首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pericellular matrix (PCM) is a narrow region of cartilaginous tissue that surrounds chondrocytes in articular cartilage. Previous modeling studies indicate that the mechanical properties of the PCM relative to those of the extracellular matrix (ECM) can significantly affect the stress-strain, fluid flow, and physicochemical environments of the chondrocyte, suggesting that the PCM plays a biomechanical role in articular cartilage. The goals of this study were to measure the mechanical properties of the PCM using micropipette aspiration coupled with a linear biphasic finite element model, and to determine the alterations in the mechanical properties of the PCM with osteoarthritis (OA). Using a recently developed isolation technique, chondrons (the chondrocyte and its PCM) were mechanically extracted from non-degenerate and osteoarthritic human cartilage. The transient mechanical behavior of the PCM was well-described by a biphasic model, suggesting that the viscoelastic response of the PCM is attributable to flow-dependent effects, similar to that of the ECM. With OA, the mean Young's modulus of the PCM was significantly decreased (38.7+/-16.2 kPa vs. 23.5+/-12.9 kPa, p < 0.001), and the permeability was significantly elevated (4.19+/-3.78 x10(-17) m(4)/Ns vs. 10.2+/-9.38 x 10(-17) m(4)/Ns, p < 0.01). The Poisson's ratio was similar for both non-degenerate and OA PCM (0.044+/-0.063 vs. 0.030+/-0.068, p > 0.6). These findings suggest that the PCM may undergo degenerative processes with OA, similar to those occurring in the ECM. In combination with previous theoretical models of cell-matrix interactions in cartilage, our findings suggest that changes in the properties of the PCM with OA may have an important influence on the biomechanical environment of the chondrocyte.  相似文献   

2.
In articular cartilage, chondrocytes are surrounded by a pericellular matrix (PCM), which together with the chondrocyte have been termed the "chondron." While the precise function of the PCM is not know there has been considerable speculation that it plays a role in regulating the biomechanical environment of the chondrocyte. In this study, we measured the Young's modulus of the PCM from normal and osteoarthritic cartilage using the micropipette aspiration technique, coupled with a newly developed axisymmetric elastic layered half-space model of the experimental configuration. Viable, intact chondrons were extracted from human articular cartilage using a new microaspiration-based isolation technique. In normal cartilage, the Young's modulus of the PCM was similar in chondrons isolated from the surface zone (68.9 +/- 18.9 kPa) as compared to the middle and deep layers (62.0 +/- 30.5 kPa). However, the mean Young's modulus of the PCM (pooled for the two zones) was significantly decreased in osteoarthritic cartilage (66.5 +/- 23.3 kPa versus 41.3 +/- 21.1 kPa, p < 0.001). In combination with previous theoretical models of cell-matrix interactions in cartilage, these findings suggest that the PCM has an important influence on the stress-strain environment of the chondrocyte that potentially varies with depth from the cartilage surface. Furthermore, the significant loss of PCM stiffness that was observed in osteoarthritic cartilage may affect the magnitude and distribution of biomechanical signals perceived by the chondrocytes.  相似文献   

3.
Crosslinked poly(ethylene glycol) (PEG) hydrogels are attractive scaffolds for cartilage tissue engineering because of their ability to mimic the aqueous environment and mechanical properties of native cartilage. In this study, hydrogel crosslinking density was varied to study the influence of gel structure and the application of dynamic loading (continuous, 1 Hz, 15% amplitude strain) on chondrocyte gene expression over 1 week culture. Gene expression was quantified using real-time RT-PCR for collagen II and aggrecan, the major cartilage extracellular matrix (ECM) components, and collagen I, an indicator of chondrocyte de-differentiation. When chondrocytes were encapsulated in PEG gels with low or high crosslinking, a high collagen II expression compared to collagen I expression (1000 or 100,000:1, respectively) indicated the native chondrocyte phenotype was retained. In the absence of loading, relative gene expression for collagen II and aggrecan was significantly higher (e.g., 2-fold and 4-fold, respectively, day 7) in the low crosslinked gels compared to gels with higher crosslinking. Dynamic loading, however, showed little effect on ECM gene expression in both crosslinked systems. To better understand the cellular environment, ECM production was qualitatively assessed using an in situ immunofluorescent technique and standard histology. A pericellular matrix (PCM) was observed as early as day 3 post-encapsulation and the degree of formation was dependent on gel crosslinking. These results suggest the PCM may protect the cells from sensing the applied loads. This study demonstrates that gel structure has a profound effect on chondrocyte gene expression, while dynamic loading has much less of an effect at early culture times.  相似文献   

4.
Although the pericellular matrix (PCM) plays a central role in the communication between chondrocytes and extracellular matrix, its composition is largely unknown. In this study, the PCM was investigated with a proteomic approach using chondrons, which are enzymatically isolated constructs including the chondrocyte and its surrounding PCM. Chondrons and chondrocytes alone were isolated from human articular cartilage. Proteins extracted from chondrons and chondrocytes were used for two-dimensional electrophoresis. Protein spots were quantitatively compared between chondron and chondrocyte gels. Cellular proteins, which had similar density between chondron and chondrocyte gels, did not proceed for analysis. Since chondrons only differ from chondrocytes in association of the PCM, protein spots in the chondron gels that had higher quantity than that in the chondrocyte gels were selected as candidates of the PCM components and processed for mass spectrometry. Among 15 identified peptides, several were fragments of the three type VI collagen chains (α-1, α-2, and α-3). Other identified PCM proteins included triosephosphate isomerase, transforming growth factor-β induced protein, peroxiredoxin-4, ADAM (A disintegrin and metalloproteinases) 28, and latent-transforming growth factor beta-binding protein-2. These PCM components were verified with immunohisto(cyto)chemistry for localization in the PCM region of articular cartilage. The abundance of type VI collagen in the PCM emphasizes its importance to the microenvironment of chondrocytes. Several proteins were localized in the PCM of chondrocytes for the first time and that warrants further investigation for their functions in cartilage biology.  相似文献   

5.
Site-specific and depth-dependent properties of cartilage were implemented within a finite element (FE) model to determine if compositional or structural changes in the tissue could explain site-specific alterations of chondrocyte deformations due to cartilage loading in rabbit knee joints 3 days after a partial meniscectomy (PM). Depth-dependent proteoglycan (PG) content, collagen content and collagen orientation in the cartilage extracellular matrix (ECM), and PG content in the pericellular matrix (PCM) were assessed with microscopic and spectroscopic methods. Patellar, femoral groove and samples from both the lateral and medial compartments of the femoral condyle and tibial plateau were extracted from healthy controls and from the partial meniscectomy group. For both groups and each knee joint site, axisymmetric FE models with measured properties were generated. Experimental cartilage loading was applied in the simulations and chondrocyte volumes were compared to the experimental values. ECM and PCM PG loss occurred within the superficial cartilage layer in the PM group at all locations, except in the lateral tibial plateau. Collagen content and orientation were not significantly altered due to the PM. The FE simulations predicted similar chondrocyte volume changes and group differences as obtained experimentally. Loss of PCM fixed charge density (FCD) decreased cell volume loss, as observed in the medial femur and medial tibia, whereas loss of ECM FCD increased cell volume loss, as seen in the patella, femoral groove and lateral femur. The model outcome, cell volume change, was also sensitive to applied tissue geometry, collagen fibril orientation and loading conditions.  相似文献   

6.
Cartilage lesions change the microenvironment of cells and may accelerate cartilage degradation through catabolic responses from chondrocytes. In this study, we investigated the effects of structural integrity of the extracellular matrix (ECM) on chondrocytes by comparing the mechanics of cells surrounded by an intact ECM with cells close to a cartilage lesion using experimental and numerical methods. Experimentally, 15% nominal compression was applied to bovine cartilage tissues using a light-transmissible compression system. Target cells in the intact ECM and near lesions were imaged by dual-photon microscopy. Changes in cell morphology (Ncell=32 for both ECM conditions) were quantified. A two-scale (tissue level and cell level) Finite Element (FE) model was also developed. A 15% nominal compression was applied to a non-linear, biphasic tissue model with the corresponding cell level models studied at different radial locations from the centre of the sample in the transient phase and at steady state. We studied the Green-Lagrange strains in the tissue and cells. Experimental and theoretical results indicated that cells near lesions deform less axially than chondrocytes in the intact ECM at steady state. However, cells near lesions experienced large tensile strains in the principal height direction, which are likely associated with non-uniform tissue radial bulging. Previous experiments showed that tensile strains of high magnitude cause an up-regulation of digestive enzyme gene expressions. Therefore, we propose that cartilage degradation near tissue lesions may be due to the large tensile strains in the principal height direction applied to cells, thus leading to an up-regulation of catabolic factors.  相似文献   

7.
Mechanical compression of the cartilage extracellular matrix has a significant effect on the metabolic activity of the chondrocytes. However, the relationship between the stress–strain and fluid-flow fields at the macroscopic “tissue” level and those at the microscopic “cellular” level are not fully understood. Based on the existing experimental data on the deformation behavior and biomechanical properties of articular cartilage and chondrocytes, a multi-scale biphasic finite element model was developed of the chondrocyte as a spheroidal inclusion embedded within the extracellular matrix of a cartilage explant. The mechanical environment at the cellular level was found to be time-varying and inhomogeneous, and the large difference (3 orders of magnitude) in the elastic properties of the chondrocyte and those of the extracellular matrix results in stress concentrations at the cell–matrix border and a nearly two-fold increase in strain and dilatation (volume change) at the cellular level, as compared to the macroscopic level. The presence of a narrow “pericellular matrix” with different properties than that of the chondrocyte or extracellular matrix significantly altered the principal stress and strain magnitudes within the chondrocyte, suggesting a functional biomechanical role for the pericellular matrix. These findings suggest that even under simple compressive loading conditions, chondrocytes are subjected to a complex local mechanical environment consisting of tension, compression, shear, and fluid pressure. Knowledge of the local stress and strain fields in the extracellular matrix is an important step in the interpretation of studies of mechanical signal transduction in cartilage explant culture models.  相似文献   

8.
During osteoarthritis (OA)-triggered cartilage degeneration, the chondrocytes spatially rearrange from single to double strings, and then to small and finally big clusters. Both the extracellular matrix (ECM) and the pericellular matrix (PCM) progressively degrade in osteoarthritis, changing the overall mechanical properties of the cartilage. We investigated the mechanical properties particularly elasticity of the ECM and PCM and their interconnection as a function of chondrocyte spatial organisation.Human articular cartilage samples from 30 patients were categorised according to their cellular pattern. Elasticity of the ECM and PCM was assessed by means of atomic force microscopy (AFM). Significant decreases were observed in the elasticity of both the ECM and the PCM with each change of cellular pattern, except from single to double strings in the ECM (p = 0.072). Spatial reorganisation strongly correlated with the elasticity of the ECM (r = −0.768, p < 0.001) and of the PCM (r = −0.729, p < 0.001). The ECM/PCM ratio remained unchanged (r = −0.099, p = 0.281).This study is the first to describe and quantify the differences in the elastic moduli of the ECM in relation to the PCM on the basis of chondrocyte spatial arrangement. This study shows that the elastic changes of the ECM and the PCM occur simultaneously, unidirectionally, and to a comparable degree.  相似文献   

9.
Because of the avascular nature of adult cartilage, nutrients and waste products are transported to and from the chondrocytes by diffusion and convection through the extracellular matrix. The convective interstitial fluid flow within and around chondrocytes is poorly understood. This theoretical study demonstrates that the incorporation of a semi-permeable membrane when modeling the chondrocyte leads to the following findings: under mechanical loading of an isolated chondrocyte the intracellular fluid pressure is on the order of tens of Pascals and the transmembrane fluid outflow, on the order of picometers per second, takes several days to subside; consequently, the chondrocyte behaves practically as an incompressible solid whenever the loading duration is on the order of minutes or hours. When embedded in its extracellular matrix (ECM), the chondrocyte response is substantially different. Mechanical loading of the tissue leads to a fluid pressure difference between intracellular and extracellular compartments on the order of tens of kilopascals and the transmembrane outflow, on the order of a nanometer per second, subsides in about 1 h. The volume of the chondrocyte decreases concomitantly with that of the ECM. The interstitial fluid flow in the extracellular matrix is directed around the cell, with peak values on the order of tens of nanometers per second. The viscous fluid shear stress acting on the cell surface is several orders of magnitude smaller than the solid matrix shear stresses resulting from the ECM deformation. These results provide new insight toward our understanding of water transport in chondrocytes.  相似文献   

10.
The integrity of articular cartilage depends on the proper functioning and mechanical stimulation of chondrocytes, the cells that synthesize extracellular matrix and maintain tissue health. The biosynthetic activity of chondrocytes is influenced by genetic factors, environmental influences, extracellular matrix composition, and mechanical factors. The mechanical environment of chondrocytes is believed to be an important determinant for joint health, and chondrocyte deformation in response to mechanical loading is speculated to be an important regulator of metabolic activity. In previous studies of chondrocyte deformation, articular cartilage was described as a biphasic material consisting of a homogeneous, isotropic, linearly elastic solid phase, and an inviscid fluid phase. However, articular cartilage is known to be anisotropic and inhomogeneous across its depth. Therefore, isotropic and homogeneous models cannot make appropriate predictions for tissue and cell stresses and strains. Here, we modelled articular cartilage as a transversely isotropic, inhomogeneous (TI) material in which the anisotropy and inhomogeneity arose naturally from the microstructure of the depth-dependent collagen fibril orientation and volumetric fraction, as well as the chondrocyte shape and volumetric fraction. The purpose of this study was to analyse the deformation behaviour of chondrocytes using the TI model of articular cartilage. In order to evaluate our model against experimental results, we simulated indentation and unconfined compression tests for nominal compressions of 15%. Chondrocyte deformations were analysed as a function of location within the tissue. The TI model predicted a non-uniform behaviour across tissue depth: in indentation testing, cell height decreased by 43% in the superficial zone and between 11 and 29% in the deep zone. In unconfined compression testing, cell height decreased by 32% in the superficial zone, 25% in the middle, and 18% in the deep zones. This predicted non-uniformity is in agreement with experimental studies. The novelty of this study is the use of a cartilage material model accounting for the intrinsic inhomogeneity and anisotropy of cartilage caused by its microstructure.  相似文献   

11.
12.
During osteoarthritis (OA)-development extracellular matrix (ECM) molecules are lost from cartilage, thus changing gene-expression, matrix synthesis and biomechanical competence of the tissue. Mechanical loading is important for the maintenance of articular cartilage; however, the influence of an altered ECM content on the response of chondrocytes to loading is not well understood, but may provide important insights into underlying mechanisms as well as supplying new therapies for OA. Objective here was to explore whether a changing ECM-content of engineered cartilage affects major signaling pathways and how this alters the chondrocyte response to compressive loading.Activity of canonical WNT-, BMP-, TGF-β- and p38-signaling was determined during maturation of human engineered cartilage and followed after exposure to a single dynamic compression-episode. WNT/β-catenin- and pSmad1/5/9-levels declined with increasing ECM-content of cartilage. While loading significantly suppressed proteoglycan-synthesis and ACAN-expression at low ECM-content this catabolic response then shifted to an anabolic reaction at high ECM-content. A positive correlation was observed between GAG-content and load-induced alteration of proteoglycan-synthesis. Induction of high β-catenin levels by the WNT-agonist CHIR suppressed load-induced SOX9- and GAG-stimulation in mature constructs. In contrast, the WNT-antagonist IWP-2 was capable of attenuating load-induced GAG-suppression in immature constructs.In conclusion, either ECM accumulation-associated or pharmacologically induced silencing of WNT-levels allowed for a more anabolic reaction of chondrocytes to physiological loading. This is consistent with the role of proteoglycans in sequestering WNT-ligands in the ECM, thus reducing WNT-activity and also provides a novel explanation of why low WNT-activity in cartilage protects from OA-development in mechanically overstressed cartilage.  相似文献   

13.
In articular cartilage, chondrocytes are surrounded by a narrow region called the pericellular matrix (PCM), which is biochemically, structurally, and mechanically distinct from the bulk extracellular matrix (ECM). Although multiple techniques have been used to measure the mechanical properties of the PCM using isolated chondrons (the PCM with enclosed cells), few studies have measured the biomechanical properties of the PCM in situ. The objective of this study was to quantify the in situ mechanical properties of the PCM and ECM of human, porcine, and murine articular cartilage using atomic force microscopy (AFM). Microscale elastic moduli were quantitatively measured for a region of interest using stiffness mapping, or force-volume mapping, via AFM. This technique was first validated by means of elastomeric models (polyacrylamide or polydimethylsiloxane) of a soft inclusion surrounded by a stiff medium. The elastic properties of the PCM were evaluated for regions surrounding cell voids in the middle/deep zone of sectioned articular cartilage samples. ECM elastic properties were evaluated in regions visually devoid of PCM. Stiffness mapping successfully depicted the spatial arrangement of moduli in both model and cartilage surfaces. The modulus of the PCM was significantly lower than that of the ECM in human, porcine, and murine articular cartilage, with a ratio of PCM to ECM properties of ∼0.35 for all species. These findings are consistent with previous studies of mechanically isolated chondrons, and suggest that stiffness mapping via AFM can provide a means of determining microscale inhomogeneities in the mechanical properties of articular cartilage in situ.  相似文献   

14.
15.
The pericellular matrix of articular cartilage has been shown to regulate the mechanical environment of chondrocytes. However, little is known about the mechanical role of collagen fibrils in the pericellular matrix, and how fibrils might help modulate strains acting on chondrocytes when cartilage is loaded. The primary objective was to clarify the effect of pericellular collagen fibrils on cell volume changes and strains during cartilage loading. Secondary objectives were to investigate the effects of pericellular fixed charges and fluid on cell responses. A microstructural model of articular cartilage, in which chondrocytes and pericellular matrices were represented with depth-dependent structural and morphological properties, was created. The extracellular matrix and pericellular matrices were modeled as fibril-reinforced, biphasic materials with swelling capabilities, while chondrocytes were assumed to be isotropic and biphasic with swelling properties. Collagen fibrils in the extracellular matrix were represented with an arcade-like architecture, whereas pericellular fibrils were assumed to run tangential to the cell surface. In the early stages of a stress-relaxation test, pericellular fibrils were found to sensitively affect cell volume changes, even producing a reversal from increasing to decreasing cell volume with increasing fibril stiffness in the superficial zone. Consequently, steady-state volume of the superficial zone cell decreased with increasing pericellular fibril stiffness. Volume changes in the middle and deep zone chondrocytes were smaller and opposite to those observed in the superficial zone chondrocyte. An increase in the pericellular fixed charge density reduced cell volumes substantially in every zone. The sensitivity of cell volume changes to pericellular fibril stiffness suggests that pericellular fibrils play an important, and as of yet largely neglected, role in regulating the mechanical environment of chondrocytes, possibly affecting matrix synthesis during cartilage development and degeneration, and affecting biosynthetic responses associated with articular cartilage loading.  相似文献   

16.
The chondron in articular cartilage includes the chondrocyte and its surrounding pericellular matrix (PCM). Single chondrocytes and chondrons were compressed between two parallel surfaces by a micromanipulation technique to investigate their biomechanical properties and to discover the mechanical significance of the PCM. The force imposed on the cells was measured directly during deformation at various compression speeds and deformations up to cell rupture. When the deformation at the end of compression was 50%, relaxation showed that the cells were viscoelastic, but this viscoelasticity was generally insignificant at 30% deformation or lower. When the deformation was 70%, the cells had deformed plastically. Chondrons ruptured at a mean deformation of 85 ± 1%, whilst chondrocytes ruptured at a mean deformation of 78 ± 1%. Chondrons were generally stiffer than chondrocytes and showed less viscoelastic behaviour than chondrocytes. Thus, the PCM significantly influences the mechanical properties of the cells.  相似文献   

17.
18.
The pericellular matrix (PCM) is a narrow region of tissue that completely surrounds chondrocytes in articular cartilage. Previous theoretical models of the "chondron" (the PCM with enclosed cells) suggest that the structure and properties of the PCM may significantly influence the mechanical environment of the chondrocyte. The objective of this study was to quantify changes in the three-dimensional (3D) morphology of the chondron in situ at different magnitudes of compression applied to the cartilage extracellular matrix. Fluorescence immunolabeling for type-VI collagen was used to identify the boundaries of the cell and PCM, and confocal microscopy was used to form 3D images of chondrons from superficial, middle, and deep zone cartilage in explants compressed to 0%, 10%, 30%, and 50% surface-to-surface strain. Lagrangian tissue strain, determined locally using texture correlation, was highly inhomogeneous and revealed depth-dependent compressive stiffness and Poisson's ratio of the extracellular matrix. Compression significantly decreased cell and chondron height and volume, depending on the zone and magnitude of compression. In the superficial zone, cellular-level strains were always lower than tissue-level strains. In the middle and deep zones, however, tissue strains below 25% were amplified at the cellular level, while tissue strains above 25% were decreased at the cellular level. These findings are consistent with previous theoretical models of the chondron, suggesting that the PCM can serve as either a protective layer for the chondrocyte or a transducer that amplifies strain, such that cellular-level strains are more homogenous throughout the tissue depth despite large inhomogeneities in local ECM strains.  相似文献   

19.
The aim of this study was to assess the effect of extracellular matrix (ECM) deposited by synovium-derived stem cells (SDSCs) on articular chondrocyte expansion and maintenance of differentiation status and redifferentiation capacity. Passage 0 (P0) pig articular chondrocytes were expanded for six passages on plastic flasks (Plastic), SDSC-derived ECM (ECM), or substrate switching from either Plastic to ECM (PtoE) or ECM to Plastic (EtoP). Cell morphology, gene expression profiles, and immunophenotypes at each passage were used to characterize differentiation status of expanded cells. Chondrocytes at P0, P2, and P6 were assessed for redifferentiation capacity in a pellet culture system treated with either TGF-β1- or serum-containing medium for 14 days, using histology, immunohistochemistry, biochemistry, Western blot, and real-time PCR. We found that ECM not only greatly enhanced chondrocyte expansion but also delayed dedifferentiation of expanded chondrocytes. Intriguingly, compared to a dramatic decrease in CD90+/CD105+ cells and CD90+ cells, CD105+ cells dramatically increased when chondrocytes were plated on Plastic; on the contrary, ECM expansion dramatically increased CD90+ cells and delayed the decrease of CD90+/CD105+ cells. Interestingly, expanded chondrocytes on ECM also acquired a strong redifferentiation capacity, particularly in the pellets treated with TGF-β1. In conclusion, the ratio of CD90 to CD105 may serve as a marker indicative of proliferation and redifferentiation capacity of dedifferentiated chondrocytes. ECM deposited by SDSCs provides a tissue-specific three-dimensional microenvironment for ex vivo expansion of articular chondrocytes while retaining redifferentiation capacity, suggesting that ECM may provide a novel approach for autologous chondrocyte-based cartilage repair.  相似文献   

20.
The extracellular matrix of articular cartilage modulates the mechanical signals sensed by the chondrocytes. In the present study, a finite element model (FEM) of the chondrocyte and its microenvironment was reconstructed using the information from fourier transform infrared imaging spectroscopy. This environment consisted of pericellular, territorial (mainly proteoglycans), and inter-territorial (mainly collagen) matrices. The chondrocyte, pericellular, and territorial matrix were assumedto be mechanically isotropic and poroelastic, whereas the inter-territorial matrix, due to its high collagen content, was assumed to be transversely isotropic and poroelastic. Under instantaneous strain-controlled compression, the FEM indicated that the fluid pressure within the chondrocyte increased nonlinearly as a function of the in-plane Young’s modulus of the collagen network. Under instantaneous force-controlled compression, the chondrocyte experienced the highest fluid pressure when the in-plane Young’s modulus of the collagen network was ~4 MPa. Based on the present results, the mechanical characteristics of the collagen network of articular cartilage can modify fluid flow and stresses in chondrocytes. Therefore, the integrity of the collagen network may be an important determinant in cell stimulation and in the control of the matrix maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号