首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Colombia is the country with the largest number of bird species worldwide, yet its avifauna is seriously threatened by habitat degradation and poaching. We built a DNA barcode library of nearly half of the bird species listed in the CITES appendices for Colombia, thereby constructing a species identification reference that will help in global efforts for controlling illegal species trade. We obtained the COI barcode sequence of 151 species based on 281 samples, representing 46% of CITES bird species registered for Colombia. The species analysed belong to nine families, where Trochilidae and Psittacidae are the most abundant ones. We sequenced for the first time the DNA barcode of 47 species, mainly hummingbirds endemic of the Northern Andes region. We found a correct match between morphological and genetic identification for 86–92% of the species analysed, depending on the cluster analysis performed (BIN, ABGD and TaxonDNA). Additionally, we identified eleven cases of high intraspecific divergence based on K2P genetic distances (up to 14.61%) that could reflect cryptic diversity. In these cases, the specimens were collected in geographically distant sites such as different mountain systems, opposite flanks of the mountain or different elevations. Likewise, we found two cases of possible hybridization and incomplete lineage sorting. This survey constitutes the first attempt to build the DNA barcode library of endangered bird species in Colombia establishing as a reference for management programs of illegal species trade, and providing major insights of phylogeographic structure that can guide future taxonomic research.  相似文献   

2.
DNA barcoding was proposed in 2003, the Consortium for the Barcode of Life was established in 2004, and the movement has since attracted more than $80 million funding. Here we investigate how many species of multicellular animals have been barcoded. We compare the numbers in a public database (GenBank as of January 2012) with those in the Barcode of Life Database (BOLD) and find that GenBank contains COI (cytochrome c oxidase subunit 1) sequences for ca. 60 000 species while BOLD reports barcodes for ca. 150 000 species. The discrepancy is likely due to a large amount of unpublished data in BOLD. Overall, the species coverage remains sparse, growth rates are low, and the barcode accumulation curve for Metazoa is linear with only 4788 species having been added in 2011. In addition, the vast majority of species in the public database (73%) were barcoded by projects that are unlikely to be related to the DNA barcoding movement. Particularly surprising was the large number of DNA barcodes in GenBank that were not identified to species (Jan 2012: 74%), with insect barcodes often being identified only to order. Of these several hundred thousand have since been suppressed by NCBI because they did not satisfy the iBOL/GenBank early release agreement. Species coverage is considerably better for target taxa of DNA barcoding campaigns (e.g. birds, fishes, Lepidoptera), although it also falls short of published campaign targets. © The Willi Hennig Society 2012  相似文献   

3.
Surveys of larval diversity consistently increase biodiversity estimates when applied to poorly documented groups of marine invertebrates such as phoronids and hemichordates. However, it remains to be seen how helpful this approach is for detecting unsampled species in well‐studied groups. Echinoids represent a large, robust, well‐studied macrofauna, with low diversity and low incidence of cryptic species, making them an ideal test case for the efficacy of larval barcoding to discover diversity in such groups. We developed a reference dataset of DNA barcodes for the shallow‐water adult echinoids from both coasts of Panama and compared them to DNA sequences obtained from larvae collected primarily on the Caribbean coast of Panama. We sequenced mitochondrial cytochrome c oxidase subunit I (COI) for 43 species of adult sea urchins to expand the number and coverage of sequences available in GenBank. Sequences were successfully obtained for COI and 16S ribosomal DNA from 272 larvae and assigned to 17 operational taxonomic units (OTUs): 4 from the Pacific coast of Panama, where larvae were not sampled as intensively, and 13 from the Caribbean coast. Of these 17 OTUs, 13 were identified from comparisons with our adult sequences and belonged to species well documented in these regions. Another larva was identified from comparisons with unpublished sequences in the Barcode of Life Database (BOLD) as belonging to Pseudoboletia, a genus scarcely known in the Caribbean and previously unreported in Panama. Three OTUs remained unidentified. Based on larval morphology, at least two of these OTUs appeared to be spatangoids, which are difficult to collect and whose presence often goes undetected in standard surveys of benthic diversity. Despite its ability to capture unanticipated diversity, larval sampling failed to collect some species that are locally common along the Caribbean coast of Panama, such as Leodia sexiesperforata, Diadema antillarum, and Clypeaster rosaceus.  相似文献   

4.
This study examines the utility of morphology and DNA barcoding in species identification of freshwater fishes from north‐central Nigeria. We compared molecular data (mitochondrial cytochrome c oxidase subunit I (COI) sequences) of 136 de novo samples from 53 morphologically identified species alongside others in GenBank and BOLD databases. Using DNA sequence similarity‐based (≥97% cutoff) identification technique, 50 (94.30%) and 24 (45.30%) species were identified to species level using GenBank and BOLD databases, respectively. Furthermore, we identified cases of taxonomic problems in 26 (49.00%) morphologically identified species. There were also four (7.10%) cases of mismatch in DNA barcoding in which our query sequence in GenBank and BOLD showed a sequence match with different species names. Using DNA barcode reference data, we also identified four unknown fish samples collected from fishermen to species level. Our Neighbor‐joining (NJ) tree analysis recovers several intraspecific species clusters with strong bootstrap support (≥95%). Analysis uncovers two well‐supported lineages within Schilbe intermedius. The Bayesian phylogenetic analyses of Nigerian S. intermedius with others from GenBank recover four lineages. Evidence of genetic structuring is consistent with geographic regions of sub‐Saharan Africa. Thus, cryptic lineage diversity may illustrate species’ adaptive responses to local environmental conditions. Finally, our study underscores the importance of incorporating morphology and DNA barcoding in species identification. Although developing a complete DNA barcode reference library for Nigerian ichthyofauna will facilitate species identification and diversity studies, taxonomic revisions of DNA sequences submitted in databases alongside voucher specimens are necessary for a reliable taxonomic and diversity inventory.  相似文献   

5.
Despite 250 years of work in systematics, the majority of species remains to be identified. Rising extinction rates and the need for increased biological monitoring lend urgency to this task. DNA sequencing, with key sequences serving as a "barcode", has therefore been proposed as a technology that might expedite species identification. In particular, the mitochondrial cytochrome c oxidase subunit 1 gene has been employed as a possible DNA marker for species and a number of studies in a variety of taxa have accordingly been carried out to examine its efficacy. In general, these studies demonstrate that DNA barcoding resolves most species, although some taxa have proved intractable. In some studies, barcoding provided a means of highlighting potential cryptic, synonymous or extinct species as well as matching adults with immature specimens. Higher taxa, however, have not been resolved as accurately as species. Nonetheless, DNA barcoding appears to offer a means of identifying species and may become a standard tool.  相似文献   

6.
The genus Andrographis, belonging to the family Acanthaceae, contains several species of medicinal importance. Species, such as Andrographis alata, Andrographis echioides, Andrographis glandulosa, Andrographis lineata, Andrographis nallamalayana and Andrographis paniculata, with several bio-active compounds are being extensively used in folk medicine. However, difference of opinion exists with regard to inclusion of the species echioides into the genus Andrographis. The present study, using rbcL and matK sequences, for the first time established DNA barcodes for these six species. The nucleotide sequence of rbcL provided species-specific haplotypes for A. alata, A. lineata, and A. paniculata. Despite the differences with regard to nucleotide sequence, all the six species showed conserved amino acid sequence. However, all the six species showed distinct haplotypes in nucleotide sequence of matK and facilitated the identification and discrimination of these species. The phylogenetic tree generated with combined sequence of rbcL and matK revealed grouping of all the six species into a single clade confirming the positioning of the species echioides into the genus Andrographis.  相似文献   

7.
The past decade has seen a considerable rise in international concern regarding the conservation status of sharks and rays. The demand for highly prized shark commodities continues to fuel the international trade and gives fisheries incentive to use these resources, which have a low intrinsic capability to recover. Recognising the urgency for regulation, many countries voted to include more shark and ray species in the Appendices of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). However, the identification of fins in fisheries landings before they enter international trade is a major limitation for CITES compliance. This study reports the current performance of the iSharkFin system, a machine learning technology which aims to allow users to identify the species of a wet shark dorsal fin from its image. Photographs of 1147 wet dorsal fins from 39 shark species, collected in 12 countries, were used to train the algorithm over a four-year period. As new cohorts of images were used to test the performance of the learning algorithm, the accuracy of species assignments of known specimens was variable but did increase, reaching 85.3% and 59.1% at genus and species level respectively. The accuracy in predicting CITES-listed sharks versus unlisted sharks was 94.0% based on the 39 species currently represented in the baseline. Our results suggest that if supplied with high data inputs for specific fisheries assemblages and accompanied by user training, iSharkFin has promise for site-specific development as a rapid field identification tool in fisheries monitoring, and as a screening tool alongside traditional field morphology to detect potential CITES specimens for fisheries compliance and enforcement.  相似文献   

8.
We tested the effectiveness of four DNA barcoding markers (rbcL, matK, ITS and trnLF region) for land plants in identifying Calligonum species. High quality sequences were obtained for rbcL, matK and trnLF with the universal primers whereas ITS sequences were of poor quality. RbcL and matK were highly conservative and failed in species discrimination. When rbcL, matK and trnLF were combined, the species resolution was up to 6.25%. Low sequence variation resulted in poorly resolved tree topologies. Among the sixteen sampled species, only three were recovered as a monophyletic group. Our results show that although DNA barcoding is an important tool for species identification, it fails in discriminating Calligonum species. Further research will be needed to develop markers capable to discriminate species in this taxonomy complicated and recently diverged genus.  相似文献   

9.
The importance of Oreochromis in worldwide aquaculture and regional fisheries motivates the study of their genetic diversity in their native range. In this article, all mitochondrial cytochrome c oxidase subunit I gene (COI) sequences of Oreochromis species are retrieved from Barcode of Life Data system to quantify the available DNA barcoding information from wild individuals collected within the native ranges of the respective species. It is found that 70% of the known species in the genus still lack a COI barcode, and only 15% of the available sequences are from within the respective native ranges. Many of the available sequences have been produced from specimens acquired from aquaculture and introduced, naturalized populations, making the assessment of variation within the original native range challenging. Analyses of the wild-collected fraction of available sequences indicated the presence of cryptic lineages within Nile tilapia Oreochromis niloticus and O. schwebischi, the occurrence of potential introgressive hybridization between O. niloticus and blue tilapia O. aureus, and potential ancestral polymorphism between Karonga tilapia O. karongae and black tilapia O. placidus. This article also reports a case of misidentification of O. mweruensis as longfin tilapia O. macrochir. These results stress the importance of improving the knowledge of genetic variation within the native ranges of Oreochromis species for better-informed conservation of these natural resources.  相似文献   

10.
Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this 'DNA barcoding' initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the 'DNA barcoding' initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the 'DNA barcoding' initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings--Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of 'DNA barcoding'.  相似文献   

11.
DNA barcoding has become a promising means for identifying organisms of all life stages. Currently, phenetic approaches and tree-building methods have been used to define species boundaries and discover 'cryptic species'. However, a universal threshold of genetic distance values to distinguish taxonomic groups cannot be determined. As an alternative, DNA barcoding approaches can be 'character based', whereby species are identified through the presence or absence of discrete nucleotide substitutions (character states) within a DNA sequence. We demonstrate the potential of character-based DNA barcodes by analysing 833 odonate specimens from 103 localities belonging to 64 species. A total of 54 species and 22 genera could be discriminated reliably through unique combinations of character states within only one mitochondrial gene region (NADH dehydrogenase 1). Character-based DNA barcodes were further successfully established at a population level discriminating seven population-specific entities out of a total of 19 populations belonging to three species. Thus, for the first time, DNA barcodes have been found to identify entities below the species level that may constitute separate conservation units or even species units. Our findings suggest that character-based DNA barcoding can be a rapid and reliable means for (i) the assignment of unknown specimens to a taxonomic group, (ii) the exploration of diagnosability of conservation units, and (iii) complementing taxonomic identification systems.  相似文献   

12.
The genus Spondias belongs to the Anacardiaceae family, with about 18 species, having significant economic and social importance and with some species used in the agricultural industry, however, problems are encountered when trying to identify phylogenetic relationships among the species. The use of DNA barcoding is of importance to this group, allowing species identification at the molecular level and in determining the phylogenetic relationships within the group. The objective of this study is to obtain DNA barcoding and to determine the phylogenetic relationships among the species. For this, DNA from six species of the genus was extracted and amplified by PCR using sequences from the rbcL and matK genes and the trnH-psbA spacer gene, followed by sequencing using the Sanger method. The results show that the matK and rbcL genes cannot be used for DNA barcoding, because their discriminatory level between species is low. On the other hand, trnH-psbA shows a high level of discrimination, allowing most of the species to be identified. However it is not possible to separate Spondias venulosa and Spondias tuberosa. Phylogenetic analysis shows that Spondias mombim and S. tuberosa are distinct “umbucajá” clades, suggesting a non-hybrid origin for “umbucajá”.  相似文献   

13.
The arid Yilgarn region of Western Australia contains numerous subterranean calcrete aquifers with unique assemblages of obligate groundwater invertebrates (stygofauna). We aimed to establish a DNA barcoding framework for the macro-invertebrates present in a single calcrete, as a basis for future assessment of biodiversity of the Yilgarn calcretes and for investigating food webs. Intense sampling of a bore field grid in the Sturt Meadows calcrete was undertaken to obtain representatives of the entire macro-invertebrate ecosystem. A 623-bp fragment of the mitochondrial cytochrome c oxidase 1 (COI) gene was used to provide DNA barcodes for stygobiont macro-invertebrates plus terrestrial organisms that are found in the calcrete. Phylogenetic analyses revealed the existence of 12 divergent monophyletic groups of haplotypes. Subterranean amphipods (Chiltoniidae) showed three groups of COI haplotypes with sequence divergences between them of >11%. Allozyme analyses found a large number of fixed allelic differences between these three amphipod groups, indicating that there are three morphologically cryptic species within the Sturt Meadows calcrete. Unlike the sister triplet of dytiscid beetles present, the amphipods are not sister clades and are more closely related to other Yilgarn and non-Yilgarn amphipods than to each other. Our results show that the aquifer contains at least 12 macro-invertebrate species and DNA barcoding provides a useful means for discriminating species in this system.  相似文献   

14.
Wong LL  Peatman E  Lu J  Kucuktas H  He S  Zhou C  Na-nakorn U  Liu Z 《PloS one》2011,6(3):e17812
As the global market for fisheries and aquaculture products expands, mislabeling of these products has become a growing concern in the food safety arena. Molecular species identification techniques hold the potential for rapid, accurate assessment of proper labeling. Here we developed and evaluated DNA barcodes for use in differentiating United States domestic and imported catfish species. First, we sequenced 651 base-pair barcodes from the cytochrome oxidase I (COI) gene from individuals of 9 species (and an Ictalurid hybrid) of domestic and imported catfish in accordance with standard DNA barcoding protocols. These included domestic Ictalurid catfish, and representative imported species from the families of Clariidae and Pangasiidae. Alignment of individual sequences from within a given species revealed highly consistent barcodes (98% similarity on average). These alignments allowed the development and analyses of consensus barcode sequences for each species and comparison with limited sequences in public databases (GenBank and Barcode of Life Data Systems). Validation tests carried out in blinded studies and with commercially purchased catfish samples (both frozen and fresh) revealed the reliability of DNA barcoding for differentiating between these catfish species. The developed protocols and consensus barcodes are valuable resources as increasing market and governmental scrutiny is placed on catfish and other fisheries and aquaculture products labeling in the United States.  相似文献   

15.
Paired fins and associated internal structures of the epauletic sharkHemiscyllium ocellatum, were described on the basis of three specimens. A comparison with other genera showed the epaulette shark to be, characterized by two elongated basal cartilages articulating with a distally projecting articular condyle on the coracoid, a loosely separated radial series with an intermediate series, a levator pectoralis inferior muscle and an anterolaterally developed depressor pectoralis muscle in the pectoral fin, and an elongated anterior pelvic basal cartilage articulating with a distally projecting articular condyle and an anterolaterally developed depressor pelvicus muscle in the pelvic fin. In captivity, the sharks exhibited both upright and crawling behavior on the bottom by using the pectoral and pelvic fins and bending the body. The distinctive morphological characters are shared by otherHemiscyllium species and are suggested as important factors enabling their unique behavior associated with a complex coral reef habitat.  相似文献   

16.
<正>经过12年的发展,DNA条形码技术已经从最初的被怀疑批评转变为如今的被认可接受,科学家也从对该技术的观望转变为参与。DNA条形码技术(包括基因区域的确定、序列获取、数据库建设、鉴定算法等)虽然仍在不断完善中,但已经可用于解决实际问题。现在,DNA条形码技术到了一个新的转折期,即重点从技术探索转向实际应用。DNA条形码技术可被用于需要区分生物或确定物种名称的所有领域,在生态学、进化生物学和  相似文献   

17.
Alexandrium species can be very difficult to identify, with A. catenella, A. tamarense, and A. fundyense that compose “Alexandrium tamarense species complex” (Atama complex) as a distinct example. DNA barcoding is promising to offer a solution but remains to be established. In this study, we examined the utility of ITS in resolving the Atama species complex, by analyzing previously studied strains plus unstudied Chinese strains within the LSU- and SSU-rDNA based group/clade frameworks recently established. We further investigated the presence of intragenomic polymorphism and its implications in species delimitation. Similar to the previous SSU and LSU results, our ITS-based phylogenies divided the complex to five clusters, but with longer and evener branch lengths between the clusters. Based on the ITS region, the inter-cluster genetic distances (p = 0.134–0.216) were consistently and substantially greater than intra-cluster genetic distances (p = 0.000–0.066), with an average inter-cluster (species) distance (p = 0.167) 7.6-fold of the average intraspecific difference (p = 0.022), qualifying the approximately 510–520 bp ITS as a DNA barcode for Atama complex. We detected varying levels of intragenomic polymorphism in ITS but found that this did not impact the taxon-resolving power of this gene. With this DNA barcode, the new East and South China Sea strains and one Antarctic strain were placed in Clade IIC/Group IV, even though there were 7–10 polymorphic sites in their ITS, in contrast to none in SSU. Furthermore, our results suggest that the five clusters are recognizable as distinct species according to the phylogenetic species concept. Based on the phylogenetic placements of the type-locality strains of the existing three morphospecies and the dominant localities of other strains, we propose that Group I/Clade I be designated as A. fundyense, Group III/Clade IIB as A. tamarense, Group IV/Clade IIC as A. catenella, Group II/Clade IIA as A. mediterranis, and Group V/Clade IID as A. australis.  相似文献   

18.
Birds are a taxonomically well-described group of animals, yet DNA barcoding, i.e., the molecular characterization of species using a standardized genetic marker, has revealed unexpected patterns of genetic divergences among North American birds. We performed a comprehensive COI (cytochrome c oxidase subunit I) barcode survey of 296 species of Scandinavian birds, and compared genetic divergences among 78 trans-Atlantic species whose breeding ranges include both Scandinavia and North America. Ninety-four percent of the Scandinavian species showed unique barcode clusters; the remaining 6% had overlapping barcodes with one or more congeneric species, which may reflect incomplete lineage sorting or a single gene pool. Four species showed large intra-specific divergences within Scandinavia, despite no apparent morphological differentiation or indications of reproductive isolation. These cases may reflect admixture of previously isolated lineages, and may thus warrant more comprehensive phylogeographic analyses. Nineteen (24%) of 78 trans-Atlantic species exhibited divergent genetic clusters which correspond with regional subspecies. Three of these trans-Atlantic divergences were paraphyletic. Our study demonstrates the effectiveness of COI barcodes for identifying Scandinavian birds and highlights taxa for taxonomic review. The standardized DNA barcoding approach amplified the power of our regional studies by enabling independently obtained datasets to be merged with the established avian barcode library.  相似文献   

19.
水螅水母类是浮游动物群落的重要组成部分,在近岸海洋生态系统物质循环和能量流动中扮演着重要角色。水螅水母类形态结构简单,但其物种的准确鉴定一直是分类工作中的难点。DNA条形码极大地促进了水螅水母物种的快速、准确鉴定。本研究扩增了北部湾北部28种水螅水母的线粒体COI和16S序列,分别为92条和116条;比较了2个基因片段的种内、种间K2P(Kimura 2-parameter)遗传距离;构建了基于这2个基因片段的系统发育邻接树(neighbor-joining phylogenetic tree);并结合矢量分析构建了Klee-diagram图。结果显示:COI序列的种内遗传距离为0.008±0.005(0–0.033),种间遗传距离为0.298±0.128(0.092–0.597);16S序列的种内遗传距离为0.006±0.010(0–0.047),种间遗传距离为0.394±0.195(0.068–0.898)。2个基因序列在所调查种类中,种内遗传差异均小于种间遗传差异,存在明显的条形码间隔(barcoding gap)。基于2个基因片段的NJ树均显示,单种所有个体都位于同一独立分枝。研究结果表明,以COI和16S作为DNA条形码均能对北部湾北部常见水螅水母类进行物种鉴定。  相似文献   

20.
Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation-especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号