首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding site for eIF-3 on the small ribosomal subunit was studied (a) by use of a complex of eIF-3 and derived 40 S ribosomal subunit from rat liver, and (b) by use of native small ribosomal subunits from rabbit reticulocytes. After treatment of both complexes with dimethyl 4,7-dioxo-5,6-dihydroxy-3,8-diazadecanbisimidate ribosomal proteins S3a, S4, S6, S7, S8, S9, S10, S23/24 and S27 became covalently linked to eIF-3 and were isolated together with the factor by gradient centrifugation. The ribosomal proteins were identified by two-dimensional polyacrylamide gel electrophoresis after periodate cleavage of the link(s).  相似文献   

2.
Initiation factor eIF-2 from rat liver was reacted with the hetero-bifunctional cross-linking reagents ABAI or APTPI without diminishing its ability to form the quaternary initiation complex with Met-tRNAf, GDPCP and the small ribosomal subunit. Upon irradiation with UV light, subunits alpha and gamma of eIF-2 became covalently linked to 18S ribosomal RNA. The subunits were identified electrophoretically after isolation of the covalent protein-rRNA complexes and subsequent degradation of the rRNA by nuclease and alkali treatments. The close proximity of the two factor subunits to sequences of ribosomal RNA within the quaternary complex could be confirmed in a second set of experiments using unmodified, 125I-labeled factor and diepoxybutane as cross-linking reagent.  相似文献   

3.
Initiation factor eIF-3 from rat liver forms a binary complex with the small ribosomal subunit. Within this complex, 18S ribosomal RNA can be cross-linked to the 66 000 dalton subunit of eIF-3 by treating the complex with a short bifunctional reagent, diepoxybutane, with a distance of 4A between the reactive groups. In binary complexes containing eIF-3 premodified with the heterobifunctional reagent, methyl-p-azido-benzoylaminoacetimidate (10A), the 66 000 dalton subunit of eIF-3 became covalently bound to 18S rRNA after irradiation of the complex with ultraviolet light. The involvement of only one of the eight eIF-3 subunits in the formation of the covalent RNA-protein complexes indicates a highly specific interaction between 18S rRNA and eIF-3 at the attachment site of the factor on the 40S subunit.  相似文献   

4.
Native small ribosomal subunits from rabbit reticulocytes contain all initiation factors necessary for the formation of the mRNA-containing 48S pre-initiation complex. The complex formed in the presence of Met-tRNAf and 125I-labelled globin mRNA was cross-linked with diepoxybutane, and the covalent mRNA-protein complexes were isolated under denaturating conditions. The proteins of the covalent complex were identified as the 110, 95 and 66/64 kDa subunits of eIF-3. In addition, the 24 kDa cap binding protein and the ribosomal proteins S1, S3/3a, S6 and S11 were found covalently linked to the mRNA. Ribosomal proteins S3/3a and S6 were also involved in the ribosomal mRNA-binding domain of reticulocyte polysomes.  相似文献   

5.
Complexes of 30 S subunits and [14C]IF3 were allowed to react with the protein cross-linking reagents, N,N′-p-phenylenedimaleimide or dimethylsuberimidate. Non-cross-linked IF3 was removed from the complex by centrifugation in a buffer containing a high salt concentration, and the total protein was extracted from the pelleted particles. The mixture of cross-linked products was analyzed by radioimmunodiffusion with antisera prepared against all of the individual 30 S ribosomal proteins. Radioactivity was found in the precipitin bands formed with antisera against ribosomal proteins S1, S11, S12, S13, S19 and S21. The results show that IF3 was present in covalent cross-linked complexes containing those 30 S ribosomal proteins and imply that they comprise or are near the binding site for initiation factor IF3.  相似文献   

6.
7.
The location of initiation factor eIF-2 and of its subunits in quaternary initiation complexes (40S-ribosomal-subunit.eIF-2. GuoPP[CH2]P.Met-tRNAf) was investigated by immunoelectron microscopy. Quaternary complexes were fixed with glutaraldehyde and reacted with affinity-purified polyclonal antibodies against eIF-2 alpha, eIF-2 beta or eIF-2 gamma. The dimeric immune complexes obtained by sucrose gradient centrifugation were investigated electron microscopically after negative staining. Antibody-binding sites were observed on the interface side of the 40S ribosomal subunit in the region between the 'head' and the 'body' (neck region) of the 40S ribosomal subunit. Within this region, eIF-2 alpha points to the rear side, whereas eIF-2 beta and eIF-2 gamma point to the frontal side of the 40S subunit indicating an elongated shape of eIF-2 about 15 nm long. By analytical ultracentrifugation of isolated eIF-2 the sedimentation and diffusion coefficients were determined to be 6.54 S and 4.74 x 10(-7) cm2/s respectively. From these data, a molar mass of 122.4 kg/mol and a dry volume of 147.4 nm3 were calculated. For the shape of eIF-2 a prolate ellipsoid of revolution is assumed with a maximal length of about 15 nm and with an axial ratio of about 1:3.5. This conclusion is further confirmed by a calculated frictional ratio of 1.37 and a Stokes radius of about 4.54 nm.  相似文献   

8.
The primary structure of the gene for 18 S rRNA of the crustacean Artemia salina was determined. The sequence has been aligned with 13 other small ribosomal subunit RNA sequences of eukaryotic, archaebacterial, eubacterial, chloroplastic and plant mitochondrial origin. Secondary structure models for these RNAs were derived on the basis of previously proposed models and additional comparative evidence found in the alignment. Although there is a general similarity in the secondary structure models for eukaryotes and prokaryotes, the evidence seems to indicate a different topology in a central area of the structures.  相似文献   

9.
Native small ribosomal subunits (40SN) from rat liver and rabbit reticulocytes prepared at different KC1 concentrations have been investigated by electron microscopy after negative staining. Subunits of both origins show identical features. The initiation factor eIF-3 is located in the middle region of the convex rear side of the particles and covers an area extending from the protuberance at the interface up to the external surface. eIF-3 has the shape of a flat triangular prism and is attached with its triangular base to the ribosomal surface.  相似文献   

10.
Monospecific polyclonal antibodies against seven proteins of the 40 S subunit of rat liver ribosomes were used to identify ribosomal proteins involved in interaction with initiation factor eIF-2 in the quaternary initiation complex [eIF-2 X GMPPCP X [3H]Met-tRNAf X 40 S ribosomal subunit]. Dimeric immune complexes of 40 S subunits mediated by antibodies against ribosomal proteins S3a, S13/16, S19 and S24 were found to be unable to bind the ternary initiation complex [eIF-2 X GMPPCP X [3H]Met-tRNAf]. In contrast, 40 S dimers mediated by antibodies against proteins S2, S3 and S17 were found to bind the ternary complex. Therefore, from the ribosomal proteins tested, only proteins S3a, S13/16, S19 and S24 are concluded to be involved in eIF-2 binding to the 40 S subunit.  相似文献   

11.
A map of the positions of 12 of the 21 proteins of the 30 S ribosomal subunit of Escherichia coli (S1, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12 and S15), based on neutron scattering, is presented and discussed. Estimates for the radii of gyration of these proteins in situ are also obtained. It appears that many ribosomal proteins have compact configurations in the particle.  相似文献   

12.
Exposure of quiescent, serum-starved 3T3-L1 cells to insulin promotes phosphorylation of initiation factors eIF-4F, eIF-4B, and eIF-3 p120, as well as ribosomal protein S6. Phosphorylation of both the p25 and p220 subunits of eIF-4F is stimulated typically by 2.5-5-fold, with a 2-4-fold increase in phosphorylation of eIF-4B and eIF-3 p120. Optimal stimulation is observed by 10(-9) M insulin. A similar pattern of stimulation is seen upon treatment of 3T3-L1 cells with 1 x 10(-6) M phorbol 12-myristate 13-acetate (PMA). Two-dimensional phosphopeptide mapping of p25, isolated from quiescent, insulin- or PMA-stimulated cells, results in a single tryptic phosphopeptide, indicating a single phosphorylation site identical to that obtained with protein kinase C. A more complex phosphopeptide map is observed with the p220 subunit. Following PMA-stimulation of 3T3-L1 cells, phosphopeptide mapping of p220 results in a pattern similar to that observed in vitro with Ca2+/phospholipid-dependent protein kinase (protein kinase C). Following insulin stimulation, mapping of p220 results in the appearance of novel peptides. Upon prolonged exposure to PMA, the cells are no longer responsive to this mitogen and no stimulation of phosphorylation of eIF-4F, eIF-4b, eIF-3 p120, or S6 via a protein kinase C-dependent mechanism is observed. Addition of insulin to these down-regulated cells leads to stimulation of phosphorylation of eIF-4F p220, ribosomal protein S6, and to a lesser extent, eIF-4B; little or no stimulation of phosphorylation of eIF-4F p25 and eIF-3 p120 is observed. Thus, eIF-4F p220, eIF-4B and ribosomal protein S6 are phosphorylated via PMA-dependent and insulin-dependent pathways, whereas phosphorylation of eIF-4F p25 and eIF-3 p120 is stimulated only upon activation of protein kinase C. Phosphopeptide maps of eIF-4F p220 and ribosomal protein S6 suggest that protease-activated kinase II is one of the protein kinases involved in the insulin-stimulated response in protein kinase C-depleted cells.  相似文献   

13.
Complexes of purified 40S ribosomal subunits and initiation factor 3 from rabbit reticulocytes were crosslinked using the reversible protein crosslinking reagent, 2-iminothiolane, under conditions shown previously to lead to the formation of dimers between 40S proteins but not higher multimers. The activity of both the 40S subunits and initiation factor 3 was maintained. Protein crosslinked to the factor was purified by sucrose density gradient centrifugation following nuclease digestion of the ribosomal subunit: alternatively, the total protein was extracted from 40S: factor complexes. The protein obtained by either method was analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Ribosomal proteins were found in multimeric complexes of high molecular weight due to their crosslinking to components of eIF3. Identification of the ribosomal proteins appearing below the diagonal was accomplished by elution, radioiodination, two-dimensional polyacrylamide/urea gel electrophoresis, and radioautography. Proteins S2, S3, S3a, S4, S5, S6, S8, S9, S11, S12, S14, S15, S16, S19, S24, S25, and S26 were identified. Because many of the proteins in this group form crosslinked dimers with each other, it was impossible to distinguish proteins directly crosslinked to eIF3 from those crosslinked indirectly through one bridging protein. The results nonetheless imply that the 40S ribosomal proteins identified are at or near the binding site for initiation factor 3.  相似文献   

14.
The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.  相似文献   

15.
A role for proteins S3 and S14 in the 30 S ribosomal subunit   总被引:1,自引:0,他引:1  
Small ribosomal subunits prepared by the method of Kirillov et al. (Kirillov, S. V., Makhno, V. I., Peshin, N. N., and Semenkov, Yu. P. (1986) Nucleic Acids Res. 5, 4305-4315) are active but fail to reconstitute. The inability to reconstitute is due to a deficiency in proteins S3 and S14. Supplementation of the protein component with pure S3 and S14 leads to an enhancement of the activity of the reconstituted product. Our results provide evidence that these two proteins are involved in assembly but may not be required once the 30 S subunit has been properly assembled.  相似文献   

16.
The ability of homogeneous phospholipid-sensitive Ca2+-dependent protein kinase (PL-Ca-PK) from pig spleen to phosphorylate eukaryotic initiation factor 2 (eIF-2) was examined. PL-Ca-PK phosphorylated the beta-subunit of eIF-2, whereas myosin light chain kinase (MLCK) and cyclic AMP- and cyclic GMP-dependent protein kinases (cA-PK and cG-PK) did not. PL-Ca-PK could incorporate a maximum of 1.6 mol phosphate/mol eIF-2. The app. Km and Vmax for PL-Ca-PK phosphorylation of eIF-2 were 0.13 microM and 0.02 mumol.min-1.mg enzyme-1, respectively. Phosphoamino acid analysis revealed that incorporation of phosphate into eIF-2 occurred almost exclusively at serine residues. These findings indicate that eIF-2 was an effective substrate for PL-Ca-PK, suggesting that this enzyme may play a role in the regulation of protein synthesis.  相似文献   

17.
J A Maassen 《Biochemistry》1979,18(7):1288-1292
For the identification of neighbor relationships between proteins in biological systems 4-(6-formyl-3-azidophenoxy)butyrimidate (FAPB-imidate), a heterobifunctional, cleavable cross-linker was synthesized. The reagent has an imido ester at one end, which is used for the attachment to amino groups of a specific protein whose environment has to be characterized. At the other end, the reagent has both an azido and an aldehyde group. The azido group can be used to cross-link the protein photochemically to a variety of chemical groups of neighboring proteins. The aldehyde group is able to cross-link the protein by reductive alkylatin to amino groups of neighboring proteins. In both cases, the cross-linker can be made radioactive with NaB3H4. the cross-linked complexes can be split at the band originating from the imidate group by treatment with ammonia. Hereby, the radioactive cross-linker remains covalently attached to the unknown neighboring protein, which can be therefore easily identified. In order to explore the usefulness of FAPB-imidate as a cross-linking agent, the compound was attached to ribosomal protein L7. With this modified L7, the existence of the well-known complex between L7 and ribosomal protein L10 could be demonstrated by the photochemical procedure. By the chemical procedure, the presence of dimers of L7 in solution could be shown.  相似文献   

18.
Previous studies have shown that the 30S ribosomal subunit of Escherichia coli can be reconstituted in vitro from individually purified ribosomal proteins and 16S ribosomal RNA, which were isolated from natural 30S subunits. We have developed a 30S subunit reconstitution system that uses only recombinant ribosomal protein components. The genes encoding E. coli ribosomal proteins S2-S21 were cloned, and all twenty of the individual proteins were overexpressed and purified. Reconstitution, following standard procedures, using the complete set of recombinant proteins and purified 16S ribosomal RNA is highly inefficient. Efficient reconstitution of 30S subunits using these components requires sequential addition of proteins, following either the 30S subunit assembly map (Mizushima & Nomura, 1970, Nature 226:1214-1218; Held et al., 1974, J Biol Chem 249:3103-3111) or following the order of protein assembly predicted from in vitro assembly kinetics (Powers et al., 1993, J MoI Biol 232:362-374). In the first procedure, the proteins were divided into three groups, Group I (S4, S7, S8, S15, S17, and S20), Group II (S5, S6, S9, Sll, S12, S13, S16, S18, and S19), and Group III (S2, S3, S10, S14, and S21), which were sequentially added to 16S rRNA with a 20 min incubation at 42 degrees C following the addition of each group. In the second procedure, the proteins were divided into Group I (S4, S6, S11, S15, S16, S17, S18, and S20), Group II (S7, S8, S9, S13, and S19), Group II' (S5 and S12) and Group III (S2, S3, S10, S14, and S21). Similarly efficient reconstitution is observed whether the proteins are grouped according to the assembly map or according to the results of in vitro 30S subunit assembly kinetics. Although reconstitution of 30S subunits using the recombinant proteins is slightly less efficient than reconstitution using a mixture of total proteins isolated from 30S subunits, it is much more efficient than reconstitution using proteins that were individually isolated from ribosomes. Particles reconstituted from the recombinant proteins sediment at 30S in sucrose gradients, bind tRNA in a template-dependent manner, and associate with 50S subunits to form 70S ribosomes that are active in poly(U)-directed polyphenylalanine synthesis. Both the protein composition and the dimethyl sulfate modification pattern of 16S ribosomal RNA are similar for 30S subunits reconstituted with either recombinant proteins or proteins isolated as a mixture from ribosomal subunits as well as for natural 30S subunits.  相似文献   

19.
The assembly of the ribosome has recently become an interesting target for antibiotics in several bacteria. In this work, we extended an analytical procedure to determine native state fluctuations and contact breaking to investigate the protein stability dependence in the 30S small ribosomal subunit of Thermus thermophilus. We determined the causal influence of the presence and absence of proteins in the 30S complex on the binding free energies of other proteins. The predicted dependencies are in overall agreement with the experimentally determined assembly map for another organism, Escherichia coli. We found that the causal influences result from two distinct mechanisms: one is pure internal energy change, the other originates from the entropy change. We discuss the implications on how to target the ribosomal assembly most effectively by suggesting six proteins as targets for mutations or other hindering of their binding. Our results show that by blocking one out of this set of proteins, the association of other proteins is eventually reduced, thus reducing the translation efficiency even more. We could additionally determine the binding dependency of THX—a peptide not present in the ribosome of E. coli—and suggest its assembly path.  相似文献   

20.
Structure of the beta subunit of translational initiation factor eIF-2   总被引:13,自引:0,他引:13  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号