首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, an in vivo ligature-induced periodontitis rat model was used to investigate temporal changes to the solid and fluid phases of the joint by correlating shifts in joint biomechanics to adaptive changes in soft and hard tissue morphology and functional space. After 6 and 12 weeks of ligation, coronal regions showed a significant decrease in alveolar crest height, increased expression of TNF-α, and degradation of attachment fibers as indicated by decreased collagen birefringence. Cyclical compression to peak loads of 5–15 N at speeds of 0.2–2.0 mm/min followed by load relaxation tests showed decreased stiffness and reactionary load rate values, load relaxation, and load recoverability, of ligated joints. Shifts in joint stiffness and reactionary load rate increased with time while shifts in joint relaxation and recoverability decreased between control and ligated groups, complementing measurements of increased tooth displacement as evaluated through digital image correlation. Shifts in functional space between control and ligated joints were significantly increased at the interradicular (Δ10–25 μm) and distal coronal (Δ20–45 μm) regions. Histology revealed time-dependent increases in nuclei elongation within PDL cells and collagen fiber alignment, uncrimping, and directionality, in 12-week ligated joints compared to random orientation in 6-week ligated joints and to controls. We propose that altered strains from tooth hypermobility could cause varying degrees of solid-to-fluid compaction, alter dampening characteristics of the joint, and potentiate increased adaptation at the risk of joint failure.  相似文献   

2.
Biomechanical researches are essential to develop new techniques to improve the clinical relevance. Skeletal muscle generates the force which results in the motion of human body, so it is essential to study the mechanical and structural properties of skeletal muscle. Many researchers have carried out mechanical study of skeletal muscle with in-vivo testing. This work aims to examine anisotropic mechanical behavior of skeletal muscle with in vitro test (tensile test). It is important to understand the mechanical and structural behavior of skeletal muscle when it is subjected to external loading; the research aims to determine the structural properties of skeletal muscle by tensile testing. Tensile testing is performed on 5 samples of skeletal muscle of a goat at the rate of 1mm/min with fiber orientation along the length and 45° inclined to the length. It is found that muscle is stiffer in the direction parallel to the muscle fiber than at 45° to the muscle fibers. The tensile strength of the skeletal muscle along the fiber direction is 0.44 MPa at maximum load of 110 N and for direction 45° inclined to the muscle fibers, the strength is 0.234 MPa at max load 43 N. The displacement of Muscle sample against the maximum load is small along the length of the muscle fiber i.e. under longitudinal elongation [15.257 mm] as compared to 45° inclined to the length of skeletal muscle [17.775 mm] and under cross fiber elongation [19.7291mm by FEA]. The testing is not performed for 90° fiber orientation due to unavailability of soft tissue in cross fiber direction of the required specification, but finite element analysis is done on the skeletal muscle for the cross fiber orientation. As the fiber orientation within skeletal muscle differs with respect to the length of the muscle, the stiffness of skeletal muscle is also changing effectively. Hence skeletal muscle exhibits the anisotropic mechanical behavior.  相似文献   

3.
Tendons in different locations function in unique, and at times complex, invivo loading environments. Specifically, some tendons are subjected to compression, shear and/or torsion in addition to tensile loading, which play an important role in regulating tendon properties. To date, there have been few studies evaluating tendon mechanics when loaded in compression and shear, which are particularly relevant for understanding tendon regions that experience such non-tensile loading during normal physiologic function. The objective of this study was to evaluate mechanical responses of different regions of bovine deep digital flexor tendons (DDFT) under compressive and shear loading, and correlate structural characteristics to functional mechanical properties. Distal and proximal regions of DDFT were evaluated in a custom-made loading system via three-step incremental stress-relaxation tests. A two-relaxation-time solid linear model was used to describe the viscoelastic response. Results showed large differences in the elastic behavior between regions: distal region stresses were 4–5 times larger than proximal region stresses during compression and 2–3 times larger during shear. Surprisingly, the viscous (i.e., relaxation) behavior was not different between regions for either compression or shear. Histological analysis showed that collagen and proteoglycan in the distal region distributed differently from the proximal region. Results demonstrate mechanical differences between two regions of DDFT under compression and shear loading, which are attributed to variations of composition and microstructural organization. These findings deepen our understanding of structure–function relationships of tendon, particularly for tissues adapted to supporting combinations of tension, compression, and shear in physiological loading environments.  相似文献   

4.
It has been observed in load controlled laboratory tests of myocardium and skin that the tissues can exhibit a decrease in nonlinear stiffness with an increase in loading rate: the faster a test is performed, the more compliant is the preconditioned material behavior. This response seems to conflict with what is generally expected of soft tissues based on stretch or strain controlled tests, in which an increased rate of deformation results in a stiffer material response. It is hypothesized that this anomalous behavior has not been observed previously due to the small number of cyclic load controlled mechanical characterization tests that are geared specifically towards viscoelastic tissue response. The goal of this paper is to examine the preconditioned response of soft tissue to load controlled deformation using nonlinear viscoelastic material models including quasi-linear viscoelasticity, and to determine under what conditions this anomalous behavior becomes apparent. Results from this study suggest that this behavior is a true phenomenon unique to load controlled deformations that results from the interplay of nonlinear effects and creep behavior. These results call for increased attention to experimental parameters when testing and modeling nonlinear viscoelastic material behavior.  相似文献   

5.
We have investigated the growth of Escherichia coli, a mesophilic bacterium, as a function of pressure (P) and temperature (T). Escherichia coli can grow and divide in a wide range of pressure (1–400 atm) and temperature (23–40°C). For T > 30°C, the doubling time of E. coli increases exponentially with pressure and exhibits a departure from exponential behavior at pressures between 250 and 400 atm for all the temperatures studied in our experiments. The sharp change in doubling time is followed by a sharp change in phenotypic transition of E. coli at high pressures where bacterial cells switch to an elongating cell type. We propose a model that this phenotypic change in bacteria at high pressures is an irreversible stochastic process, whereas the switching probability to elongating cell type increases with increasing pressure. The model fits well the experimental data. We discuss our experimental results in the light of structural and thus functional changes in proteins and membranes.  相似文献   

6.
Recently, physiological and biomechanical studies on animal models with metal implants filling full-thickness cartilage defects have resulted in good clinical outcomes. The knowledge of the time-dependent macroscopic behavior of cartilage surrounding the metal implant is essential for understanding the joint function after treating such defects. We developed a model to investigate the in vivo time-dependent behavior of the tibiofemoral cartilages surrounding the metal implant, when the joint is subjected to an axial load for various defect sizes. Results show that time-dependent effects on cartilage behavior are significant, and can be simulated. These effects should be considered when evaluating the results from an implant. In particular, the depth into the cartilage where an implant is positioned and the mechanical sealing due to solidification of the poroelastic material need a time aspect. We found the maximal deformations, contact pressures and contact forces in the joint with time for the implant positioned in flush and sunk 0.3 mm into the cartilage. The latter position gives the better joint performance. The results after 60 s may be treated as the primary results, reflecting the effect of accumulation in the joint due to repeated short-time loadings. The wedge-shaped implant showed beneficial in providing mechanical sealing of cartilages surrounding the implant with time.  相似文献   

7.
Finite element (FE) modelling has been proposed as a tool for estimating fracture risk and patient-specific FE models are commonly based on computed tomography (CT). Here, we present a novel method to automatically create personalised 3D models from standard 2D hip radiographs. A set of geometrical parameters of the femur were determined from seven ap hip radiographs and compared to the 3D femoral shape obtained from CT as training material; the error in reconstructing the 3D model from the 2D radiographs was assessed. Using the geometry parameters as the input, the 3D shape of another 21 femora was built and meshed, separating a cortical and trabecular compartment. The material properties were derived from the homogeneity index assessed by texture analysis of the radiographs, with focus on the principal tensile and compressive trabecular systems. The ability of these FE models to predict failure load as determined by experimental biomechanical testing was evaluated and compared to the predictive ability of DXA. The average reconstruction error of the 3D models was 1.77 mm (±1.17 mm), with the error being smallest in the femoral head and neck, and greatest in the trochanter. The correlation of the FE predicted failure load with the experimental failure load was r2=64% for the reconstruction FE model, which was significantly better (p<0.05) than that for DXA (r2=24%). This novel method for automatically constructing a patient-specific 3D finite element model from standard 2D radiographs shows encouraging results in estimating patient-specific failure loads.  相似文献   

8.
The glenohumeral joint is the most frequently dislocated major joint in the body, and instability due to permanent deformation of the glenohumeral capsule is a common pathology. The corresponding change in mechanical properties may have implications for the ideal location and extent of plication, which is a common clinical procedure used to repair the capsule. Therefore, the objective of this study was to quantify the mechanical properties of four regions of the glenohumeral capsule after anterior dislocation and compare the properties to the normal glenohumeral capsule. Six fresh-frozen cadaveric shoulders were dislocated in the anterior direction with the joint in the apprehension position using a robotic testing system. After dislocation, mechanical testing was performed on the injured glenohumeral capsule by loading the tissue samples in tension and shear. An inverse finite element optimization routine was used to simulate the experiments and obtain material coefficients for each tissue sample. Cauchy stress–stretch curves were then generated to represent the mechanical response of each tissue sample to theoretical loading conditions. Based on several comparisons (average of the material coefficients, average stress–stretch curve for each region, and coefficients representing the average curves) between the normal and injured tissue samples, the mechanical properties of the injured tissue samples from multiple regions were found to be lower than those of the normal tissue in tension but not in shear. This finding indicates that anterior dislocation primarily affects the tensile behavior of the glenohumeral capsule rather than the shear behavior, and this phenomenon could be caused by plastic deformation of the matrix, permanent collagen fiber rotation, and/or collagen fiber failure. These results suggest that plication and suturing may not be sufficient to return stability to the shoulder after dislocation in all individuals. Thus, surgeons may need to perform a procedure that reinforces or stiffens the tissue itself, such as reconstruction or augmentation, to improve repair procedures.  相似文献   

9.
Coiled coils are important structural motifs formed by two or more amphipathic α-helices that twist into a supercoil. These motifs are found in a wide range of proteins, including motor proteins and structural proteins, that are known to transmit mechanical loads. We analyze atomically detailed simulations of coiled-coil cracking under load with Milestoning. Milestoning is an approach that captures the main features of the process in a network, quantifying kinetics and thermodynamics. A 112-residue segment of the β-myosin S2 domain was subjected to constant-magnitude (0–200 pN) and constant-direction tensile forces in molecular dynamics simulations. Twenty 20 ns straightforward simulations at several load levels revealed that initial single-residue cracking events (Ψ > 90°) at loads <100 pN were accompanied by rapid refolding without either intra- or interhelix unfolding propagation. Only initial unfolding events at the highest load (200 pN) regularly propagated along and between helices. Analysis of hydrophobic interactions and of interhelix hydrogen bonds did not show significant variation as a function of load. Unfolding events were overwhelmingly located in the vicinity of E929, a charged residue in a hydrophobic position of the heptad repeat. Milestoning network analysis of E929 cracking determined that the mean first-passage time ranges from 20 ns (200 pN) to 80 ns (50 pN), which is ∼20 times the mean first-passage time of an isolated helix with the same sequence.  相似文献   

10.
Physical activity is recommended to mitigate the incidence of hip osteoporotic fractures by improving femoral neck strength. However, results from clinical studies are highly variable and unclear about the effects of physical activity on femoral neck strength. We ranked physical activities recommended for promoting bone health based on calculations of strain energy in the femoral neck. According to adaptive bone-remodeling theory, bone formation occurs when the strain energy (S) exceeds its homeostatic value by 75%. The potential effectiveness of activity type was assessed by normalizing strain energy by the applied external load. Tensile strain provided an indication of bone fracture. External force and joint motion data for 15 low- and high-load weight-bearing and resistance-based activities were used. High-load activities included weight-bearing activities generating a ground force above 1 body-weight and maximal resistance exercises about the hip and the knee. Calculations of femoral loads were based on musculoskeletal and finite-element models. Eight of the fifteen activities were likely to trigger bone formation, with isokinetic hip extension (ΔS=722%), one-legged long jump (ΔS=572%), and isokinetic knee flexion (ΔS=418%) inducing the highest strain energy increase. Knee flexion induced approximately ten times the normalized strain energy induced by hip adduction. Strain and strain energy were strongly correlated with the hip-joint reaction force (R2=0.90–0.99; p<0.05) for all activities, though the peak load location was activity-dependent. None of the exercises was likely to cause fracture. Femoral neck mechanics is activity-dependent and maximum isokinetic hip-extension and knee-flexion exercises are possible alternative solutions to impact activities for improving femoral neck strength.  相似文献   

11.
A recent study (Lake et al., 2009); reported the properties of human supraspinatus tendon (SST) tested along the predominant fiber direction. The SST was found to have a relatively disperse distribution of collagen fibers, which may represent an adaptation to multiaxial loads imposed by the complex loading environment of the rotator cuff. However, the multiaxial mechanical properties of human SST remain unknown. The objective of this study, therefore, was to evaluate the mechanical properties, fiber alignment, change in alignment with applied load, and structure–function relationships of SST in transverse testing. Samples from six SST locations were tested in uniaxial tension with samples oriented transverse to the tendon long-axis. Polarized light imaging was used to quantify collagen fiber alignment and change in alignment under applied load. The mechanical properties of samples taken near the tendon–bone insertion were much greater on the bursal surface compared to the joint surface (e.g., bursal moduli 15–30 times greater than joint; p<0.001). In fact, the transverse moduli values of the bursal samples were very similar to values obtained from samples tested along the tendon long-axis (Lake et al., 2009). This key and unexpected finding suggests planar mechanical isotropy for bursal surface samples near the insertion, which may be due to complex in vivo loading. Organizationally, fiber distributions became less aligned along the tendon long-axis in the toe-region of the stress–strain response. Alignment changes occurred to a slightly lesser degree in the linear-region, suggesting that movement of collagen fibers may play a role in mechanical nonlinearity. Transverse mechanical properties were significantly correlated with fiber alignment (e.g., for linear-region modulus rs=0.74, p<0.0001), demonstrating strong structure–function relationships. These results greatly enhance current understanding of the properties of human SST and provide clinicians and scientists with vital information in attempting to treat or replace this complex tissue.  相似文献   

12.
Synthetic polypropylene meshes were designed to restore pelvic organ support for women suffering from pelvic organ prolapse; however, the FDA released two notifications regarding potential complications associated with mesh implantation. Our aim was to characterize the structural properties of Restorelle and UltraPro subjected to uniaxial tension along perpendicular directions, and then model the tensile behavior of these meshes utilizing a co-rotational finite element model, with an imbedded linear or fiber-recruitment local stress–strain relationship. Both meshes exhibited a highly nonlinear stress–strain behavior; Restorelle had no significant differences between the two perpendicular directions, while UltraPro had a 93% difference in the low (initial) stiffness (p=0.009) between loading directions. Our model predicted that early alignment of the mesh segments in the loading direction and subsequent stretching could explain the observed nonlinear tensile behavior. However, a nonlinear stress–strain response in the stretching regime, that may be inherent to the mesh segment, was required to better capture experimental results. Utilizing a nonlinear fiber recruitment model with two parameters A and B, we observed improved agreement between the simulations and the experimental results. An inverse analysis found A=120 MPa and B=1.75 for Restorelle (RMSE=0.36). This approach yielded A=30 MPa and B=3.5 for UltraPro along one direction (RMSE=0.652), while the perpendicular orientation resulted in A=130 MPa and B=4.75 (RMSE=4.36). From the uniaxial protocol, Restorelle was found to have little variance in structural properties along these two perpendicular directions; however, UltraPro was found to behave anisotropically.  相似文献   

13.
The jaw function of Smilodon fatalis has long been a source of debate. Although modern-day lions subdue large prey through the use of a suffocating throat bite, the dramatically elongated maxillary canines of S. fatalis suggest an alternative bite mechanism. The current literature favors a “canine shear-bite,” in which the depression of the cranium by the ventral neck flexors assists the mandibular adductors in closing the jaws. Although the model makes intuitive sense and appears to be supported by scientific data, the mechanical feasibility of “neck-powered” biting has not been experimentally demonstrated. In the present study, the computer-assisted manipulation of digitized images of a high-quality replica of an S. fatalis neck and skull shows that a rotation of the cranium by the ventral neck flexors will not result in jaw closure. Instead, the cranium and mandible rotate ventrally together (at the atlantooccipital joint), and the jaws remain in an open configuration. The only manner by which rotation of the cranium can simultaneously result in jaw closure is by an anterior rotation at the temporomandibular joint. Based on this finding, the author proposes a new Class 1 lever mechanism for S. fatalis jaw function. In this model, the mandible is immobilized against the neck of the prey and a dorsally directed force from the extension of the forelimbs rotates the cranium anteriorly at the temporomandibular joint. The maxillary canines pierce the prey’s neck and assist in clamping the ventral neck structures. The model is based on a maximum gape angle of approximately 90° and incorporates a secondary virtual point of rotation located slightly anteroventral to the temporomandibular joint. The Class 1 Lever Model is mechanically feasible, consistent with current data on S. fatalis anatomy and ecology, and may provide a basis for similar studies on other fossil taxa.  相似文献   

14.
Accurate prediction of loads acting at the joint in total knee replacement (TKR) patients is key to developing experimental or computational simulations which evaluate implant designs under physiological loading conditions. In vivo joint loads have been measured for a small number of telemetric TKR patients, but in order to assess device performance across the entire patient population, a larger patient cohort is necessary. This study investigates the accuracy of predicting joint loads from joint kinematics. Specifically, the objective of the study was to assess the accuracy of internal–external (I–E) and anterior–posterior (A–P) joint load predictions from I–E and A–P motions under a given compressive load, and to evaluate the repeatability of joint load ratios (I–E torque to compressive force (I–E:C), and A–P force to compressive force (A–P:C)) for a range of compressive loading profiles. A tibiofemoral finite element model was developed and used to simulate deep knee bend, chair-rise and step-up activities for five patients. Root-mean-square (RMS) differences in I–E:C and A–P:C load ratios between telemetric measurements and model predictions were less than 1.10e–3 Nm/N and 0.035 N/N for all activities. I–E:C and A–P:C load ratios were consistently reproduced regardless of the compressive force profile applied (RMS differences less than 0.53e–3 Nm/N and 0.010 N/N, respectively). When error in kinematic measurement was introduced to the model, joint load predictions were forgiving to kinematic measurement error when conformity between femoral and tibial components was low. The prevalence of kinematic data, in conjunction with the analysis presented here, facilitates determining the scope of A–P and I–E joint loading ratios experienced by the TKR population.  相似文献   

15.
Cellular materials that are often observed in biological systems exhibit excellent mechanical properties at remarkably low densities. Luffa sponge is one of such materials with a complex interconnecting porous structure. In this paper, we studied the relationship between its structural and mechanical properties at different levels of its hierarchical organization from a single fiber to a segment of whole sponge. The tensile mechanical behaviors of three single fibers were examined by an Instron testing machine and the ultrastructure of a fractured single fiber was observed in a scanning electronic microscope. Moreover, the compressive mechanical behaviors of the foam-like blocks from different locations of the sponge were examined. The difference of the compressive stress–strain responses of four sets of segmental samples were also compared. The result shows that the single fiber is a porous composite material mainly consisting of cellulose fibrils and lignin/hemicellulose matrix, and its Young?s modulus and strength are comparable to wood. The mechanical behavior of the block samples from the hoop wall is superior to that from the core part. Furthermore, it shows that the influence of the inner surface on the mechanical property of the segmental sample is stronger than that of the core part; in particular, the former?s Young?s modulus, strength and strain energy absorbed are about 1.6 times higher. The present work can improve our understanding of the structure–function relationship of the natural material, which may inspire fabrication of new biomimetic foams with desirable mechanical efficiency for further applications in anti-crushing devices and super-light sandwich panels.  相似文献   

16.
Experimental simulator studies are frequently performed to evaluate wear behavior in total knee replacement. It is vital that the simulation conditions match the physiological situation as closely as possible. To date, few experimental wear studies have examined the effects of joint laxity on wear and joint kinematics and the absence of the anterior cruciate ligament has not been sufficiently taken into account in simulator wear studies.The aim of this study was to investigate different ligament and soft tissue models with respect to wear and kinematics.A virtual soft tissue control system was used to simulate different motion restraints in a force-controlled knee wear simulator.The application of more realistic and sophisticated ligament models that considered the absence of anterior cruciate ligament lead to a significant increase in polyethylene wear (p=0.02) and joint kinematics (p<0.01). We recommend the use of more complex ligament models to appropriately simulate the function of the human knee joint and to evaluate the wear behavior of total knee replacements. A feasible simulation model is presented.  相似文献   

17.
Traditionally, the complex mechanical behavior of planar soft biological tissues is characterized by (multi)axial tensile testing. While uniaxial tests do not provide sufficient information for a full characterization of the material anisotropy, biaxial tensile tests are difficult to perform and tethering effects limit the analyses to a small central portion of the test sample. In both cases, determination of local mechanical properties is not trivial. Local mechanical characterization may be performed by indentation testing. Conventional indentation tests, however, often assume linear elastic and isotropic material properties, and therefore these tests are of limited use in characterizing the nonlinear, anisotropic material behavior typical for planar soft biological tissues. In this study, a spherical indentation experiment assuming large deformations is proposed. A finite element model of the aortic valve leaflet demonstrates that combining force and deformation gradient data, one single indentation test provides sufficient information to characterize the local material behavior. Parameter estimation is used to fit the computational model to simulated experimental data. The aortic valve leaflet is chosen as a typical example. However, the proposed method is expected to apply for the mechanical characterization of planar soft biological materials in general.  相似文献   

18.
This study demonstrates a novel biomechanics testing protocol. The advantage of this protocol includes the use of an in situ loading device coupled to a high resolution X-ray microscope, thus enabling visualization of internal structural elements under simulated physiological loads and wet conditions. Experimental specimens will include intact bone-periodontal ligament (PDL)-tooth fibrous joints. Results will illustrate three important features of the protocol as they can be applied to organ level biomechanics: 1) reactionary force vs. displacement: tooth displacement within the alveolar socket and its reactionary response to loading, 2) three-dimensional (3D) spatial configuration and morphometrics: geometric relationship of the tooth with the alveolar socket, and 3) changes in readouts 1 and 2 due to a change in loading axis, i.e. from concentric to eccentric loads. Efficacy of the proposed protocol will be evaluated by coupling mechanical testing readouts to 3D morphometrics and overall biomechanics of the joint. In addition, this technique will emphasize on the need to equilibrate experimental conditions, specifically reactionary loads prior to acquiring tomograms of fibrous joints. It should be noted that the proposed protocol is limited to testing specimens under ex vivo conditions, and that use of contrast agents to visualize soft tissue mechanical response could lead to erroneous conclusions about tissue and organ-level biomechanics.  相似文献   

19.
The objective of this study was to identify structural and functional factors which are predictors of peak pressure underneath the human foot during walking. Peak plantar pressure during walking and eight data sets of structural and functional measures were collected on 55 asymptomatic subjects between 20 and 70 yr. A best subset regression approach was used to establish models which predicted peak regional pressure under the foot. Potential predictor variables were chosen from physical characteristics, anthropometric data, passive range of motion (PROM), measurements from standardized weight bearing foot radiographs, mechanical properties of the plantar soft tissue, stride parameters, foot motion in 3D, and EMG during walking. Peak pressure values under the rearfoot, midfoot, MTH1, and hallux were measured. Heel pressure was a function of linear kinematics, longitudinal arch structure, thickness of plantar soft tissue, and age. Midfoot pressure prediction was dominated by arch structure, while MTH1 pressure was a function of radiographic measurements, talo-crural joint motion, and gastrocnemius activity. Hallux pressure was a function of structural measures and MTP1 joint motion. Foot structure and function predicted only approximately 50% of the variance in peak pressure, although the relative contributions in different anatomical regions varied dramatically. Structure was dominant in predicting peak pressure under the midfoot and MTH1, while both structure and function were important at the heel and hallux. The predictive models developed in this study give insight into potential etiological factors associated with elevated plantar pressure. They also provide direction for future studies designed to reduce elevated pressure in "at-risk" patients.  相似文献   

20.
BackgroundCollagen fiber re-alignment and uncrimping are two postulated mechanisms of tendon structural response to load. Recent studies have examined structural changes in response to mechanical testing in a postnatal development mouse supraspinatus tendon model (SST), however, those changes in the mature mouse have not been characterized. The objective of this study was to characterize collagen fiber re-alignment and crimp behavior throughout mechanical testing in a mature mouse SST.Method of approachA tensile mechanical testing set-up integrated with a polarized light system was utilized for alignment and mechanical analysis. Local collagen fiber crimp frequency was quantified immediately following the designated loading protocol using a traditional tensile set up and a flash-freezing method. The effect of number of preconditioning cycles on collagen fiber re-alignment, crimp frequency and mechanical properties in midsubstance and insertion site locations were examined.ResultsDecreases in collagen fiber crimp frequency were identified at the toe-region of the mechanical test at both locations. The insertion site re-aligned throughout the entire test, while the midsubstance re-aligned during preconditioning and the test's linear-region. The insertion site demonstrated a more disorganized collagen fiber distribution, lower mechanical properties and a higher cross-sectional area compared to the midsubstance location.ConclusionsLocal collagen fiber re-alignment, crimp behavior and mechanical properties were characterized in a mature mouse SST model. The insertion site and midsubstance respond differently to mechanical load and have different mechanisms of structural response. Additionally, results support that collagen fiber crimp is a physiologic phenomenon that may explain the mechanical test toe-region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号