首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of human forearm viscoelasticity   总被引:2,自引:0,他引:2  
In human subjects, stiffness of the relaxed elbow was measured by three methods, using a forearm manipulandum coupled to a.d.c. torque motor. Elbow stiffness calculated from frequency response characteristics increased as the driving amplitude decreased. Step displacements of the forearm produced restoring torques linearly related to the displacement. The stiffness was very similar to that calculated from natural frequencies at amplitudes above 0.1 rad. Thirdly, elbow stiffness was estimated from brief test pulses, 120 ms in duration, by mathematically simulating the torque-displacement functions. Stiffness values in the limited linear range (under +/- 0.1 rad) were higher than in the linear range of the first two methods. A major component of elbow stiffness appears to decay within 1 s. The coefficients of viscosity determined from the simulation were, however, very similar to those calculated from the frequency response. Test pulse simulation was then used to determine joint impedance for different, actively maintained elbow angles. Joint stiffness and viscosity increased with progressive elbow flexion.  相似文献   

2.
The purpose of this study was to describe pressure originating in the six elbow articular compartments after muscular contractions. Ten cryopreserved cadaveric arms were dissected and the insertional tendons and capsuloligamentous tissues were preserved. The specimens were placed in a custom-made device. Elbow position was established at 90° flexion with the forearm in a neutral position and the wrist extended at 0°. Tekscan sensors sere used for measuring intraarticular pressures.Without loading the elbow, the humeroradial joint received the lowest pressure, and, among the humeroulnar joints, the highest pressure was found in the anterolateral compartment. After loading the epitrochlear muscles to the maximum (5.0 kg), the pressure increased in the anteromedial joint (0.6 kg to 3.3 kg) and decreased in the posteromedial and anterolateral joints (4.2 kg to 0.3 kg and 4.2 kg to 0.9 kg, respectively). After the same loading in the epicondylar muscles, the pressure increased in the anterolateral and humeroradial joints (4.2 kg to 8.2 kg and 0.2 kg to 1.0 kg respectively), but decreased in the posterolateral joint (3.4 kg to 1.0 kg). The pressure distribution patterns among the humeroulnar compartments depend on the muscle geometries and their origins. Understanding these patterns can be useful in applying physiotherapeutic treatments for reinforcement of different muscular groups in order to decrease pressure in certain articular compartments.  相似文献   

3.
俞发宏  彭燕章 《兽类学报》1992,12(2):96-104
对懒猴、猕猴、叶猴和长臂猿的肘关节形态与功能和前臂伸、屈肌肌肉电生理的研究结果表明,随着上肢运动功能的加强,肘关节的灵活性亦相应增大。猕猴各肌的肌电活动相对较弱,肘关节的结构明显不同于其它3个种,表现出对四足型运动和维持关节稳定性的适应特点。叶猴肘关节的形态结构和前臂各肌的肌电活动类似于长臂猿,表现出与臂摆荡有关的活动特点。对前臂伸、屈肌有关指数的判别分析表明,与骨骼相比,4个种的前臂各肌的形态差异明显较大。肱肌的近侧起点指数。肱桡肌的止点指数和肱三头肌内侧头的起点指数可作为4个种的鉴定特征。  相似文献   

4.
This study sought to resolve a longstanding debate of the function of anconeus. Intramuscular and surface electromyography electrodes recorded muscle activity from two regions of anconeus and from typical elbow flexion and extension muscles. Eleven participants performed pronation–supination around the medial and lateral axes of the forearm, elbow flexion–extension in pronation, supination and neutral positions of the forearm, and gripping. Maximal voluntary contractions (MVC) and submaximal (10% MVC) force-matching tasks were completed. Activity varied between longitudinal (AL) and transverse (AT) segments of anconeus. Although both muscle regions were active across multiple directions (including opposing directions), AL was more active during pronation than supination, whereas AT showed no such difference. During pronation, activity of AL and AT was greatest about the lateral forearm axis. AT was more active during elbow extension with the forearm in pronation, whereas AL did not differ between pronated and neutral forearm alignment. These findings are consistent with the proposal that AL makes a contribution to control of abduction of the ulna during forearm pronation. Different effects of forearm position on AL and AT activity during elbow extension may be explained by the anatomical differences between the regions. These data suggest anconeus performs multiple functions at the elbow and forearm and this varies between anatomically distinct regions of the muscle.  相似文献   

5.
The stiffness of activated muscles may stabilize a loaded joint by preventing perturbations from causing large displacements and injuring the joint. Here the elbow muscle recruitment patterns were compared with the forearm loaded vertically (a potentially unstable inverted pendulum configuration) and with horizontal loading. Eighteen healthy subjects were studied with the forearm vertical and supinated and the elbow flexed approximately 90 degrees. In the first experiment EMG electrodes recorded activity of biceps, triceps, and brachioradialis muscles for joint torques produced (a) by voluntarily exerting a horizontal force isometrically (b) by voluntarily flexing and extending the elbow while the forearm was loaded vertically with 135N. The relationship between the EMG and the torque generated was quantified by the linear regression slope and zero-torque intercept. In a second experiment a vertical load increasing linearly with time up to 300N was applied.In experiment 1 the EMG-torque relationships for biceps and triceps had an intercept about 10% of maximum voluntary effort greater with the vertical compared to the horizontal force, the inverse was found for Brachioradialis, but the EMG-torque slopes for both agonist and antagonistic muscles were not different. In experiment 2 there were 29 trials with minimal elbow displacement and all the three muscles activated on the order of 11% of maximum activation to stabilize the elbow; 19 trials had small elbow extension and 14 trials small flexion requiring altered muscle forces for equilibrium; 7 trials ended in large unstable displacement or early termination of the test. An analysis indicate that the observed levels of muscle activation would only provide stability if the muscles' short-range stiffness was at the high end of the published range, hence the elbow was marginally stable. The stability analysis also indicated that the small elbow extension increased stability and flexion decreased stability.  相似文献   

6.
Abstract

Purpose/Aim: There have been conflicting results regarding which muscle contribute most to the elbow spastic flexion deformity. This study aimed to investigate whether flexor spasticity of the elbow changed according to the position of the forearm, and to determine the muscle or muscles that contributed most to the elbow spastic flexion deformity by clinical examination.

Methods: This study is a single group, observational and cross-sectional study. Sixty patients were assessed for elbow flexor spasticity in different forearm positions (pronation, neutral and supination) with Modified Tardieu Scale. The primary outcome measure was a domain of the Modified Tardieu Scale, the dynamic component of spasticity (spasticity angle).

Results: In general, there was a significant difference between forearm positions regarding spasticity angle (p?<?.001). In pairwise comparisons, median spasticity angles in pronation (70 degrees) and neutral position (60 degrees) were significantly higher than those in supination (57.5 degrees) (adjusted p?<?.001 and adjusted p?=?.003, respectively). However, median spasticity angle in pronation did not differ significantly from those in neutral position in favour of pronation (adjusted p?=?.274).

Conclusions: The severity of spasticity changes according to the elbow position which suggests that the magnitude of contribution of each elbow flexor muscle to spastic elbow deformity is different. Reduction of spasticity from pronation to supination leads us to consider brachialis as the most spastic muscle. Since biceps was suggested to be the least spastic muscle in this study, and also to avoid spastic pronation deformity of the forearm, it should be rethought before performing chemodenervation into biceps muscle.  相似文献   

7.
Extant hominoids share similar elbow joint morphology, which is believed to be an adaptation for elbow stability through a wide range of pronation-supination and flexion-extension postures. Mild variations in elbow joint morphology reported among extant hominoids are often qualitative, where orangutans are described as having keeled joints, and humans and gorillas as having flatter joints. Although these differences in keeling are often linked to variation in upper limb use or loading, they have not been specifically quantified. Many of the muscles important in arboreal locomotion in hominoids (i.e., wrist and finger flexors and extensors) take their origins from the humeral epicondyles. Contractions of these muscles generate transverse forces across the elbow, which are resisted mainly by the keel of the humeroulnar joint. Therefore, species with well-developed forearm musculature, like arboreal hominoids, should have more elbow joint keeling than nonarboreal species. This paper explores the three- and two-dimensional morphology of the trochlear notch of the elbow of extant hominoids and fossil hominins and hominoids for which the locomotor habitus is still debated. As expected, the elbow articulation of habitually arboreal extant apes is more keeled than that of humans. In addition, extant knuckle-walkers are characterized by joints that are distally expanded in order to provide greater articular surface area perpendicular to the large loads incurred during terrestrial locomotion with an extended forearm. Oreopithecus is characterized by a pronounced keel of the trochlear notch and resembles Pongo and Pan. OH 36 has a morphology that is unlike that of extant species or other fossil hominins. All other hominin fossils included in this study have trochlear notches intermediate in form between Homo and Gorilla or Pan, suggesting a muscularity that is less than in African apes but greater than in humans.  相似文献   

8.
Time to failure and electromyogram activity were measured during two types of sustained submaximal contractions with the elbow flexors that required each subject to exert the same net muscle torque with the forearm in two different postures. Twenty men performed the tasks, either by maintaining a constant force while pushing against a force transducer (force task), or by supporting an equivalent load while maintaining a constant elbow angle (position task). The time to failure for the position task with the elbow flexed at 1.57 rad and the forearm horizontal was less than that for the force task (5.2 +/- 2.6 and 8.8 +/- 3.6 min, P = 0.003), whereas it was similar when the forearm was vertical (7.9 +/- 4.1 and 7.8 +/- 4.5 min, P = 0.995). The activity of the rotator cuff muscles was greater during the position tasks (25.1 +/- 10.1% maximal voluntary contraction) compared with the force tasks (15.2 +/- 5.4% maximal voluntary contraction, P < 0.001) in both forearm postures. However, the rates of increase in electromyogram of the accessory muscles and mean arterial pressure were greater for the position task only when the forearm was horizontal (P < 0.05), whereas it was similar for the elbow flexors. These findings indicate that forearm posture influences the difference in the time to failure for the two fatiguing contractions. When there was a difference between the two tasks, the task with the briefer time to failure involved greater rates of increase in accessory muscle activity and mean arterial pressure.  相似文献   

9.
We have quantified individual muscle force and moment contributions to net joint moments and estimated the operating ranges of the individual muscle fibers over the full range of motion for elbow flexion/extension and forearm pronation/supination. A three dimensional computer graphics model was developed in order to estimate individual muscle contributions in each degree of freedom over the full range of motion generated by 17 muscles crossing the elbow and forearm. Optimal fiber length, tendon slack length, and muscle specific tension values were adjusted within the literature range from cadaver studies such that the net isometric joint moments of the model approximated experimental joint moments within one standard deviation. Analysis of the model revealed that the muscles operate on varying portions of the ascending limb, plateau region, and descending limb of the force-length curve. This model can be used to further understand isometric force and moment contributions of individual muscles to net joint moments of the arm and forearm and can serve as a comprehensive reference for the forces and moments generated by 17 major muscles crossing the elbow and wrist.  相似文献   

10.
This work presents an original methodology for analyzing forearm‐pronation efficiency from skeletal remains and its variation with regard to changes in the elbow position. The methodology is based on a biomechanical model that defines rotational efficiency as a mathematical function expressing a geometrical relationship between the origin and insertion of the pronator teres. The methodology uses humeral distal epiphysis photography, from which the geometrical parameters for the efficiency calculus can be obtained. Rotational efficiency is analyzed in a human specimen and in a living nonhuman hominoid (Symphalangus syndactylus) for a full elbow extension (180°) and an intermediate elbow position (90°). In both specimens, the results show that this rotational‐efficiency parameter varies throughout the entire rotational range and show a dependency on the elbow joint position. The rotational efficiency of the siamang's pronator teres is less affected by flexion of the forearm than that of the human. The fact that forearm‐pronation efficiency can be inferred, even quantified, allows us to interpret more precisely the functional and evolutionary significance of upper‐limb skeletal design in extant and fossil primate taxa. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The purpose of this study was to investigate how gripping modulates forearm muscle co-contraction prior to and during sudden wrist perturbations. Ten males performed a sub-maximal gripping task (no grip, 5% and 10% of maximum) while a perturbation forced wrist flexion or extension. Wrist joint angles and activity from 11 muscles were used to determine forearm co-contraction and muscle contributions to wrist joint stiffness. Co-contraction increased in all pairs as grip force increased (from no grip to 10% grip), corresponding to a 36% increase in overall wrist joint stiffness. Inclusion of individual muscle contributions to wrist joint stiffness enhanced the understanding of forearm co-contraction. The extensor carpi radialis longus (ECRL) and brevis had the largest stiffness contributions (34.5 ± 1.3% and 20.5 ± 2.3%, respectively), yet muscle pairs including ECRL produced the lowest co-contraction. The muscles contributing most to wrist stiffness were consistent across conditions (ECRL for extensors; Flexor Digitorum Superficialis for flexors), suggesting enhanced contributions rather than muscular redistribution. This work provides investigation of the neuromuscular response to wrist perturbations and gripping demands by considering both co-contraction and muscle contributions to joint stiffness. Individual muscle stiffness contributions can be used to enhance the understanding of forearm muscle control during complex tasks.  相似文献   

12.
To study the role of coactivation in strength and force modulation in the elbow joint of children and adolescents with cerebral palsy (CP), we investigated the affected and contralateral arm of 21 persons (age 8-18) with spastic unilateral CP in three tasks: maximal voluntary isokinetic concentric contraction and passive isokinetic movement during elbow flexion and extension, and sub-maximal isometric force tracing during elbow flexion. Elbow flexion-extension torque and surface electromyography (EMG) of the biceps brachii (BB) and triceps brachii (TB) muscles were recorded. During the maximal contractions, the affected arm was weaker, had decreased agonist and similar antagonist EMG amplitudes, and thus increased antagonist co-activation (% of maximal activity as agonist) during both elbow flexion and extension, with higher coactivation levels of the TB than the BB. During passive elbow extension, the BB of the affected arm showed increased resistance torque and indication of reflex, and thus spastic, activity. No difference between the two arms was found in the ability to modulate force, despite increased TB coactivation in the affected arm. The results indicate that coactivation plays a minor role in muscle weakness in CP, and does not limit force modulation. Moreover, spasticity seems particularly to increase coactivation in the muscle antagonistic to the spastic one, possibly in order to increase stability.  相似文献   

13.
In experiments on cats we studied the pattern of EMG activity recorded from the flexors and extensors of the elbow joint and related to realization of flexor targeted operant movements of the forearm. The levels of stationary EMG activity generated by the flexors at a stabilized equilibrium position of the joint demonstrated no correlation with the values of joint angles. We suppose that this feature depends on manifestation of the hysteresis effects of muscle contraction. A target position was attained mostly due to the dynamic phases of muscle activity. The respective patterns of the movement-related activity of synergic muscles significantly differed; separate components related to leaving an equilibrium state with a certain acceleration and attaining a presettled equilibrium joint angle could be differentiated in this activity. Final positions of the forearm could be significantly different at equal levels of the stationary EMG activity generated during stabilization of these positions; they depended on specificities in the time course of dynamic phase of the activity (in particular, on the time of activity decay to a stationary level). We conclude that the movement of a limb link from one equilibrium position to another is mostly controlled via coordination of the dynamic phase of muscle activity.  相似文献   

14.
The activity of certain muscles that cross the elbow joint complex (EJC) are affected by forearm position and forearm movement during elbow flexion/extension. To investigate whether these changes are based on the musculoskeletal geometry of the joint, a three-dimensional musculotendinoskeletal computer model of the EJC was used to estimate individual muscle activity in multi-degree-of-freedom (df) rapid (ballistic) elbow movements. It is hypothesized that this model could reproduce the major features of elbow muscle activity during multi-df elbow movements using dynamic optimal control theory, given a minimum-time performance criterion. Results from the model are presented and verified with experimental kinematic and electromyographic data from movements that involved both one-df elbow flexion/extension and two-df flexion/extension with forearm pronation/supination. The model demonstrated how the activity of particular muscles is affected by both forearm position and movement, as measured in these experiments and as previously reported by others. These changes were most evident in the flexor muscles and least evident in the extensor muscles. The model also indicated that, for specific one- and two-df movements, activating a muscle that is antagonistic or noncontributory to the movement could reduce the movement time. The major features of muscle activity in multi-df elbow movements appear to be highly dependent on the joint's musculoskeletal geometry and are not strictly based on neural influences or neuroanatomical substrates. Received: 9 May 1997 / Accepted in revised form: 8 December 1998  相似文献   

15.
The direction of rotation (DOR) of individual elbow muscles, defined as the direction in which a muscle rotates the forearm relative to the upper arm in three-dimensional space, was studied in vivo as a function of elbow flexion and forearm rotation. Electrical stimulation was used to activate an individual muscle selectively, and the resultant flexion-extension, supination-pronation, and varus-valgus moments were used to determine the DOR. Furthermore, multi-axis moment-angle relationships of individual muscles were determined by stimulating the muscle at a constant submaximal level across different joint positions, which was assumed to result in a constant level of muscle activation. The muscles generate significant moments about axes other than flexion-extension, which is potentially important for actively controlling joint movement and maintaining stability about all axes. Both the muscle DOR and the multi axis moments vary with the joint position systematically. Variations of the DOR and moment-angle relationship across muscle twitches of different amplitudes in a subject were small, while there were considerable variations between subjects.  相似文献   

16.
The classical approach of musculoskeletal modeling is to predict muscle forces and joint torques with a deterministic model constructed from parameters of an average subject. However, this type of model does not perform well for outliers, and does not model the effects of parameter variability. In this study, a Monte-Carlo model was used to stochastically simulate the effects of variability in musculoskeletal parameters on elbow flexion strength in healthy normals, and in subjects with long head biceps (LHB) rupture. The goal was to determine if variability in elbow flexion strength could be quantifiably explained with variability in musculoskeletal parameters. Parameter distributions were constructed from data in the literature. Parameters were sampled from these distributions and used to predict muscle forces and joint torques. The median and distribution of measured joint torque was predicted with small errors ( < 5%). Muscle forces for both cases were predicted and compared. In order to predict measured torques for the case of LHB rupture, the median force and mean cross-sectional area in the remaining elbow flexor muscles is greater than in healthy normals. The probabilities that muscle forces for the Tear case exceed median muscle forces for the No-Tear case are 0.98, 0.99 and 0.79 for SH Biceps, brachialis and brachioradialis, respectively. Differences in variability of measured torques for the two cases are explained by differences in parameter variability.  相似文献   

17.
To confirm the existence of epimuscular myofascial force transmission in humans, this study examined if manipulating joint angle to stretch the muscle can alter the shear modulus of a resting adjacent muscle, and whether there are regional differences in this response. The biceps brachii (BB: manipulated muscle) and the brachialis (BRA: resting adjacent muscle) were deemed suitable for this study because they are neighboring, yet have independent tendons that insert onto different bones. In order to manipulate the muscle length of BB only, the forearm was passively set at supination, neutral, and pronation positions. For thirteen healthy young adult men, the shear modulus of BB and BRA was measured with shear-wave elastography at proximal and distal muscle regions for each forearm position and with the elbow joint angle at either 100° or 160°. At both muscle regions and both elbow positions, BB shear modulus increased as the forearm was rotated from a supinated to pronated position. Conversely, BRA shear modulus decreased as function of forearm position. The effect of forearm position on shear modulus was most pronounced in the distal muscle region when the elbow was at 160°. The observed alteration of shear modulus of the resting adjacent muscle indicates that epimuscular myofascial force transmission is present in the human upper limb. Consistent with this assertion, we found that the effect of muscle length on shear modulus in both muscles was region-dependent. Our results also suggest that epimuscular myofascial force transmission may be facilitated at stretched muscle lengths.  相似文献   

18.
It is a reasonable expectation that voluntarily activated spinal motoneurons will be further excited by increases in spindle afferent activity produced by muscle stretch. Human motor behavior attributed to tonic stretch reflexes and to reflexes recruited by relatively slow joint rotation has been reported from several laboratories. We reinvestigated this issue by rotating the elbow joint over the central portion of its range while subjects focused on keeping their elbow flexion effort constant at one of three different levels and made no attempt to control the position, speed or direction of movement of their forearm. There is evidence that subjects' voluntary motor status is constant under these conditions so that any change in torque would be of involuntary origin. On average, torques rose somewhat and then fell as the elbow was flexed through a range of 80 degrees at 10, 20 and 60 degrees/s and a similar pattern occurred during elbow extension; i.e., both concentric and eccentric torque-angle profiles had roughly similar shapes and neither produced consistent stabilizing cross-range stiffness. The negative stiffness (rising torque) during the early part of a concentric movement and the negative stiffness (falling torque) during the later part of an eccentric movement would not have occurred if a stabilizing stretch reflex had been present. Positive stiffness rarely gave rise to torque changes greater than 20% in either individual or cross-subject averaged data. When angular regions of negative stiffness are combined with regions of low positive stiffness (torque change 10% or less), much of the range of motion was not well stabilized, especially during eccentric movements. The sum of the EMGs from biceps brachii, brachioradialis and brachialis showed a pattern opposite to that expected for a stretch reflex; there was an upward trend in the EMG as the elbow was flexed and a downward trend as the elbow was extended. There was little change in the shape of this EMG-angle relationship with either direction or velocity. The individual EMG-angle relationships were distinctive for each of these three elbow flexor muscles in four of the six subjects; in the remaining two, biceps was distinctive, but brachioradialis and brachialis appeared to be coupled. Although the EMGs of individual muscles were modulated over the angular range, no consistent stretch reflexes could be seen in the individual records. Thus, we could find no clear evidence for stretch reflex stabilization of human subjects maintaining a constant effort. Rather, muscle torque appears to be reflexly modulated across a much used portion of the elbow's angular range so that any appreciable stabilizing stiffness that is sustained for more than fractions of a second is associated with a change in effort.  相似文献   

19.
It is a reasonable expectation that voluntarily activated spinal motoneurons will be further excited by increases in spindle afferent activity produced by muscle stretch. Human motor behavior attributed to tonic stretch reflexes and to reflexes recruited by relatively slow joint rotation has been reported from several laboratories. We reinvestigated this issue by rotating the elbow joint over the central portion of its range while subjects focused on keeping their elbow flexion effort constant at one of three different levels and made no attempt to control the position, speed or direction of movement of their forearm. There is evidence that subjects' voluntary motor status is constant under these conditions so that any change in torque would be of involuntary origin. On average, torques rose somewhat and then fell as the elbow was flexed through a range of 80° at 10, 20 and 60°/s and a similar pattern occurred during elbow extension; i.e., both concentric and eccentric torque-angle profiles had roughly similar shapes and neither produced consistent stabilizing cross-range stiffness. The negative stiffness (rising torque) during the early part of a concentric movement and the negative stiffness (falling torque) during the later part of an eccentric movement would not have occurred if a stabilizing stretch reflex had been present. Positive stiffness rarely gave rise to torque changes greater than 20% in either individual or cross-subject averaged data. When angular regions of negative stiffness are combined with regions of low positive stiffness (torque change 10% or less), much of the range of motion was not well stabilized, especially during eccentric movements. The sum of the EMGs from biceps brachii, brachioradialis and brachialis showed a pattern opposite to that expected for a stretch reflex; there was an upward trend in the EMG as the elbow was flexed and a downward trend as the elbow was extended. There was little change in the shape of this EMG-angle relationship with either direction or velocity. The individual EMG-angle relationships were distinctive for each of these three elbow flexor muscles in four of the six subjects; in the remaining two, biceps was distinctive, but brachioradialis and brachialis appeared to be coupled. Although the EMGs of individual muscles were modulated over the angular range, no consistent stretch reflexes could be seen in the individual records. Thus, we could find no clear evidence for stretch reflex stabilization of human subjects maintaining a constant effort. Rather, muscle torque appears to be reflexly modulated across a much used portion of the elbow's angular range so that any appreciable stabilizing stiffness that is sustained for more than fractions of a second is associated with a change in effort.  相似文献   

20.
Biomechanical optimization models that apply efficiency-based objective functions often underestimate or negate antagonist co-activation. Co-activation assists movement control, joint stabilization and limb stiffness and should be carefully incorporated into models. The purposes of this study were to mathematically describe co-activation relationships between elbow flexors and extensors during isometric exertions at varying intensity levels and postures, and secondly, to apply these co-activation relationships as constraints in an optimization muscle force prediction model of the elbow and assess changes in predictions made while including these constraints. Sixteen individuals performed 72 isometric exertions while holding a load in their right hand. Surface EMG was recorded from elbow flexors and extensors. A co-activation index provided a relative measure of flexor contribution to total activation about the elbow. Parsimonious models of co-activation during flexion and extension exertions were developed and added as constraints to a muscle force prediction model to enforce co-activation. Three different PCSA data sets were used. Elbow co-activation was sensitive to changes in posture and load. During flexion exertions the elbow flexors were activated about 75% MVC (this amount varied according to elbow angle, shoulder flexion and abduction angles, and load). During extension exertions the elbow flexors were activated about 11% MVC (this amount varied according to elbow angle, shoulder flexion angle and load). The larger PCSA values appeared to be more representative of the subject pool. Inclusion of these co-activation constraints improved the model predictions, bringing them closer to the empirically measured activation levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号