首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Methyl ricinoleate conversion into γ-decalactone by fungi is already widely used by the aromatic industry. It offers an interesting alternative to chemical synthesis by permitting acquisition of a natural label. Peroxisomal β-oxidation has been described as the probable transformation mechanism. This paper provides information about this metabolism and shows the importance of the step catalysed by carnitine octanoyltransferase. After culture of the yeast Pichia guilliermondii on a medium containing methyl ricinoleate as sole carbon source, we confirmed that mitochondrial β-oxidation could not be responsible for the biotransformation. We also observed the effect of chlorpromazine, an inhibitor of carnitine octanoyltransferase, on peroxisomal β-oxidation and therefore on lactone production, and on lipid accumulation by the yeasts. The presence of chlorpromazine caused a reduction in aromatic specific production yield. This reduction was inversely proportional to the amount of chlorpromazine present in the medium. A considerable accumulation of methyl ricinoleate derivatives was also observed. We therefore concluded that the metabolism responsible for the bioconversion was peroxisomal β-oxidation. The effects of chlorpromazine suggested that the entry of fatty acids into the peroxisomes took place in a carnitine-dependent manner. This step might be a limiting step in the metabolism. Received: 26 June 1995/Received revision: 16 November 1995/Accepted: 4 December 1995  相似文献   

2.
γ-Decalactone is a peachy aroma compound resulting from the peroxisomal β-oxidation of ricinoleic acid by yeasts. The expression levels of acyl-CoA oxidase (gene deletion) and 3-ketoacyl-CoA thiolase activities (gene amplification on replicative plasmids) were modified in the yeast Yarrowia lipolytica. The effects of these modifications on β-oxidation were measured. Overexpression of thiolase activity did not have any effect on the overall β-oxidation activity. The disruption of one of the acyl-CoA oxidase genes resulted in an enhanced activity. The enhancement led to an increase of overall β-oxidation activity but reduced the γ-decalactone production rates. This seemed to indicate a non-rate-limiting role for β-oxidation in the biotransformation of ricinoleic acid to γ-decalactone by the yeast Yarrowia lipolytica. All strains produced and then consumed γ-decalactone. We checked the ability of the different strains to consume γ-decalactone in a medium containing the lactone as sole carbon source. The consumption of the strain overexpressing acyl-CoA oxidase activity was higher than that of the wild-type strain. We␣concluded that peroxisomal β-oxidation is certainly involved in γ-decalactone catabolism by the yeast Y.␣lipolytica. The observed production rates probably depend on an equilibrium between production and consumption of the lactone. Received: 13 June 1997 / Received revision: 2 October 1997 / Accepted: 14 October 1997  相似文献   

3.
Some microorganisms can transform methyl ricinoleate into γ-decalactone, a valuable aroma compound, but yields of the bioconversion are low due to (i) incomplete conversion of ricinoleate (C18) to the C10 precursor of γ-decalactone, (ii) accumulation of other lactones (3-hydroxy-γ-decalactone and 2- and 3-decen-4-olide), and (iii) γ-decalactone reconsumption. We evaluated acyl coenzyme A (acyl-CoA) oxidase activity (encoded by the POX1 through POX5 genes) in Yarrowia lipolytica in lactone accumulation and γ-decalactone reconsumption in POX mutants. Mutants with no acyl-CoA oxidase activity could not reconsume γ-decalactone, and mutants with a disruption of pox3, which encodes the short-chain acyl-CoA oxidase, reconsumed it more slowly. 3-Hydroxy-γ-decalactone accumulation during transformation of methyl ricinoleate suggests that, in wild-type strains, β-oxidation is controlled by 3-hydroxyacyl-CoA dehydrogenase. In mutants with low acyl-CoA oxidase activity, however, the acyl-CoA oxidase controls the β-oxidation flux. We also identified mutant strains that produced 26 times more γ-decalactone than the wild-type parents.  相似文献   

4.
Constant medium feeding rate and intermittent fed-batch fermentation strategies were investigated aiming to increase the yields of γ-decalactone production by Yarrowia lipolytica, using methyl ricinoleate as substrate and ricinoleic acid source. The accumulation of another compound, 3-hydroxy-γ-decalactone, was also analyzed since it derives from the direct precursor of γ-decalactone thereby providing information about the enzymatic activities of the pathway. Both strategies were compared with the traditional batch mode in terms of overall productivity and yield in respect to the substrate. Although the productivity of γ-decalactone was considerably higher in the batch mode (168 mg l−1 h−1), substrate conversion to lactone (73 mg γ-decalactone g−1) was greater in the intermittent fed-batch giving 6.8 g γ-decalactone l−1. This last strategy therefore has potential for γ-decalactone production at an industrial level.  相似文献   

5.
The subcellular localization of β -oxidation of fatty acids in plants has been the subject of controversy for many years. Peroxisomes have been accepted as the sole site of fatty acid β -oxidation for the past 15 years, whilst a proposed dual location, in both mitochondria and peroxisomes, has been disputed. Accumulated evidence demonstrating mitochondrial β -oxidation now demands that a dual location for plant β -oxidation must be considered.  相似文献   

6.
Abstract: In the olfactory bulb, muscarinic receptors exert a bimodal control on cyclic AMP, enhancing basal and Gs-stimulated adenylyl cyclase activities and inhibiting the Ca2+/calmodulin- and forskolin-stimulated enzyme activities. In the present study, we investigated the involvement of G protein βγ subunits by examining whether the muscarinic responses were reproduced by the addition of βγ subunits of transducin (βγt) and blocked by putative βγ scavengers. Membrane incubation with βγt caused a stimulation of basal adenylyl cyclase activity that was not additive with that produced by carbachol. Like carbachol, βγt potentiated the enzyme stimulations elicited by vasoactive intestinal peptide and corticotropin-releasing hormone. RT-PCR analysis revealed the expression of mRNAs encoding both type II and type IV adenylyl cyclase, two isoforms stimulated by βγ synergistically with activated Gs. In addition, βγt inhibited the Ca2+/calmodulin- and forskolin-stimulated enzyme activities, and this effect was not additive with that elicited by carbachol. Membrane incubation with either one of two βγ scavengers, the GDP-bound form of the α subunit of transducin and the QEHA fragment of type II adenylyl cyclase, reduced both the stimulatory and inhibitory effects of carbachol. These data provide evidence that in rat olfactory bulb the dual regulation of cyclic AMP by muscarinic receptors is mediated by βγ subunits likely acting on distinct isoforms of adenylyl cyclase.  相似文献   

7.
Oil-in-water emulsions composed of methyl ricinoleate (MR) or castor oil (CO) as the organic phase, stabilized by Tween 80, are in the basis of the biotechnological production of γ-decalactone. Yarrowia lipolytica was used due to its ability to grow on hydrophobic substrates and to carry out the biotransformation. The characterization of oil droplets size distribution by laser granulometry was performed under different oil concentrations. The impact of the presence of cells on droplets size was also analyzed as well as the relevance of washing inoculum cells. Furthermore, the granulometric characterization of the emulsions was related with γ-decalactone production and it was observed that, in the presence of non-washed cells, the smaller droplets disappeared, using both oils, which increased γ-decalactone concentration. This suggests that the access of cells to the substrate occurs by their adhesion around larger oil droplets.  相似文献   

8.
Yarrowia lipolytica converts methyl ricinoleate to γ-decalactone, a high-value fruity aroma compound. The highest amount of 3-hydroxy-γ-decalactone produced by the yeast (263 mg l-1) occurred by increasing the kLa up to 120 h−1 at atmospheric pressure; above it, its concentration decreased, suggesting a predominance of the activity of 3-hydroxyacyl-CoA dehydrogenase. Cultures were grown under high-pressure, i.e., under increased O2 solubility, but, although growth was accelerated, γ-decalactone production decreased. However, by applying 0.5 MPa during growth and biotransformation gave increased concentrations of dec−2-en-4-olide and dec-3-en-4-olide (70 mg l−1).  相似文献   

9.
Abstract: The regional distributions of the G protein β subunits (Gβ1–β5) and of the Gγ3 subunit were examined by immunohistochemical methods in the adult rat brain. In general, the Gβ and Gγ3 subunits were widely distributed throughout the brain, with most regions containing several Gβ subunits within their neuronal networks. The olfactory bulb, neocortex, hippocampus, striatum, thalamus, cerebellum, and brainstem exhibited light to intense Gβ immunostaining. Negative immunostaining was observed in cortical layer I for Gβ1 and layer IV for Gβ4. The hippocampal dentate granular and CA1–CA3 pyramidal cells displayed little or no positive immunostaining for Gβ2 or Gβ4. No anti-Gβ4 immunostaining was observed in the pars compacta of the substantia nigra or in the cerebellar granule cell layer and Purkinje cells. Immunoreactivity for Gβ1 was absent from the cerebellar molecular layer, and Gβ2 was not detected in the Purkinje cells. No positive Gγ3 immunoreactivity was observed in the lateral habenula, lateral septal nucleus, or Purkinje cells. Double-fluorescence immunostaining with anti-Gγ3 antibody and individual anti-Gβ1–β5 antibodies displayed regional selectivity with Gβ1 (cortical layers V–VI) and Gβ2 (cortical layer I). In conclusion, despite the widespread overlapping distributions of Gβ1–β5 with Gγ3, specific dimeric associations in situ were observed within discrete brain regions.  相似文献   

10.
The yeast Yarrowia lipolytica growing on methyl ricinoleate can produce γ-decalactone, the worthy aroma compound, which can exhibit fruity and creamy sensorial notes, and recognized internationally as a safe food additive. Unfortunately, the yield is poor because of lactone degradation by enzyme Aox3 (POX3 gene encoded), which was responsible for continuation of oxidation after C(10) level and lactone reconsumption. In this paper, we chose the industrial Y. lipolytica (CGMCC accession number 2.1405), which is the diploid strain as the starting strain and constructed the recombinant strain Tp-12 by targeting the POX3 locus of the wild type, one copy of POX3 was deleted by CRF1+POX2 insertion. The other recombinant strain Tpp-11, which was a null mutant possessing multiple copies of POX2 and disrupted POX3 genes on two chromosomes, was constructed by inserting XPR2+hpt into the other copy of POX3 of Tp-12. The growth ability of the recombinants was changed after genetic modification in the fermentation medium. The production of γ-decalactone was increased, resulting from blocking β-oxidation at the C(10) Aox level and POX2 overexpression. The recombinant strain Tpp-11 was stable. Because there was no reconsumption of γ-decalactone, the mutant strain could be grown in continuous fermentation of methyl ricinoleate to produce γ-decalactone.  相似文献   

11.
Effect of temperature on the optimal substrate for β-oxidation   总被引:1,自引:0,他引:1  
The enzyme carnitine palmitoyl tranferase (CPT) is able to use a range of fatty acids as substrates, with some variation in catalytic rate among tissue. The substrate giving maximal activity of the enzyme under optimal conditions (C16: 1) is similar in trout, salmon, goldfish, eel and tilapia. There is no evidence that thermal acclimation affects substrate preference for β-oxidation.  相似文献   

12.
Abstract: (β-FNA, the β -fumaramate methyl ester of naltrexone, has been shown to antagonize irreversibly the actions of morphine on the guinea pig ileum and mouse vas deferens bioassays but does not affect the actions of δ-receptor ligands on the mouse vas deferens bioassay, suggesting that the compound does not irreversibly bind to the S receptor. In this paper we examine the effect of (β -FNA on the binding of the prototypic δ agonists, Leuenkephalin and d -Ala2- d -Leu5-enkephalin, its metabolically stable analogue, and show that treatment of membranes with β -FNA does lead to alterations in the in vitro properties of δ receptors.  相似文献   

13.
The aim was to determine the function of peroxisomal NAD+-malate dehydrogenase (PMDH) in fatty acid β-oxidation and the glyoxylate cycle in Arabidopsis. Seeds in which both PMDH genes are disrupted by T-DNA insertions germinate, but seedling establishment is dependent on exogenous sugar. Mutant seedlings mobilize their triacylglycerol very slowly and growth is insensitive to 2,4-dichlorophenoxybutyric acid. Thus mutant seedlings are severely impaired in β-oxidation, even though microarray analysis shows that β-oxidation genes are expressed normally. The mutant phenotype was complemented by expression of a cDNA encoding PMDH with either its native peroxisome targeting signal-2 (PTS2) targeting sequence or a heterologous PTS1 sequence. In contrast to the block in β-oxidation in mutant seedlings, [14C]acetate is readily metabolized into sugars and organic acids, thereby demonstrating normal activity of the glyoxylate cycle. We conclude that PMDH serves to reoxidize NADH produced from fatty acid β-oxidation and does not participate directly in the glyoxylate cycle.  相似文献   

14.
Male and female Carassius auratus were exposed to safe (SC; 0.01 ppm) and sublethal (SL; 0·1 ppm) concentrations of an organochlorine pesticide γ-hexachlorocyclohexane (γ-HCH) for 4 weeks during the pre-spawning phase (June) of the annual reproductive cycle. Gonadosomatic index and gonadotropin levels were significantly lower after exposure to both γ-HCH concentrations than in control fish. After 4 weeks exposure, gonadal tissue from control, SC and SL exposed fish was incubated with carp hypophyseal homogenate (chh). The chh stimulated production of testosterone, 17,20β-dihydroxy-4-pregnen-3-one (17,20βP), 11-deoxycortisol, and 11-ketotesterone (11-KT) was estimated in the unconjugated (free) and conjugated (glucuronide) fractions by radioimmunoassay. In both sexes, testosterone production was greatly decreased in γ-HCH exposed fish compared to controls. 17,20βP production was low in all fish and was unaffected by γ-HCH. Free 11-deoxycortisol production by testicular fragments was higher in SL and SC compared with controls, while conjugated 11-deoxycortisol was increased only higher in the SL. In ovarian fragments from exposed fish, free 11-deoxycortisol decreased while glucuronide concentrations increased compared with controls. 11-KT production was significantly decreased in testicular fragments of exposed fish. The results indicate that γ-HCH inhibits gonadal recrudescence by decreasing both gonadotropin secretion and its potential for stimulation of steroidogenesis.  相似文献   

15.
Atlantic salmon Salmo salar were fed diets containing 100% fish oil (FO; capelin oil) or 100% vegetable oil (VO) from start of feeding until the fish reached the size of 2·5 kg. Samples were taken during the period of the parr-smolt transformation (October 2002 to February 2003). The VO diet consisted of a blend of 55% rapeseed oil, 30% palm oil and 15% linseed oil to maintain the sum of saturated, monounsaturated and polyunsaturated fatty acids between the two diets, although with differences in the individual chain length of fatty acids. Na+/K+-ATPase activity in the gills, total β-oxidation capacity in muscles and liver and total lipid, glycogen and dry matter content in the muscles were measured during the parr-smolt transformation and after seawater transfer. Na+/K+-ATPase activity in gills increased prior to seawater transfer, showing an adaptation for seawater survival. Major changes in the lipid and glycogen content in the fillet and in β-oxidation capacity were found in the tissues measured. β-oxidation capacity increased significantly in liver and decreased in red muscle, prior to seawater transfer, giving liver an important role in energy production during this period. Results also indicated that feeding Atlantic salmon a diet where 100% of FO was replaced with VO did not have any negative effects on lipid metabolism during parr-smolt transformation.  相似文献   

16.
This paper reviews aspects concerning the genetic regulation of the expression of the well studied peroxisomal genes including those of fatty acid β-oxidation enzymes; acyl-CoA oxidase, multifunctional enzyme and thiolase from different tissues and species. An important statement is PPARα, which is now long known to be in rodents the key nuclear receptor orchestrating liver peroxisome proliferation and enhanced peroxisomal β-oxidation, does not appear to control so strongly in man the expression of genes involved in peroxisomal fatty acid β-oxidation related enzymes. In this respect, the present review strengthens among others the emerging concept that, in the humans, the main genes whose expression is up-regulated by PPARα are mitochondrial and less peroxisomal genes. A special emphasis is also made on the animal cold adaptation and on need for sustained study of peroxisomal enzymes and genes; challenging that some essential roles of peroxisomes in cell function and regulation still remain to be discovered.  相似文献   

17.
β -Alanine betaine is an osmoprotective compound accumulated by most members of the plant family Plumbaginaceae. Leaf and root tissues of Limonium latifolium known to accumulate β -alanine betaine readily convert supplied β -alanine to β -alanine betaine. To identify the intermediates and the enzymes involved in β -alanine betaine synthesis, radiotracer experiments using [ 14 C] formate were employed. These studies demonstrate that β -alanine betaine is synthesized from β -alanine via N -methyl and N,N- dimethyl β -alanines. A rapid and sensitive radiometric assay was developed to measure N -methyltransferase (NMT) activities by using [methyl-14C] or [methyl-3H] S -adenosyl- l -methionine (AdoMet) as the methyl donor. Leaf extracts from β -alanine betaine accumulators – Armeria maritima , L. latifolium and L. ramosissimum – had detectable NMT activities while none were found in L. perezii , a species that does not accumulate β -alanine betaine. The NMT activities were further characterized from the leaves of L. latifolium . The activities had a pH optimum of 8.0, were soluble and inhibited by S -adenosyl- l -homocysteine. Extractable activities were similar from plants grown under control and salinity stress conditions. Radiolabeling with [ 14 C] l -aspartic acid indicated that, unlike in bacteria, decarboxylation of l -aspartic acid is not the source of β -alanine in the Plumbaginaceae.  相似文献   

18.
Abstract— ω -Monofluoromethyl and ω-difluoromethyl analogues of the known substrates of GABA-T, β -alanine, γ -aminobutyric acid, and 5-aminopentanoic acid, are time dependent inhibitors of purified 4-aminobutyrate: 2-oxoglutarate aminotransferase (GABA-T). The inhibitory activity decreases with increasing chain length. In vitro , inhibitory activity decreases with increasing fluorine substitution of the methyl group. In vivo , β -difluoromethyl- β -alanine and 2,4-difluoro-3-aminobutyric acid are the most potent GABA-T inhibitors ever reported. Trifluoromethyl derivatives are devoid of GABA-T inhibitory activity in vitro or in vivo.  相似文献   

19.
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme of the kynurenine pathway of tryptophan metabolism, ultimately leading to production of the excitotoxin quinolinic acid (QUIN) by monocytic cells. In the Tg2576 mouse model of Alzheimer's disease, systemic inflammation induced by lipopolysaccharide leads to an increase in IDO expression and QUIN production in microglia surrounding amyloid plaques. We examined whether the IDO over-expression in microglia could be mediated by brain proinflammatory cytokines induced during the peripheral inflammation using THP-1 cells and peripheral blood mononuclear cells (PBMC) as models for microglia. THP-1 cells pre-treated with 5–25 μM amyloid β peptide (Aβ) (1–42) but not with Aβ (1–40) or Aβ (25–35) became an activated state as indicated by their morphological changes and enhanced adhesiveness. IDO expression was only slightly increased in the reactive cells but strongly enhanced following treatment with proinflammatory cytokine interferon-γ (IFN-γ) but not with interleukin-1β, tumor necrosis factor-α, or interleukin-6 at 100 U/mL. The concomitant addition of Aβ (1–42) with IFN-γ was totally ineffective, indicating that Aβ pre-treatment is prerequisite for a high IDO expression. The priming effect of Aβ (1–42) for the IDO induction was also observed for PBMC. These findings suggest that IFN-γ induces IDO over-expression in the primed microglia surrounding amyloid plaques.  相似文献   

20.
Abstract: A monoclonal antibody (mAb), termed BBS/NC/VI-H14 (H14), that reacts with the human enzyme γγ-enolase was prepared. It was directed against the γ-subunit and did not cross-react with the α- or β-subunit. The mAb H14 can be used for quantitative determination of γγ-enolase in a two-site immunoradiometric assay (two-site IRMA). It is also suitable for immunostaining formalin-fixed tissues. The specific identification of γγ-enolase provided by the two-site IRMA with H14 is discussed in relation to the cellular distribution of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号