular venous valves were present or absent. We conclude that a Starling resistor between the sagittal sinus and the cerebral veins regulates cerebral venous outflow when Pss is increased by PEEP and other maneuvers that raise Psvc. The waterfall maintains Pcv and Pic at normal levels when Psvc and Pss are reduced. Extracranial venous valves are not essential to this mechanism.  相似文献   

4.
Peripheral blood circulation was investigated in the experiment with “dry” immersion by the method of ultrasonic Doppler examination, including transcranial Doppler examination. The linear blood velocity (LBV) in the main arteries and veins of the head and lower extremities was recorded in eight healthy volunteers who stayed in an immersion bath for seven days. The examinations were carried out on day 2 and 5 of immersion and on day 2 of the rehabilitation period. The results were compared with the background values of the blood velocities. The LBV was revealed to slow down in all the examined main arteries and veins of the head and lower extremities; the changes were the most pronounced in the venous system. The dynamics of the venous cerebral blood flow that indirectly attests to the elevation of intracranial pressure was observed on day 5 in some of the volunteers. In the period of recovery, the parameters of the arterial LBV mainly returned to the background values, while the venous blood circulation recovered slower, which indicated an aftereffect of support deprivation factors.  相似文献   

5.
Acute subdural hematoma (ASDH) sometimes occurred in judo because of the bridging veins’ failure by rotation of the brain in the skull. However, the relationship between intracranial behaviour and the motion of the body on occiput impact has not yet been clarified. In this study, we developed an intracranial mechanical model based on multibody dynamics and compared it with experimental results. The results show the importance of modelling bridging veins and cerebral spinal fluid to the relative displacement between brain and skull. The proposed model will contribute to accident analyses or the optimum design of supporting devices.  相似文献   

6.
Simple laboratory models are useful to demonstrate cardiovascular principles involving the effects of gravity on the distribution of blood flow to the heads of animals, especially tall ones like the giraffe. They show that negative pressures cannot occur in collapsible vessels of the head, unless they are protected from collapse by external structures such as the cranium and cervical vertebrae. Negative pressures in the cerebral-spinal fluid (CSF) can prevent cerebral circulation from collapsing, and the spinal veins of the venous plexus can return blood to the heart in essentially rigid vessels. However, cephalic vessels outside the cranium are collapsible, so require positive blood pressures to establish flow; CSF pressure and venous plexus flow are irrelevant in this regard. Pressures in collapsible vessels reflect pressures exerted by surrounding tissues, which may explain the observed pressure gradient in the giraffe jugular vein. Tissue pressure is distinct from interstitial fluid pressure which has little influence on pressure gradients across the walls of major vessels.  相似文献   

7.
There is substantial anatomical and functional continuity between the veins, venous sinuses, and venous plexuses of the brain and the spine. The term "cerebrospinal venous system" (CSVS) is proposed to emphasize this continuity, which is further enhanced by the general lack of venous valves in this network. The first of the two main divisions of this system, the intracranial veins, includes the cortical veins, the dural sinuses, the cavernous sinuses, and the ophthalmic veins. The second main division, the vertebral venous system (VVS), includes the vertebral venous plexuses which course along the entire length of the spine. The intracranial veins richly anastomose with the VVS in the suboccipital region. Caudally, the CSVS freely communicates with the sacral and pelvic veins and the prostatic venous plexus. The CSVS constitutes a unique, large-capacity, valveless venous network in which flow is bidirectional. The CSVS plays important roles in the regulation of intracranial pressure with changes in posture, and in venous outflow from the brain. In addition, the CSVS provides a direct vascular route for the spread of tumor, infection, or emboli among its different components in either direction.  相似文献   

8.
F. Dindar  M. E. Platts 《CMAJ》1974,111(6):545-548
Four days after the onset of a severe headache a 22-year-old woman who had been taking oral contraceptives for less than three weeks had a convulsion, followed by right hemiparesis. Other focal neurologic signs and evidence of raised intracranial pressure appeared, and she became comatose on the seventh day. A left craniotomy revealed extensive cerebral venous thrombosis. She died the next day. On postmortem examination extensive thrombosis of the superior sagittal sinus and draining cerebral veins, and multiple areas of cerebral hemorrhage and hemorrhagic infarction were seen. Some of the superficial cerebral veins showed focal necrosis of their walls, and the lateral lacunae of the superior sagittal sinus contained proliferating endothelial cells. The adrenal veins were also thrombosed. The significance of these findings is discussed. The literature on cerebrovascular complications of oral contraception, particularly cerebral venous thrombosis, is reviewed.  相似文献   

9.

Purpose

To compare venous drainage patterns and associated intracranial hydrodynamics between subjects who experienced mild traumatic brain injury (mTBI) and age- and gender-matched controls.

Methods

Thirty adult subjects (15 with mTBI and 15 age- and gender-matched controls) were investigated using a 3T MR scanner. Time since trauma was 0.5 to 29 years (mean 11.4 years). A 2D-time-of-flight MR-venography of the upper neck was performed to visualize the cervical venous vasculature. Cerebral venous drainage through primary and secondary channels, and intracranial compliance index and pressure were derived using cine-phase contrast imaging of the cerebral arterial inflow, venous outflow, and the craniospinal CSF flow. The intracranial compliance index is the defined as the ratio of maximal intracranial volume and pressure changes during the cardiac cycle. MR estimated ICP was then obtained through the inverse relationship between compliance and ICP.

Results

Compared to the controls, subjects with mTBI demonstrated a significantly smaller percentage of venous outflow through internal jugular veins (60.9±21% vs. controls: 76.8±10%; p = 0.01) compensated by an increased drainage through secondary veins (12.3±10.9% vs. 5.5±3.3%; p<0.03). Mean intracranial compliance index was significantly lower in the mTBI cohort (5.8±1.4 vs. controls 8.4±1.9; p<0.0007). Consequently, MR estimate of intracranial pressure was significantly higher in the mTBI cohort (12.5±2.9 mmHg vs. 8.8±2.0 mmHg; p<0.0007).

Conclusions

mTBI is associated with increased venous drainage through secondary pathways. This reflects higher outflow impedance, which may explain the finding of reduced intracranial compliance. These results suggest that hemodynamic and hydrodynamic changes following mTBI persist even in the absence of clinical symptoms and abnormal findings in conventional MR imaging.  相似文献   

10.
Model studies have been advanced to suggest both that a siphon does and does not support cerebral blood flow in an upright position. If a siphon is established with the head raised, it would mean that internal jugular pressure reflects right atrium pressure minus the hydrostatic difference from the brain. This study measured spinal fluid pressure in the upright position, the pressure and the ultrasound-determined size of the internal jugular vein in the supine and sitting positions, and the internal jugular venous pressure during seated exercise. When the head was elevated approximately 25 cm above the level of the heart, internal jugular venous pressure decreased from 9.5 (SD 2.8) to 0.2 (SD 1.0) mmHg [n = 15; values are means (SD); P < 0.01]. Similarly, central venous pressure decreased from 6.2 (SD 1.8) to 0.6 (SD 2.6) mmHg (P < 0.05). No apparent lumen was detected in any of the 31 left or right internal veins imaged at 40 degrees head-up tilt, and submaximal (n = 7) and maximal exercise (n = 4) did not significantly affect internal jugular venous pressure. While seven subjects were sitting up, spinal fluid pressure at the lumbar level was 26 (SD 4) mmHg corresponding to 0.1 (SD 4.1) mmHg at the base of the brain. These results demonstrate that both for venous outflow from the brain and for spinal fluid, the prevailing pressure approaches zero at the base of the brain when humans are upright, which negates that a siphon supports cerebral blood flow.  相似文献   

11.
The possibility of reverse perfusion of the brain (in which arterial blood flows to brain tissues through venous vessels, and venous blood is drained by the arteries) was studied in acute and chronic experiments on dogs. Blood pressure in cerebral veins could reach 90--120 mm Hg, in Willisii arteries it was 5--35 mm Hg. Liquor pressure reached 20--35 mmHg. After temporary arterialization of the brain venous system (10, 30 and 60 min) the animals survived without impairment of the brain function and behaviour. In the future reverse perfusion of the brain (in which blood pressure in the arteries falls to the level of venous pressure) could be used as a means of urgent surgical intervention in cases of threatened or beginning intracranial arterial hemorrhage.  相似文献   

12.
Ursino, Mauro, and Carlo Alberto Lodi. A simplemathematical model of the interaction between intracranial pressure andcerebral hemodynamics. J. Appl.Physiol. 82(4): 1256-1269, 1997.A simplemathematical model of intracranial pressure (ICP) dynamics oriented toclinical practice is presented. It includes the hemodynamics of thearterial-arteriolar cerebrovascular bed, cerebrospinal fluid (CSF)production and reabsorption processes, the nonlinear pressure-volumerelationship of the craniospinal compartment, and a Starling resistormechanism for the cerebral veins. Moreover, arterioles are controlledby cerebral autoregulation mechanisms, which are simulated by means ofa time constant and a sigmoidal static characteristic. The model isused to simulate interactions between ICP, cerebral blood volume, andautoregulation. Three different related phenomena are analyzed: thegeneration of plateau waves, the effect of acute arterial hypotensionon ICP, and the role of cerebral hemodynamics during pressure-volume index (PVI) tests. Simulation results suggest the following:1) ICP dynamics may become unstablein patients with elevated CSF outflow resistance and decreasedintracranial compliance, provided cerebral autoregulation is efficient.Instability manifests itself with the occurrence of self-sustainedplateau waves. 2) Moderate acutearterial hypotension may have completely different effects on ICP,depending on the value of model parameters. If physiological compensatory mechanisms (CSF circulation and intracranial storage capacity) are efficient, acute hypotension has only negligible effectson ICP and cerebral blood flow (CBF). If these compensatory mechanismsare poor, even modest hypotension may induce a large transient increasein ICP and a significant transient reduction in CBF, with risks ofsecondary brain damage. 3) The ICPresponse to a bolus injection (PVI test) is sharply affected, viacerebral blood volume changes, by cerebral hemodynamics andautoregulation. We suggest that PVI tests may be used to extractinformation not only on intracranial compliance and CSF circulation,but also on the status of mechanisms controlling CBF.

  相似文献   

13.
Using corrosion casting, we demonstrate and describe a new vascular system--the vertebral venous plexus--in eight snake species representing three families. The plexus consists of a network of spinal veins coursing within and around the vertebral column and was previously documented only in mammals. The spinal veins of snakes originate anteriorly from the posterior cerebral veins and form a lozenge-shaped plexus that extends to the tip of the tail. Numerous anastomoses connect the plexus with the caval and portal veins along the length of the vertebral column. We also reveal a posture-induced differential flow between the plexus and the jugular veins in two snake species with arboreal proclivities. When these snakes are horizontal, the jugulars are observed fluoroscopically to be the primary route for cephalic drainage and the plexus is inactive. However, head-up tilting induces partial jugular collapse and shunting of cephalic efflux into the plexus. This postural discrepancy is caused by structural differences in the two venous systems. The compliant jugular veins are incapable of sustaining the negative intraluminal pressures induced by upright posture. The plexus, however, with the structural support of the surrounding bone, remains patent and provides a low-pressure route for venous return. Interactions with the cerebrospinal fluid both allow and enhance the role of the plexus, driving perfusion and compensating for a posture-induced drop in arterial pressure. The vertebral venous plexus is thus an important and overlooked element in the maintenance of cerebral blood supply in climbing snakes and other upright animals.  相似文献   

14.
The authors reported previously an elementary mathematical model of intracranial pressure (ICP) as well as result from an experimental verification of the model. The experimental tests revealed that certain factors had been neglected in the theoretical formation, and the present article offers an expanded version of model which takes into account those factors: changes in the formation of the CSF as a function of ICP; cerebral vasomotricity; cortical and sinusal venous pressures, and variations of the filtration coefficient of the subarachnoidal spaces. A generalized mathematical model of ICP, in the form of four equations, is proposed. The major aspects of both normal and pathological ICP are studied in the light of this model, and are integrated into a generalized theory.  相似文献   

15.
16.
The vascular waterfall theory attributes decreased muscle perfusion during contraction to increased intramuscular pressure (P(IM)) and concomitant increase in venous resistance. Although P(IM) is distributed during contractions, this theory does not account for heterogeneity. This study hypothesises that pressure heterogeneity could affect the interaction between P(IM) rise and perfusion. Regional tissue perfusion during submaximum (100kPa) tetanic contraction is studied, using a finite element model of perfused contracting skeletal muscle. Capillary flow in muscles with one proximal artery and vein (SIM(1)) and with an additional distal artery and vein (SIM(2)) is compared. Blood flow and pressures at rest and P(IM) during contraction ( approximately 25kPa maximally) are similar between simulations, but capillary flow and venous pressure differ. In SIM(2), venous pressure and capillary flow correspond to P(IM) distribution, whereas capillary flow in SIM(1) is less than 10% of flow in SIM(2), in the muscle half without draining vein. This difference is caused by a high central P(IM), followed by central venous pressure rise, in agreement with the waterfall theory. The high central pressure (SIM(1)), obstructs outflow from the distal veins. Distal venous pressure rises until central blood pressure is reached, although local P(IM) is low. Adding a distal vein (SIM(2)) restores the perfusion. It is concluded that regional effects contribute to the interaction between P(IM) and perfusion during contraction. Unlike stated by the vascular waterfall theory, venous pressure may locally exceed P(IM). Although this can be explained by the principles of this theory, the theory does not include this phenomenon as such.  相似文献   

17.

Objective

Multiple sclerosis (MS) is a chronic neurodegenerative disease of the CNS. Recently a controversial vascular hypothesis for MS, termed chronic cerebrospinal venous insufficiency (CCSVI), has been advanced. The objective of this study was to evaluate the relative prevalence of the venous abnormalities that define CCSVI.

Methods

A case-control study was conducted in which 100 MS patients aged between 18–65 y meeting the revised McDonald criteria were randomly selected and stratified into one of four MS subtypes: relapsing/remitting, secondary progressive, primary progressive and benign. Control subjects (16–70 y) with no known history of MS or other neurological condition were matched with the MS cases. All cases and controls underwent ultrasound imaging of the veins of the neck plus the deep cerebral veins, and magnetic resonance imaging of the neck veins and brain. These procedures were performed on each participant on the same day.

Results

On ultrasound we found no evidence of reflux, stenosis or blockage in the internal jugular veins (IJV) or vertebral veins (VV) in any study participant. Similarly, there was no evidence of either reflux or cessation of flow in the deep cerebral veins in any subject. Flow was detected in the IJV and VV in all study participants. Amongst 199 participants there was one MS subject who fulfilled the minimum two ultrasound criteria for CCSVI. Using MRI we found no significant differences in either the intra- or extra-cranial venous flow velocity or venous architecture between cases and controls.

Conclusion

This case-control study provides compelling evidence against the involvement of CCSVI in multiple sclerosis.  相似文献   

18.
The scientific objectives was to quantify the vascular changes in the brain, eye fundus, renal parenchyma, and splanchnic network. Heart, Portal, Jugular, femoral veins were investigate by Echography. The cerebral mesenteric, renal and ophthalmic arteries were investigated by Doppler. Eye fundus vein an papilla were investigated by optical video eye fundus. The Left ventricle volume decreased as usual in HDT. The cerebral and ophthalmic vascular resistances did'nt change whereas the eye fundus papilla and vein, and the Jugular vein increased. These arterial and venous data confirm the existence of cephalic venous blood stasis without sign of intracranial hypertension. On the other hand the kidney volume increased which is in agreement with blood flow stagnation at this level. At last the Mesenteric vascular resistance decreased and the Portal vein section increased in HDT which is in favor of an increase in flow and flow volume through the splanchnic area.  相似文献   

19.
The MR-venography of the veins and brain venous sinuses, brachiocephalic veins an internal jugular veins duplex scanning have been performed in order to study the distinctions of cerebral venous hemodynamics of healthy people and the patients with venous encephalopathy caused by the extravasal compression of the brachiocephalic veins at the neck level and the superior sections of mediastinum. It has been revealed that the blood flow reducing in transverse brain sinuses occurs not only in the case of outflow disorder in the distal sections of the venous system, but also in norm. This reducing depends on anatomic constitution of confluens sinuum and the venous angle type of brachiocephalic veins. The three venous angle types of brachiocephalic veins have been distinguished: y-type, mu-type and Y-type. It has been registered that in case of the mu-type angle the blood flow can be reduced in norm due to peripheral resistance increase at the physiological bends of nearly a right angle type. The distinctions of hemodynamics in case of venous obstruction in contrast to arterial obstruction have been described. It has been registered that in case of outflow trouble in one of the internal jugular veins the speed and the volume of the blood flow in it are progressively reduced depending on the duration and the manifestation of compression. All this results in narrowing of the vein diameter from the affected side, and in compensatory distention of the diameter and increase of blood flow volume in the contralateral internal jugular vein, vertebral and external jugular veins, in succession.  相似文献   

20.
Venous valves play a crucial role in blood circulation, promoting the one-way movement of blood from superficial and deep veins towards the heart. By preventing retrograde flow, venous valves spare capillaries and venules from being subjected to damaging elevations in pressure, especially during skeletal muscle contraction. Pathologically, valvular incompetence or absence of valves are common features of venous disorders such as chronic venous insufficiency and varicose veins. The underlying causes of these conditions are not well understood, but congenital venous valve aplasia or agenesis may play a role in some cases. Despite progress in the study of cardiac and lymphatic valve morphogenesis, the molecular mechanisms controlling the development and maintenance of venous valves remain poorly understood. Here, we show that in valved veins of the mouse, three gap junction proteins (Connexins, Cxs), Cx37, Cx43, and Cx47, are expressed exclusively in the valves in a highly polarized fashion, with Cx43 on the upstream side of the valve leaflet and Cx37 on the downstream side. Surprisingly, Cx43 expression is strongly induced in the non-valve venous endothelium in superficial veins following wounding of the overlying skin. Moreover, we show that in Cx37-deficient mice, venous valves are entirely absent. Thus, Cx37, a protein involved in cell–cell communication, is one of only a few proteins identified so far as critical for the development or maintenance of venous valves. Because Cxs are necessary for the development of valves in lymphatic vessels as well, our results support the notion of common molecular pathways controlling valve development in veins and lymphatic vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号