首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding how arterial remodeling changes the mechanical behavior of pulmonary arteries (PAs) is important to the evaluation of pulmonary vascular function. Early and current efforts have focused on the arteries' histological changes, their mechanical properties under in vitro mechanical testing, and their zero-stress and no-load states. However, the linkage between the histology and mechanical behavior is still not well understood. To explore this linkage, we investigated the geometry, residual stretch, and histology of proximal PAs in both adult rat and neonatal calf hypoxic models of pulmonary hypertension (PH), compared their changes due to chronic hypoxia across species, and proposed a two-layer mechanical model of artery to relate the opening angle to the stiffness ratio of the PA outer to inner layer. We found that the proximal PA remodeling in calves was quite different from that in rats. In rats, the arterial wall thickness, inner diameter, and outer layer thickness fraction all increased dramatically in PH and the opening angle decreased significantly, whereas in calves, only the arterial wall thickness increased in PH. The proposed model predicted that the stiffness ratio of the calf proximal PAs changed very little from control to hypertensive group, while the decrease of opening angle in rat proximal PAs in response to chronic hypoxia was approximately linear to the increase of the stiffness ratio. We conclude that the arterial remodeling in rat and calf proximal PAs is different and the change of opening angle can be linked to the change of the arterial histological structure and mechanics.  相似文献   

2.
Pulmonary hypertension (PH) is a debilitating vascular disease that leads to pulmonary artery (PA) stiffening, which is a predictor of patient mortality. During PH development, PA stiffening adversely affects right ventricular function. PA stiffening has been investigated through the arterial nonlinear elastic response during mechanical testing using a canine PH model. However, only circumferential properties were reported and in the absence of chronic PH-induced PA remodeling. Remodeling can alter arterial nonlinear elastic properties via chronic changes in extracellular matrix (ECM) content and geometry. Here, we used an established constitutive model to demonstrate and differentiate between strain-stiffening, which is due to nonlinear elasticity, and remodeling-induced stiffening, which is due to ECM and geometric changes, in a canine model of chronic thromboembolic PH (CTEPH). To do this, circumferential and axial tissue strips of large extralobar PAs from control and CTEPH tissues were tested in uniaxial tension, and data were fit to a phenomenological constitutive model. Strain-induced stiffening was evident from mechanical testing as nonlinear elasticity in both directions and computationally by a high correlation coefficient between the mechanical data and model (R2 = 0.89). Remodeling-induced stiffening was evident from a significant increase in the constitutive model stress parameter, which correlated with increased PA collagen content and decreased PA elastin content as measured histologically. The ability to differentiate between strain- and remodeling-induced stiffening in vivo may lead to tailored clinical treatments for PA stiffening in PH patients.  相似文献   

3.
Malformations of the pulmonary arteries can increase right heart workload and result in morbidity, heart failure, and death. With the increased use of murine models to study these malformations, there is a pressing need for an accurate and noninvasive experimental technique that is capable of characterizing pulmonary arterial hemodynamics in these animals. We describe the growth trends of pulmonary arteries in 13 male Sprague-Dawley rats at 20, 36, 52, 100, and 160 days of age with the introduction of phase-contrast MRI as such a technique. PCMRI results correlated closely with cardiac output measurements by ultrasound echocardiography and with fluorescent microspheres in right-left lung flow split (flow partition). Mean flow, average cross-sectional area, distensibility, and shear rates for the right and left pulmonary arteries (RPA and LPA) were calculated. The RPA was larger and received more flow at all times than the LPA (P < 0.0001). Right-left flow split did not change significantly with age, and arterial distensibility was not significantly different between RPA and LPA, except at 160 days (P < 0.01). Shear rates were much higher for the LPA than the RPA (P < 0.0001) throughout development. The RPA and LPA showed different structure-function relationships but obeyed similar allometric scaling laws, with scaling exponents comparable to those of the main pulmonary artery. This study is the first to quantitatively describe changes in RPA and LPA flows and sizes with development and to apply phase-contrast MRI techniques to pulmonary arteries in rats.  相似文献   

4.
Persistent pulmonary hypertension of the newborn (PPHN) is a clinical disorder characterized by abnormal vascular structure, growth, and reactivity. Disruption of vascular growth during early postnatal lung development impairs alveolarization, and newborns with lung hypoplasia often have severe pulmonary hypertension. To determine whether pulmonary hypertension can directly impair vascular growth and alveolarization in the fetus, we studied the effects of chronic intrauterine pulmonary hypertension on lung growth in fetal lambs. We performed surgery, which included partial constriction of the ductus arteriosus (DA) to induce pulmonary hypertension (PH, n = 14) or sham surgery (controls, n = 13) in fetal lambs at 112-125 days (term = 147 days). Tissues were harvested near term for measurement of right ventricular hypertrophy (RVH), radial alveolar counts (RAC), mean linear intercepts (MLI), wall thickness, and vessel density of small pulmonary arteries. Chronic DA constriction caused RVH (P < 0.0001), increased wall thickness of small pulmonary arteries (P < 0.002), and reduced small pulmonary artery density (P < 0.005). PH also reduced alveolarization, causing a 27% reduction in RAC and 20% increase in MLI. Furthermore, prolonged DA constriction (21 days) not only decreased RAC and increased MLI by 30% but also caused a 25% reduction of lung-body weight ratio. We conclude that chronic PH reduces pulmonary arterial growth, decreases alveolar complexity, and impairs lung growth. We speculate that chronic hypertension impairs vascular growth, which disrupts critical signaling pathways regulating lung vascular and alveolar development, thereby interfering with alveolarization and ultimately resulting in lung hypoplasia.  相似文献   

5.
Extracellular matrix remodeling has been proposed as one mechanism by which proximal pulmonary arteries stiffen during pulmonary arterial hypertension (PAH). Although some attention has been paid to the role of collagen and metallomatrix proteins in affecting vascular stiffness, much less work has been performed on changes in elastin structure-function relationships in PAH. Such work is warranted, given the importance of elastin as the structural protein primarily responsible for the passive elastic behavior of these conduit arteries. Here, we study structure-function relationships of fresh arterial tissue and purified arterial elastin from the main, left, and right pulmonary artery branches of normotensive and hypoxia-induced pulmonary hypertensive neonatal calves. PAH resulted in an average 81 and 72% increase in stiffness of fresh and digested tissue, respectively. Increase in stiffness appears most attributable to elevated elastic modulus, which increased 46 and 65%, respectively, for fresh and digested tissue. Comparison between fresh and digested tissues shows that, at 35% strain, a minimum of 48% of the arterial load is carried by elastin, and a minimum of 43% of the change in stiffness of arterial tissue is due to the change in elastin stiffness. Analysis of the stress-strain behavior revealed that PAH causes an increase in the strains associated with the physiological pressure range but had no effect on the strain of transition from elastin-dominant to collagen-dominant behavior. These results indicate that mechanobiological adaptations of the continuum and geometric properties of elastin, in response to PAH, significantly elevate the circumferential stiffness of proximal pulmonary arterial tissue.  相似文献   

6.
Thiazolidinediones (TZDs) are insulin-sensitizing agents that also decrease systemic blood pressure, attenuate the formation of atherosclerotic lesions, and block remodeling of injured arterial walls. Recently, TZDs were shown to prevent pulmonary arterial (PA) remodeling in rats treated with monocrotaline. Presently we report studies testing the ability of the TZD rosiglitazone (ROSI) to attenuate pathological arterial remodeling in the lung and prevent the development of pulmonary hypertension (PH) in rats subjected to chronic hypoxia. PA remodeling was reduced in ROSI-treated animals exposed to hypoxia compared with animals exposed to hypoxia alone. ROSI treatment blocked muscularization of distal pulmonary arterioles and reversed remodeling and neomuscularization in lungs of animals previously exposed to chronic hypoxia. Decreased PA remodeling in ROSI-treated animals was associated with decreased smooth muscle cell proliferation, decreased collagen and elastin deposition, and increased matrix metalloproteinase-2 activity in the PA wall. Cells expressing the c-Kit cell surface marker were observed in the PA adventitia of untreated animals exposed to hypoxia but not in ROSI-treated hypoxic rats. Right ventricular hypertrophy and cardiomyocyte hypertrophy were also blunted in ROSI-treated hypoxic animals. Interestingly, mean PA pressures were elevated equally in the untreated and ROSI-treated groups, indicating that ROSI had no effect on the development of PH. However, mean PA pressure was normalized acutely in both groups of hypoxia-exposed animals by Fasudil, an agent that inhibits RhoA/Rho kinase-mediated vasoconstriction. We conclude that ROSI can attenuate and reverse PA remodeling and neomuscularization associated with hypoxic PH. However, this agent fails to block the development of PH, apparently because of its inability to repress sustained Rho kinase-mediated arterial vasoconstriction.  相似文献   

7.
Pulmonary hypertension (PH) is associated with profound vascular remodeling and alterations in Ca(2+) homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Previous studies show that canonical transient receptor potential (TRPC) genes are upregulated and store-operated Ca(2+) entry (SOCE) is augmented in PASMCs of chronic hypoxic rats and patients of pulmonary arterial hypertension (PAH). Here we further examine the involvement of TRPC and SOCE in PH with a widely used rat model of monocrotaline (MCT)-induced PAH. Rats developed severe PAH, right ventricular hypertrophy, and significant increase in store-operated TRPC1 and TRPC4 mRNA and protein in endothelium-denuded pulmonary arteries (PAs) 3 wk after MCT injection. Contraction of PA and Ca(2+) influx in PASMC evoked by store depletion using cyclopiazonic acid (CPA) were enhanced dramatically, consistent with augmented SOCE in the MCT-treated group. The time course of increase in CPA-induced contraction corresponded to that of TRPC1 expression. Endothelin-1 (ET-1)-induced vasoconstriction was also potentiated in PAs of MCT-treated rats. The response was partially inhibited by SOCE blockers, including Gd(3+), La(3+), and SKF-96365, as well as the general TRPC inhibitor BTP-2, suggesting that TRPC-dependent SOCE was involved. Moreover, the ET-1-induced contraction and Ca(2+) response in the MCT group were more susceptible to the inhibition caused by the various SOCE blockers. Hence, our study shows that MCT-induced PAH is associated with increased TRPC expression and SOCE, which are involved in the enhanced vascular reactivity to ET-1, and support the hypothesis that TRPC-dependent SOCE is an important pathway for the development of PH.  相似文献   

8.
Right ventricular (RV) afterload is commonly defined as pulmonary vascular resistance, but this does not reflect the afterload to pulsatile flow. The purpose of this study was to quantify RV afterload more completely in patients with and without pulmonary hypertension (PH) using a three-element windkessel model. The model consists of peripheral resistance (R), pulmonary arterial compliance (C), and characteristic impedance (Z). Using pulmonary artery pressure from right-heart catheterization and pulmonary artery flow from MRI velocity quantification, we estimated the windkessel parameters in patients with chronic thromboembolic PH (CTEPH; n = 10) and idiopathic pulmonary arterial hypertension (IPAH; n = 9). Patients suspected of PH but in whom PH was not found served as controls (NONPH; n = 10). R and Z were significantly lower and C significantly higher in the NONPH group than in both the CTEPH and IPAH groups (P < 0.001). R and Z were significantly lower in the CTEPH group than in the IPAH group (P < 0.05). The parameters R and C of all patients obeyed the relationship C = 0.75/R (R(2) = 0.77), equivalent to a similar RC time in all patients. Mean pulmonary artery pressure P and C fitted well to C = 69.7/P (i.e., similar pressure dependence in all patients). Our results show that differences in RV afterload among groups with different forms of PH can be quantified with a windkessel model. Furthermore, the data suggest that the RC time and the elastic properties of the large pulmonary arteries remain unchanged in PH.  相似文献   

9.
Conduit pulmonary artery (PA) stiffening is characteristic of pulmonary arterial hypertension (PAH) and is an excellent predictor of mortality due to right ventricular (RV) overload. To better understand the impact of conduit PA stiffening on RV afterload, it is critical to examine the arterial viscoelastic properties, which require measurements of elasticity (energy storage behavior) and viscosity (energy dissipation behavior). Here we hypothesize that PAH leads to frequency-dependent changes in arterial stiffness (related to elasticity) and damping ratio (related to viscosity) in large PAs. To test our hypothesis, PAH was induced by the combination of chronic hypoxia and an antiangiogenic compound (SU5416) treatment in mice. Static and sinusoidal pressure-inflation tests were performed on isolated conduit PAs at various frequencies (0.01–20 Hz) to obtain the mechanical properties in the absence of smooth muscle contraction. Static mechanical tests showed significant stiffening of large PAs with PAH, as expected. In dynamic mechanical tests, structural stiffness (κ) increased and damping ratio (D) decreased at a physiologically relevant frequency (10 Hz) in hypertensive PAs. The dynamic elastic modulus (E), a material stiffness, did not increase significantly with PAH. All dynamic mechanical properties were strong functions of frequency. In particular, κ, E and D increased with increasing frequency in control PAs. While this behavior remained for D in hypertensive PAs, it reversed for κ and E. Since these novel dynamic mechanical property changes were found in the absence of changes in smooth muscle cell content or contraction, changes in collagen and proteoglycans and their interactions are likely critical to arterial viscoelasticity in a way that has not been previously described. The impact of these changes in PA viscoelasticity on RV afterload in PAH awaits further investigation.  相似文献   

10.
The aim of this study was to explore the changes of the Doppler flow spectra of the superior vena cava (SVC) in a rat model of chronic pulmonary hypertension (PH). Thirty-two rats were injected with monocrotaline (MCT) to establish a model of chronic PH. Eight rats from the control group had a sham operation by injecting Dulbecco's phosphate-buffered solution. Serial echocardiographic parameters of the SVC were analysed four weeks after treating with MCT or placebo, and the relationship was analysed between the Doppler flow spectra of SVC and the pulmonary arterial systolic pressure (PASP). PH models were successfully established in 29 rats. The right ventricular systolic pressure, mean pulmonary arterial pressure and PASP in the PH group were significantly higher than those in the sham group at 28 days (P < 0.001). The ratios of SVC maximum reverse peak flow velocity/maximum systolic peak flow velocity (VAr/VS) and maximum reverse peak velocity time integral/maximum systolic peak velocity time integral (VTIAr/VTIS) increased significantly (P < 0.05) after MCT injection. These results demonstrate that echocardiography can be used to monitor the haemodynamic changes in SVC in MCT-induced chronic PH rat models. The ratios of VAr/VS and VTIAr/VTIS may be sensitive indices for evaluating PH.  相似文献   

11.
The anatomical variation of orthotropic elastic moduli of the cancellous bone from three human proximal tibiae was investigated using an ultrasonic technique. With this technique, it was possible to measure three orthogonal elastic moduli and three shear moduli from cubic specimens of cancellous bone as small as 8 mm per side. Correlation with mechanical tensile testing has shown this technique to offer a precise measure of cancellous modulus (Eten = 0.94Eult + 144.6 MPa, r2 = 0.96, n = 34). The cancellous bone of the proximal tibia was found to be very inhomogeneous, with the axial modulus ranging between 340 and 3350 MPa. A course map is presented, showing measured Young's moduli as a function of anatomical position. The anisotropy of the cancellous bone, determined by the relative differences between the three orthogonal moduli, was shown to be relatively constant over the entire range of cancellous densities tested. The relationship between the axial elastic modulus and the apparent density was found to be approximately linear, as reported by others for proximal tibial cancellous bone.  相似文献   

12.
Chronic alveolar hypoxia induces vascular remodeling processes in the lung resulting in pulmonary hypertension (PH). However, the mechanisms underlying pulmonary remodeling processes are not fully resolved yet. To investigate functional changes occurring during hypoxia exposure we applied 2DE to compare protein expression in lungs from mice subjected to 3 h of alveolar hypoxia and those kept under normoxic conditions. Already after this short‐time period several proteins were significantly regulated. Subsequent analysis by MALDI‐MS identified cofilin as one of the most prominently upregulated proteins. The regulation was confirmed by western blotting and its cellular localization was determined by immunohisto‐ and immunocytochemistry. Interestingly, enhanced cofilin serine 3 phosphorylation was observed after short‐term and after chronic hypoxia‐induced PH in mice, in pulmonary arterial smooth muscle cells (PASMC) from monocrotaline‐induced PH in rats, in lungs of idiopathic pulmonary arterial hypertension patients and in hypoxic or platelet‐derived growth factor BB‐treated human PASMC. Furthermore, elevated cofilin phosphorylation was attenuated by curative treatment of monocrotaline‐induced PH in rats and hypoxia‐induced PH in mice with the PDGF‐BB receptor antagonist imatinib. In conclusion, short‐term hypoxic exposure induced prominent changes in lung protein regulation. These very early changes allowed us to identify potential triggers of PH. Thus, respective 2DE analysis can lead to the identification of new target proteins for the possible treatment of PH.  相似文献   

13.
14.
Intermittent hypoxia (IH) resulting from sleep apnea can lead to pulmonary hypertension (PH) and right heart failure, similar to chronic sustained hypoxia (CH). Supplemental CO(2), however, attenuates hypoxic PH. We therefore hypothesized that, similar to CH, IH elicits PH and associated increases in arterial endothelial nitric oxide synthase (eNOS) expression, ionomycin-dependent vasodilation, and receptor-mediated pulmonary vasoconstriction. We further hypothesized that supplemental CO(2) inhibits these responses to IH. To test these hypotheses, we measured eNOS expression by Western blot in intrapulmonary arteries from CH (2 wk, 0.5 atm), hypocapnic IH (H-IH) (3 min cycles of 5% O(2)/air flush, 7 h/day, 2 wk), and eucapnic IH (E-IH) (3 min cycles of 5% O(2), 5% CO(2)/air flush, 7 h/day, 2 wk) rats and their respective controls. Furthermore, vasodilatory responses to the calcium ionophore ionomycin and vasoconstrictor responses to the thromboxane mimetic U-46619 were measured in isolated saline-perfused lungs from each group. Hematocrit, arterial wall thickness, and right ventricle-to-total ventricle weight ratios were additionally assessed as indexes of polycythemia, arterial remodeling, and PH, respectively. Consistent with our hypotheses, E-IH resulted in attenuated polycythemia, arterial remodeling, RV hypertrophy, and eNOS upregulation compared with H-IH. However, in contrast to CH, neither H-IH nor E-IH increased ionomycin-dependent vasodilation. Furthermore, H-IH and E-IH similarly augmented U-46619-induced pulmonary vasoconstriction but to a lesser degree than CH. We conclude that maintenance of eucapnia decreases IH-induced PH and upregulation of arterial eNOS. In contrast, increases in pulmonary vasoconstrictor reactivity following H-IH are unaltered by exposure to supplemental CO(2).  相似文献   

15.
We determined the role of an endothelium-derived contracting factor in the impaired relaxation response to ACh of conduit pulmonary arteries (PAs) isolated from rats with hypoxic pulmonary hypertension (PH). A PGH2/thromboxane A2 (TxA2)-receptor antagonist (ONO-3708) partially restored the impairment of ACh-induced relaxation, whereas TxA2 synthase inhibitors (OKY-046 and CV-4151) did not affect the impaired relaxation in phenylephrine-precontracted hypertensive PAs. Endothelium-denuded hypertensive PA rings showed no difference in the response to ACh between preparations with and without ONO-3708. In both endothelium-denuded control and hypertensive PAs, exogenous PGH2 induced contractions, and the magnitude of the contractions was greater in the control than in hypoxic PH preparations. An endothelin A-receptor antagonist (BQ-485), an endothelin B-receptor antagonist (BQ-788), and a superoxide anion scavenger (superoxide dismutase) did not restore the impaired response to ACh in hypertensive PAs. These findings suggest that PGH2 produced from the conduit PAs of rats with chronic hypoxic PH may be the endothelium-derived contracting factor responsible for the impairment of ACh-mediated vasorelaxation.  相似文献   

16.

Background

Chronic thromboembolic pulmonary hypertension (CTEPH) is associated with proximal pulmonary artery obstruction and vascular remodeling. We hypothesized that pulmonary arterial smooth muscle (PASMC) and endothelial cells (PAEC) may actively contribute to remodeling of the proximal pulmonary vascular wall in CTEPH. Our present objective was to characterize PASMC and PAEC from large arteries of CTEPH patients and investigate their potential involvement in vascular remodeling.

Methods

Primary cultures of proximal PAEC and PASMC from patients with CTEPH, with non-thromboembolic pulmonary hypertension (PH) and lung donors have been established. PAEC and PASMC have been characterized by immunofluorescence using specific markers. Expression of smooth muscle specific markers within the pulmonary vascular wall has been studied by immunofluorescence and Western blotting. Mitogenic activity and migratory capacity of PASMC and PAEC have been investigated in vitro.

Results

PAEC express CD31 on their surface, von Willebrand factor in Weibel-Palade bodies and take up acetylated LDL. PASMC express various differentiation markers including α-smooth muscle actin (α-SMA), desmin and smooth muscle myosin heavy chain (SMMHC). In vascular tissue from CTEPH and non-thromboembolic PH patients, expression of α-SMA and desmin is down-regulated compared to lung donors; desmin expression is also down-regulated in vascular tissue from CTEPH compared to non-thromboembolic PH patients. A low proportion of α-SMA positive cells express desmin and SMMHC in the neointima of proximal pulmonary arteries from CTEPH patients. Serum-induced mitogenic activity of PAEC and PASMC, as well as migratory capacity of PASMC, were increased in CTEPH only.

Conclusions

Modified proliferative and/or migratory responses of PASMC and PAEC in vitro, associated to a proliferative phenotype of PASMC suggest that PASMC and PAEC could contribute to proximal vascular remodeling in CTEPH.  相似文献   

17.
miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling   总被引:2,自引:0,他引:2  
Chronic hypoxia causes pulmonary vascular remodeling leading to pulmonary hypertension (PH) and right ventricle (RV) hypertrophy. Aberrant expression of microRNA (miRNA) is closely associated with a number of pathophysiologic processes. However, the role of miRNAs in chronic hypoxia-induced pulmonary vascular remodeling and PH has not been well characterized. In this study, we found increased expression of miR-21 in distal small arteries in the lungs of hypoxia-exposed mice. Putative miR-21 targets, including bone morphogenetic protein receptor (BMPR2), WWP1, SATB1, and YOD1, were downregulated in the lungs of hypoxia-exposed mice and in human pulmonary artery smooth muscle cells (PASMCs) overexpressing miR-21. We found that sequestration of miR-21, either before or after hypoxia exposure, diminished chronic hypoxia-induced PH and attenuated hypoxia-induced pulmonary vascular remodeling, likely through relieving the suppressed expression of miR-21 targets in the lungs of hypoxia-exposed mice. Overexpression of miR-21 enhanced, whereas downregulation of miR-21 diminished, the proliferation of human PASMCs in vitro and the expression of cell proliferation associated proteins, such as proliferating cell nuclear antigen, cyclin D1, and Bcl-xL. Our data suggest that miR-21 plays an important role in the pathogenesis of chronic hypoxia-induced pulmonary vascular remodeling and also suggest that miR-21 is a potential target for novel therapeutics to treat chronic hypoxia associated pulmonary diseases.  相似文献   

18.
Pulmonary hypertension (PH) is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH) and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC) dysfunction and pulmonary arterial smooth muscle cell (PASMC) proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4) is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT)-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH.  相似文献   

19.
Phosphoinositide 3-kinase (PI3K) activation plays a critical role in the pulmonary vascular remodeling of pulmonary hypertension (PH). The nucleotide-oligomerization domain (NOD)-like receptor subfamily C3 (NLRC3) inhibits proliferation and inflammation via PI3K signaling in cancer. We previously showed NLRC3 was significantly reduced in PH patients, but the mechanism of function remains unclear. This study aimed to determine the potential role of NLRC3 in PH. We found that NLRC3 was downregulated in the pulmonary arteries of PH animal models and platelet-derived growth factor-BB (PDGF-BB) stimulated pulmonary arterial smooth muscle cells (PASMCs). NLRC3 pretreatment reduced right ventricular systolic pressure, attenuated pulmonary vascular remodeling and RVHI, and ameliorated proliferation, migration, and inflammation. Monocrotaline (MCT)- and PDGF-BB-mediated PI3K activation were suppressed by NLRC3 pretreatment. 740Y-P decreased the effect of NLRC3. Collectively, NLRC3 protected against MCT-induced rat PH and PDGF-BB-induced PASMC proliferation, migration, and inflammation through a mechanism involving PI3K inhibition. NLRC3 may have a therapeutic effect on PH and provide a promising therapeutic strategy for PH.  相似文献   

20.
Female rats develop less severe pulmonary hypertension (PH) in response to chronic hypoxia compared with males, thus implicating a potential role for ovarian hormones in mediating this gender difference. Considering that estrogen upregulates endothelial nitric oxide (NO) synthase (eNOS) in systemic vascular tissue, we hypothesized that estrogen inhibits hypoxic PH by increasing eNOS expression and activity. To test this hypothesis, we examined responses to the endothelium-derived NO-dependent dilator ionomycin and the NO donors S-nitroso-N-acetylpenicillamine and spermine NONOate in U-46619-constricted, isolated, saline-perfused lungs from the following groups: 1) normoxic rats with intact ovaries, 2) chronic hypoxic (CH) rats with intact ovaries, 3) CH ovariectomized rats given 17 beta-estradiol (E(2)beta), and 4) CH ovariectomized rats given vehicle. Additional experiments assessed pulmonary eNOS levels in each group by Western blotting. Our findings indicate that E(2)beta attenuated chronic hypoxia-induced right ventricular hypertrophy, pulmonary arterial remodeling, and polycythemia. Furthermore, although CH augmented vasodilatory responsiveness to ionomycin and increased pulmonary eNOS expression, these responses were not potentiated by E(2)beta. Finally, responses to S-nitroso-N-acetylpenicillamine and spermine NONOate were similarly attenuated in all CH groups compared with normoxic control groups. We conclude that the inhibitory influence of E(2)beta on chronic hypoxia-induced PH is not associated with increased eNOS expression or activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号