首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Relative net vertical impulse determines jumping performance   总被引:1,自引:0,他引:1  
The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.  相似文献   

2.
It is common practice to study jump landing mechanics by having subjects step off a box set at a certain height instead of landing from a jump. This practice assumes that the landing mechanics are similar between stepping off a box and a countermovement jump as long as the heights can be matched. The mechanics of the two methods had never been compared when landing from identical heights. Thus, the purpose of this study was to compare the mechanics of landing from a countermovement jump to landing from a step-off. Participants performed three maximal countermovement jumps. The mechanics of one countermovement jump was compared with a center of mass fall height matched step-off landing. The step-off landing showed a more rapid time to peak ground reaction force (GRF) in both genders and greater GRF peak and loading rate in males only. No difference was observed between joint angles at initial contact; however, the countermovement jump showed significantly greater joint flexion angles at peak GRF for both genders. EMG showed greater muscle activity during the countermovement jump condition in all subjects. It was concluded that countermovement jump landings are different from step-off landings; thus, results from analyses involving step-off landings should be taken with caution if the aim is to relate them to landing from a jump.  相似文献   

3.
The maximal height attained in a vertical jump is heavily influenced by the execution of a large countermovement prior to the upward motion. When a jump must be executed without a countermovement, as in a squat jump, the maximal jump height is reduced. During such conditions, the human body may use other strategies in order to increase performance. The purpose of this research was to investigate the effects of two strategies employed during the initiation of the squat jump: the premovement silent period (PSP), and the small amplitude countermovement (SACM). Fifteen elite male volleyball players (20.6 +/- 1.6 years) and 13 untrained males (20.2 +/- 1.7 years) performed 10 maximal effort squat jumps from identical starting positions. The electromyographic activity of the vastus lateralis and biceps femoris was measured in conjunction with the vertical ground reaction force and vertical displacement. It was found that the presence of a PSP or a SACM of 1-3 cm did not increase maximal squat jump height significantly (p > 0.05), in neither the highly trained athletes nor the untrained individuals. These results suggest that these strategies do not play a major role in the determination of jump height. Researchers have assumed that a squat jump is purely concentric, and that there are no facilitating mechanisms present that may influence the performance of the jump. This study provides evidence to support this assumption.  相似文献   

4.
The purpose of this study was to investigate the benefit of landmark registration when applied to waveform data. We compared the ability of data reduced from time-normalised and landmark registered vertical ground reaction force (vGRF) waveforms captured during maximal countermovement jumps (CMJ) of 53 active male subjects to predict jump height. vGRF waveforms were landmark registered using different landmarks resulting in four registration conditions: (i) end of the eccentric phase, (ii) adding maximum centre of mass (CoM) power, (iii) adding minimum CoM power, (iv) adding minimum vGRF. In addition to the four registration conditions, the non-registered vGRF and concentric phase only were time-normalised and used in subsequent analysis. Analysis of characterising phases was performed to reduce the vGRF data to features that captured the behaviour of each waveform. These features were extracted from each condition’s vGRF waveform, time-domain (time taken to complete the movement), and warping functions (generated from landmark registration). The identified features were used as predictor features to fit a step-wise multilinear regression to jump height. Features generated from the best performing registration condition were able to predict jump height to a similar extent as the concentric phase (86–87%), while all registration conditions could explain jump height to a greater extent than time-normalisation alone (65%). This suggests waveform variability was reduced as phases of the CMJ were aligned. However, findings suggest that over-registration can occur when applying landmark registration. Overall, landmark registration can improve prediction power to performance measures as waveform data can be reduced to more appropriate performance related features.  相似文献   

5.
The purpose of the present study was to investigate the intersession reliability of vertical jump height in women and men recorded from a contact mat. Thirty-five women and 35 men performed four testing sessions across a 4-week period, with each session separated by 1 week. Within each testing session, subjects completed three countermovement vertical jumps (CMJs) for maximum height. Reliability statistics were calculated using the highest jump (HIGH) and also from the mean of all three jumps (3 MEAN) during each session. Reliability was calculated as a change in the mean, coefficients of variation (CVs), and intraclass correlations coefficients (ICCs) between testing sessions. For women, jump heights were not substantially different between sessions for either the HIGH or 3 MEAN data. The CVs for women ranged from 4.4 to 6.6% for HIGH and 4.1 to 6.0% for 3 MEAN, with the corresponding ICCs ranging from 0.87 to 0.94 for HIGH and 0.90 to 0.95 for 3 MEAN. For men, jump heights were not substantially different between sessions for HIGH. However, jump heights during session 1 were substantially greater than those during session 2 when using the 3 MEAN data. CVs between sessions for HIGH ranged from 4.0 to 5.6%, and those for 3 MEAN ranged from 4.2 to 5.2%. The ICCs ranged from 0.87 to 0.93 for HIGH and from 0.89 to 0.93 for 3 MEAN. Given the maximal nature of vertical jump tests, it seems appropriate to use the highest jump from a number of trials for women and men when using a contact mat. Practitioners and researchers can use the data to identify the range in which the true value of an athlete's score lies and calculate sample sizes for studies assessing height during CMJs recorded from a contact mat.  相似文献   

6.
Elastic band assisted and resisted jump training may be a novel way to develop lower-body power. The purpose of this investigation was to (a) determine the kinetic differences between assisted, free, and resisted countermovement jumps and (b), investigate the effects of contrast training using either assisted, free, or resisted countermovement jump training on vertical jump performance in well-trained athletes. In part 1, 8 recreationally trained men were assessed for force output, relative peak power (PP·kg(-1)) and peak velocity during the 3 types of jump. The highest peak force was achieved in the resisted jump method, while PP·kg(-1) and peak velocity were greatest in the assisted jump. Each type of jump produced a different pattern of maximal values of the variables measured, which may have implications for developing separate components of muscular power. In part 2, 28 professional rugby players were assessed for vertical jump height before and after 4 weeks of either assisted (n = 9), resisted (n = 11), or free (n = 8) countermovement jump training. Relative to changes in the control group (1.3 ± 9.2%, mean ± SD), there were clear small improvements in jump height in the assisted (6.7 ± 9.6%) and the resisted jump training group (4.0 ± 8.8%). Elastic band assisted and resisted jump training are both effective methods for improving jump height and can be easily implemented into current training programs via contrast training methods or as a part of plyometric training sessions. Assisted and resisted jump training is recommended for athletes in whom explosive lower-body movements such as jumping and sprinting are performed as part of competition.  相似文献   

7.
Modern electronics allow for the unobtrusive measurement of accelerations outside the laboratory using wireless sensor nodes. The ability to accurately measure joint accelerations under unrestricted conditions, and to correlate them with jump height and landing force, could provide important data to better understand joint mechanics subject to real-life conditions. This study investigates the correlation between peak vertical ground reaction forces, as measured by a force plate, and tibial axial accelerations during free vertical jumping. The jump heights calculated from force-plate data and accelerometer measurements are also compared. For six male subjects participating in this study, the average coefficient of determination between peak ground reaction force and peak tibial axial acceleration is found to be 0.81. The coefficient of determination between jump height calculated using force plate and accelerometer data is 0.88. Data show that the landing forces could be as high as 8 body weights of the jumper. The measured peak tibial accelerations ranged up to 42 g. Jump heights calculated from force plate and accelerometer sensors data differed by less than 2.5 cm. It is found that both impact accelerations and landing forces are only weakly correlated with jump height (the average coefficient of determination is 0.12). This study shows that unobtrusive accelerometers can be used to determine the ground reaction forces experienced in a jump landing. Whereas the device also permitted an accurate determination of jump height, there was no correlation between peak ground reaction force and jump height.  相似文献   

8.
The study investigated differences in skeletal muscle function between obese and non-obese children using a force platform. Forty obese children and adolescents (age range 8 to 18 years; 21 girls) and 40 age- and sex-matched controls performed two tests: (1) single two-legged jump, a countermovement jump for maximal height; (2) multiple one-legged hopping on the forefoot, a test of maximal force. In the single two-legged jump, obese subjects had higher absolute peak force (1.62 kN vs 1.09 kN) and peak power (2.46 kW vs 2.06 kW), but lower body weight-related peak force (2.10 vs 2.33) and lower peak power per body mass (30.9 W/kg vs 41.6 W/kg). Jump height (29.3 cm vs 37.5 cm) and maximal vertical velocity (1.92 ms(-1) vs 2.31 ms(-1)) were reduced in obese children. In multiple one-legged hopping, obese subjects had 72% and 84% higher absolute peak force on the left and right foot, respectively. However, forces relative to body weight were 24% and 23% lower in the obese group than in the control group. In conclusion, obese children and adolescents have increased muscle force and power. This partly compensates for the effect of high body weight on muscle performance.  相似文献   

9.
The purpose of this investigation was to determine the concurrent validity of a commonly used electronic switch mat (ESM), or jump mat, compared with force plate (FP) data. The efficiency of collection and accuracy of data are paramount to athlete and player field testing for the strength and conditioning coach who often has access only to a jump mat. Ten subjects from 5 different sporting backgrounds completed 3 squat jumps (SJs), 3 countermovement jumps (CMJs), and 3 drop jumps (DJs). The jumps were performed on an AMTI FP operating at 1,000 Hz with an ESM positioned on top of the platform. All the subjects were experienced with the protocols involved with jump testing. The resulting absolute errors between FP and ESM data were 0.01, 0.02, and 0.01 m for CMJ, SJ, and DJ heights, respectively. However, the coefficient of variation for the DJ contact time (CT) was 57.25%, CMJ (r = 0.996), and SJ (r = 0.958) heights correlated very strongly with force platform data, and DJ data were not as strong (r = 0.683). Confidence interval tests revealed bias toward CMJ and SJ (p < 0.05). The jump mat can accurately calculate the CMJ height, SJ height, and reactive strength index for all the 3 jump protocols. However, the faster CTs and rapid movements involved in a DJ may limit its reliability when giving measures of CT, flight time, and height jumped for DJs. Strength and conditioning coaches can use such a jump mat device with the confidence that it is accurately producing valid measurements of their athlete's performance for CMJ and SJ slow SSC protocols.  相似文献   

10.
This study compared peak power estimated using 4 commonly used regression equations with actual peak power derived from force platform data in a group of adolescent basketball players. Twenty-five elite junior male basketball players (age, 16.5 +/- 0.5 years; mass, 74.2 +/- 11.8 kg; height, 181.8 +/- 8.1 cm) volunteered to participate in the study. Actual peak power was determined using a countermovement vertical jump on a force platform. Estimated peak power was determined using countermovement jump height and body mass. All 4 prediction equations were significantly related to actual peak power (all p < 0.01). Repeated-measures analysis of variance indicated significant differences between actual peak power and estimate peak power from all 4 prediction equations (p < 0.001). Bonferroni post hoc tests indicated that estimated peak power was significantly lower than actual peak power for all 4 prediction equations. Ratio limits of agreement for actual peak power and estimated peak power were 8% for the Harman et al. and Sayers squat jump prediction equations, 12% for the Canavan and Vescovi equation, and 6% for the Sayers countermovement jump equation. In all cases peak power was underestimated.  相似文献   

11.
During prosthetic gait initiation, transfemoral (TF) amputees control the spatial and temporal parameters that modulate the propulsive forces, the positions of the center of pressure (CoP), and the center of mass (CoM). Whether their sound leg or the prosthetic leg is leading, the TF amputees reach the same end velocity. We wondered how the CoM velocity build up is influenced by the differences in propulsive components in the legs and how the trajectory of the CoP differs from the CoP trajectory in able bodied (AB) subjects. Seven TF subjects and eight AB subjects were tested on a force plate and on an 8 m long walkway. On the force plate, they initiated gait two times with their sound leg and two times with their prosthetic leg. Force measurement data were used to calculate the CoM velocity curves in horizontal and vertical directions. Gait initiated on the walkway was used to determine the leg preference. We hypothesized that because of the differences in propulsive components, the motions of the CoP and the CoM have to be different, as ankle muscles are used to help generate horizontal ground reaction force components. Also, due to the absence of an active ankle function in the prosthetic leg, the vertical CoM velocity during gait initiation may be different when leading with the prosthetic leg compared to when leading with the sound leg. The data showed that whether the TF subjects initiated a gait with their prosthetic leg or with their sound leg, their horizontal end velocity was equal. The subjects compensated the loss of propulsive force under the prosthesis with the sound leg, both when the prosthetic leg was leading and when the sound leg was leading. In the vertical CoM velocity, a tendency for differences between the two conditions was found. When initiating gait with the sound leg, the downward vertical CoM velocity at the end of the gait initiation was higher compared to when leading with the prosthetic leg. Our subjects used a gait initiation strategy that depended mainly on the active ankle function of the sound leg; therefore, they changed the relative durations of the gait initiation anticipatory postural adjustment phase and the step execution phase. Both legs were controlled in one single system of gait propulsion. The shape of the CoP trajectories, the applied forces, and the CoM velocity curves are described in this paper.  相似文献   

12.
The purpose of this study was to determine the relationship between measures of unilateral and bilateral jumping performance and 10- and 25-m sprint performance. Fifteen division I women soccer players (height 165 ± 2.44 cm, mass 61.65 ± 7.7 kg, age 20.19 ± 0.91 years) volunteered to participate in this study. The subjects completed a 10- and 25-m sprint test. The following jump kinematic variables were measured using accelerometry: sprint time, step length, step frequency, jump height and distance, contact time, concentric contact time, and flight time (Inform Sport Training Systems, Victoria, BC, Canada). The following jumps were completed in random order: bilateral countermovement vertical jump, bilateral countermovement horizontal jump, bilateral 40-cm drop vertical jump, bilateral 40-cm drop horizontal jump, unilateral countermovement vertical jump (UCV), unilateral countermovement horizontal jump, unilateral 20-cm drop vertical jump (UDV), and unilateral 20-cm drop horizontal jump (UDH). The trial with the best jump height or distance, reactive strength (jump height or distance/total contact time), and flight time to concentric contact time ratio (FT/CCT) was recorded to analyze the relationship between jump kinematics and sprint performance. None of the bilateral jump kinematics significantly correlated with 10- and 25-m sprint time, step length, or step frequency. Right-leg jump height (r = -0.71, p = 0.006, SEE = 0.152 seconds), FT/CCT (r = -0.58, p = 0.04, SEE = 0.176 seconds), and combined right and left-leg jump height (r = -0.61) were significantly correlated with the 25-m sprint time during the UCV. Right-leg FT/CCT was also significantly related to 25-m step length (r = 0.68, p = 0.03, SEE = 0.06 m) during the UDV. The combined right and left leg jump distance to standing height ratio during the UDH significantly correlated (r = -0.58) with 10-m sprint time. In comparison to bilateral jumps, unilateral jumps produced a stronger relationship with sprint performance.  相似文献   

13.
On the basis of the principles of geometric scaling, maximum vertical-jump height should decrease in an approximately linear fashion with increasing mass. To test this prediction, a group of 10 male subjects performed maximum vertical jumps with masses up to 22.7 kg strapped to their trunks. The results from these jumps indicated that jump height did scale on an individual basis in a linear fashion. A computer simulation model of jumping was developed that permitted the examination of a greater range of masses than was possible experimentally. The simulations also support the trend of linear scaling, but do replicate the decrement expected based on geometric scaling principles. Experimental and simulation model results provide evidence for a linear decrement in subject maximum vertical-jump height with increasing mass, which is relevant information for athletes aiming to increase their body mass or performing jump training while carrying additional mass.  相似文献   

14.
The study assessed the effect of current activation potentiation by evaluating jaw clenching and its effect on the rate of force development (RFD), time to peak force (TTPF), and peak force (PF) during the countermovement jump. Fourteen subjects performed the countermovement jump on a force platform while maximally clenching their jaw on a dental vinyl mouthguard (JAW) as well as without clenching their jaw by jumping with an open mouth (NON-JAW). Results reveal that the RFD was 19.5% greater in the JAW compared with the NON-JAW condition (p < 0.05). The TTPF was 20.15% less in the JAW compared with the NON-JAW condition (p < 0.05). There were no significant differences (p = 0.60) in PF between the JAW and NON-JAW conditions. These findings indicate that concurrent activation potentiation is manifested through jaw clenching during the countermovement jump. As a result, athletes may employ this strategy of maximally clenching their jaws to gain an ergogenic advantage during the countermovement jump.  相似文献   

15.
Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.  相似文献   

16.
Court sports often require more frequent changes of direction (COD) than field sports. Most court sports require 180 degrees turns over a small distance, so COD in such sports might be best evaluated with an agility test involving short sprints and sharp turns. The purposes of this study were to (a) quantify vertical and horizontal force during a COD task, (b) identify possible predictors of court-sport-specific agility performance, and (c) examine performance difference between National Collegiate Athletic Association Division I, II, and III athletes. Twenty-nine collegiate female volleyball players completed a novel agility test, countermovement (CM) and drop jump tests, and an isometric leg extensor test. The number of athletes by division was as follows: I (n = 9), II (n = 11), and III (n = 9). The agility test consisted of 4 5-meter sprints with 3 180 degrees turns, including 1 on a multiaxial force platform so that the kinetic properties of the COD could be identified. One-way analysis of variance revealed that Division I athletes had significantly greater countermovement jump heights than Division III, and the effect size comparisons (Cohen's d) showed large-magnitude differences between Division I and both Divisions II and III for jump height. No other differences in performance variables were noted between divisions, although effect sizes reached moderate values for some comparisons. Regression analysis revealed that CM displacement was a significant predictor of agility performance, explaining approximately 34% of the variance. Vertical force was found to account for much of the total force exerted during the contact phase of the COD task, suggesting that performance in the vertical domain may limit the COD task used herein. This study indicates that individuals with greater CM performance also have quicker agility times and suggests that training predominantly in the vertical domain may also yield improvements in certain types of agility performance. This may hold true even if such agility performance requires a horizontal component.  相似文献   

17.
Contractile force is transmitted to the skeleton through tendons and aponeuroses, and, although it is appreciated that the mechanocharacteristics of these tissues play an important role for movement performance with respect to energy storage, the association between tendon mechanical properties and the contractile muscle output during high-force movement tasks remains elusive. The purpose of the study was to investigate the relation between the mechanical properties of the connective tissue and muscle performance in maximal isometric and dynamic muscle actions. Sixteen trained men participated in the study. The mechanical properties of the vastus lateralis tendon-aponeurosis complex were assessed by ultrasonography. Maximal isometric knee extensor force and rate of torque development (RTD) were determined. Dynamic performance was assessed by maximal squat jumps and countermovement jumps on a force plate. From the vertical ground reaction force, maximal jump height, jump power, and force-/velocity-related determinants of jump performance were obtained. RTD was positively related to the stiffness of the tendinous structures (r = 0.55, P < 0.05), indicating that tendon mechanical properties may account for up to 30% of the variance in RTD. A correlation was observed between stiffness and maximal jump height in squat jumps and countermovement jumps (r = 0.64, P < 0.05 and r = 0.55, P < 0.05). Power, force, and velocity parameters obtained during the jumps were significantly correlated to tendon stiffness. These data indicate that muscle output in high-force isometric and dynamic muscle actions is positively related to the stiffness of the tendinous structures, possibly by means of a more effective force transmission from the contractile elements to the bone.  相似文献   

18.
The current study purpose examined the vertical height-anthropometry relationship with jump data obtained from an instrumented platform. Our methods required college-aged (n = 177) subjects to make 3 visits to our laboratory to measure the following anthropometric variables: height, body mass, upper arm length (UAL), lower arm length, upper leg length, and lower leg length. Per jump, maximum height was measured in 3 ways: from the subjects' takeoff, hang times, and as they landed on the platform. Standard multivariate regression assessed how well anthropometry predicted the criterion variance per gender (men, women, pooled) and jump height method (takeoff, hang time, landing) combination. Z-scores indicated that small amounts of the total data were outliers. The results showed that the majority of outliers were from jump heights calculated as women landed on the platform. With the genders pooled, anthropometry predicted a significant (p < 0.05) amount of variance from jump heights calculated from both takeoff and hang time. The anthropometry-vertical jump relationship was not significant from heights calculated as subjects landed on the platform, likely due to the female outliers. Yet anthropometric data of men did predict a significant amount of variance from heights calculated when they landed on the platform; univariate correlations of men's data revealed that UAL was the best predictor. It was concluded that the large sample of men's data led to greater data heterogeneity and a higher univariate correlation. Because of our sample size and data heterogeneity, practical applications suggest that coaches may find our results best predict performance for a variety of college-aged athletes and vertical jump enthusiasts.  相似文献   

19.
This paper presents a simulation study that was conducted to investigate whether the stereotyped motion pattern observed in human sub-maximal jumping can be interpreted from the perspective of energy expenditure. Human sub-maximal vertical countermovement jumps were compared to jumps simulated with a forward dynamic musculo-skeletal model. This model consisted of four interconnected rigid segments, actuated by six Hill-type muscle actuators. The only independent input of the model was the stimulation of muscles as a function of time. This input was optimized using an objective function, in which targeting a specific sub-maximal height value was combined with minimizing the amount of muscle work produced. The characteristic changes in motion pattern observed in humans jumping to different target heights were reproduced by the model. As the target height was lowered, two major changes occurred in the motion pattern. First, the countermovement amplitude was reduced; this helped to save energy because of reduced dissipation and regeneration of energy in the contractile elements. Second, the contribution of rotation of the heavy proximal segments of the lower limbs to the vertical velocity of the centre of gravity at take-off was less; this helped to save energy because of reduced ineffective rotational energies at take-off. The simulations also revealed that, with the observed movement adaptations, muscle work was reduced through improved relative use of the muscle's elastic properties in sub-maximal jumping. According to the results of the simulations, the stereotyped motion pattern observed in sub-maximal jumping is consistent with the idea that in sub-maximal jumping, subjects are trying to achieve the targeted jump height with minimal energy expenditure.  相似文献   

20.
Sacral marker and pelvis reconstruction methods have been proposed to approximate total body center of mass during relatively low intensity gait and hopping tasks, but not during a maximum effort vertical jumping task. In this study, center of mass displacement was calculated using the pelvic kinematic method and compared with center of mass displacement using the ground-reaction force-impulse method, in experienced athletes (n = 13) performing restricted countermovement vertical jumps. Maximal vertical jumps were performed in a biomechanics laboratory, with data collected using an 8-camera motion analysis system and two force platforms. The pelvis center of mass was reconstructed from retro-reflective markers placed on the pelvis. Jump height was determined from the peak height of the pelvis center of mass minus the standing height. Strong linear relationships were observed between the pelvic kinematic and impulse methods (R2 = .86; p < .01). The pelvic kinematic method underestimated jump height versus the impulse method, however, the difference was small (CV = 4.34%). This investigation demonstrates concurrent validity for the pelvic kinematic method to determine vertical jump height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号