首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Properties of ground surfaces condition locomotion, and quality of track surfaces is believed to be involved in the pathogenesis of many musculoskeletal injuries in the horse. Measuring ground reaction forces (GRF) is an interesting approach to assess those interactions. Forceplates are the most commonly used but they are not well suited to compare different ground surfaces at fast gaits. Embarked equipment, fixed under the horse's hoof, would allow force measurement on any track. The objective of this work was (1) to design a device which enables the measurement of 3-D GRF on any ground, at any gait, for a given subject, (2) to determine its accuracy, and (3) to evaluate its performance and usefulness under physiological conditions. The resulting dynamometric horseshoe was composed of 4 piezoelectric sensors sandwiched between 2 aluminium plates designed at the shape of an equine shoe. The measurements, evaluated after a quasi-static calibration, revealed that the root mean square error was 1.3% in the normal direction, and 3.1% in the transversal direction. In vivo tests at the walk and trot in straight line and at the trot on circles, were conducted on 3 different ground surfaces. The results demonstrate that this dynamometric horseshoe is well suited to study the effects of different ground surfaces on GRF in the moving horse.  相似文献   

2.
A dynamometric hubset that measures the two ground contact force components acting on a bicycle wheel in the plane of the bicycle during off-road riding while either coasting or braking was designed, constructed, and evaluated. To maintain compatibility with standard mountain bike construction, the hubs use commercially available shells with modified, strain gage-equipped axles. The axle strain gages are sensitive to forces acting in the radial and tangential directions, while minimizing sensitivity to transverse forces, steering moments, and variations in the lateral location of the center of pressure. Static calibration and a subsequent accuracy check that computed differences between applied and apparent loads developed during coasting revealed root mean squared errors of 1 percent full-scale or less (full-scale load = 4500 N). The natural frequency of the rear hub with the wheel attached exceeded 350 Hz. These performance capabilities make the dynamometer useful for its intended purpose during coasting. To demonstrate this usefulness, sample ground contact forces are presented for a subject who coasted downhill over rough terrain. The dynamometric hubset can also be used to determine ground contact forces during braking providing that the brake reaction force components are known. However, compliance of the fork can lead to high cross-sensitivity and corresponding large (> 5 percent FS) measurement errors at the front wheel.  相似文献   

3.
The objective of this study was to evaluate two calibration methods for the "Arthroscopically Implantable Force Probe" (AIFP) that are potentially suitable for in vivo use: (1) a direct, experimentally based method performed by applying a tensile load directly to the graft after it is harvested but prior to implantation (the "pre-implantation" technique), and (2) an indirect method that utilizes cadaver-based analytical expressions to transform the AIFP output versus anterior shear load relationship, which may be established in vivo, to resultant graft load (the "post-implantation" technique). The AIFP outputs during anterior shear loading of the knee joint using these two calibration methods were compared directly to graft force measurements using a ligament cutting protocol and a 6 DOF load cell. The mean percent error (actual-measured)/(actual)* 100) associated with the pre-implantation calibration ranged between 85 and 175 percent, and was dependent on the knee flexion angle tested. The percent error associated with the post-implantation technique was evaluated in two load ranges: loads less than 40 N, and loads greater than 40 N. For graft force values greater than 40 N, the mean percent errors inherent to the post-implantation calibration method ranged between 20 and 29 percent, depending on the knee flexion angle tested. Below 40 N, these errors were substantially greater. Of the two calibration methods evaluated, the post-implantation approach provided a better estimate of the ACL graft force than the pre-implantation technique. However, the errors for the post-implantation approach were still high and suggested that caution should be employed when using implantable force probes for in vivo measurement of ACL graft forces.  相似文献   

4.
The objective of this study was to devise a method of kinetic analysis of the ground reaction force that enables the durations and magnitudes of forces acting during the individual phases of ski turns to be described exactly. The method is based on a theoretical analysis of physical forces acting during the ski turn. Two elementary phases were defined: (1) preparing to turn (initiation) and (2) actual turning, during which the center of gravity of the skier-ski system moves along a curvilinear trajectory (steering). The starting point of the turn analysis is a dynamometric record of the resultant acting ground reaction force applied perpendicularly on the ski surface. The method was applied to six expert skiers. They completed a slalom course comprising five gates arranged on the fall line of a 26° slope at a competition speed using symmetrical carving turns (30 evaluated turns). A dynamometric measurement system was placed on the carving skis (168 cm long, radius 16 m, data were recorded at 100 Hz). MATLAB procedures were used to evaluate eight variables during each turn: five time variables and three force variables. Comparison of the turn analysis results between individuals showed that the method is useful for answering various research questions associated with ski turns.  相似文献   

5.
Objective measurement of weight bearing during a long-term period can give insight into the postoperative loading of the lower extremity of orthopedic patients to avoid complications. This study investigated the validity of vertical ground reaction force measurements during a long-term period using the Pedar Mobile insole pressure system, by comparing it with a Kistler force platform. In addition, the validity of a new sensor drift correction algorithm to correct for offset drift in the Pedar signal was evaluated. Ground reaction force data were collected during dynamic and static conditions from five healthy subjects every hour for 7 h. A mean offset drift of 14.6% was found after 7 h. After applying the drift correction algorithm the Pedar system showed a high accuracy for the second peak in the ground reaction force-time curve (1.1 to 3.4% difference, p>0.05) and step duration (-2.0 to 4.4% difference, p>0.05). Less accuracy was found for the first peak in the ground reaction force-time curve (5.2 to 12.0% difference; p<0.05 for the first 3 h, p>0.05 for the last 4 h) and, consequently, in the vertical force impulse (5.5 to 11.0% difference, p>0.05). The Pedar Mobile system appeared to be a valid instrument to measure the vertical force during a long-term period when using the drift correction program described in this study.  相似文献   

6.
In-vivo tendon forces are commonly measured using transducers, which detect tension in the tendon fibers. A poorly understood source of measurement errors is the difference in stress distribution within the tendon between experimental and transducer calibration conditions. The objective of this study was to investigate this source of error, and to determine whether these errors could be minimized by proper selection of transducer size. The study was conducted using the infrapatellar ligament (patellar tendon) of New Zealand White rabbits. Tendon force was measured with two different size implantable force transducers (IFTs), one Wide and one Narrow, and by a strain gaged load cell in series with the tendon. Tests were conducted at five different loading conditions selected to produce five different stress distributions within the tendon. One loading condition corresponded to a typical post-experiment calibration, and the data from that condition were used to develop a calibration equation for the transducer. The errors that resulted from using this calibration were determined by comparing the tendon force measured by the in-series load cell with the force predicted from the IFT output using the calibration equation. Changes in stress distribution produced measurement errors up to 64 N with the Narrow IFT but only 24 N with the Wide IFT. We found the measurement error was dependent on sensor width. Our results support the hypothesis that measurement errors can be caused by differences in tendon stress distribution between calibration and experimental conditions. We further showed that these errors can be minimized by using an IFT, which samples the tension in a large percentage of the tendon fibers. Information from this study can be used for selection of an appropriately sized implantable force transducer for measuring tendon and ligament force.  相似文献   

7.
People throughout Asia use springy bamboo poles to carry the loads of everyday life. These poles are a very compliant suspension system that allows the load to move along a nearly horizontal path while the person bounces up and down with each step. Could this be an economical way to carry loads inasmuch as no gravitational work has to be done to lift the load repeatedly? To find out, an experiment was conducted in which four male subjects ran at 3.0 m/s on a motorized treadmill with no load and while carrying a load equal to 19% body wt with compliant poles. Oxygen consumption rate, vertical ground reaction force, and the force exerted by the load on the shoulders were measured. Oxygen consumption rate increased by 22%. The same increase has previously been observed when loads are carried with a backpack. Thus compliant poles are not a particularly economical method of load carriage. However, pole suspension systems offer important advantages: they minimize peak shoulder forces and loading rates. In addition, the peak vertical ground reaction force is only slightly increased above unloaded levels when loads are carried with poles.  相似文献   

8.
This study examined the changes in peak power, ground reaction force and velocity with different loads during the performance of the parallel squat movement. Twelve experienced male lifters (26.83 +/- 4.67 years of age) performed the standard parallel squat, using loads equal to 20, 30, 40, 50, 60, 70, 80, and 90% of 1 repetition maximum (1RM). Each subject performed all parallel squats with as much explosiveness as possible using his own technique. Peak power (PP), peak ground reaction force (PGRF), peak barbell velocity (PV), force at the time of PP (FPP), and velocity at the time of PP (VPP) were determined from force, velocity, and power curves calculated using barbell velocity and ground reaction force data. No significant differences were detected among loads for PP; however, the greatest PP values were associated with loads of 40 and 50% of 1RM. Higher loads produced greater PGRF and FPP values than lower loads (p < 0.05) in all cases except between loads equal to 60-50, 50-40, and 40-30% of 1RM for PGRF, and between loads equal to 70-60 and 60-50% of 1RM for FPP. Higher loads produced lower PV and VPP values than lower loads (p < 0.05) in all cases except between the 20-30, 70-80, and 80-90% of 1RM conditions. These results may be helpful in determining loads when prescribing need-specific training protocols targeting different areas of the load-velocity continuum.  相似文献   

9.
This report describes new treadmill ergometer designed to measure the vertical and horizontal ground reaction forces produced by the left and right legs during walking. It was validated by static and dynamic tests. Non-linearity was from 0.2% (left vertical force) to 1.4% (right antero-posterior force). The resonance frequency was from 219 (right vertical direction) to 58 Hz (left medio-lateral direction). A calibration "leg", an air jack in series with a strain gauge, was developed and used to produce force signals comparable to those obtained during human locomotion. The mean differences between the force measured by the calibration leg and treadmill ergometer at 5 km h(-1) were 3.7 N (0.7%) for the left side and 6.5 N (1.2%) for the right. Measurements obtained during human walking showed that the treadmill ergometer has considerable potential for analysing human gait.  相似文献   

10.
This study determined in-vitro anterior cruciate ligament (ACL) force patterns and investigated the effect of external tibial loads on the ACL force patterns during simulated weight-bearing knee flexions. Nine human cadaveric knee specimens were mounted on a dynamic knee simulator, and weight-bearing knee flexions with a 100N of ground reaction force were simulated; while a robotic/universal force sensor (UFS) system was used to provide external tibial loads during the movement. Three external tibial loading conditions were simulated, including no external tibial load (termed BW only), a 50N anterior tibial force (ATF), and a 5Nm internal rotation tibial torque (ITT). The tibial and femoral kinematics was measured with an ultrasonic motion capture system. These movement paths were then accurately reproduced on a robotic testing system, and the in-situ force in the ACL was determined via the principle of superposition. The results showed that the ATF significantly increased the in-situ ACL force by up to 60% during 0-55 degrees of flexion, while the ITT did not. The magnitude of ACL forces decreased with increasing flexion angle for all loading conditions. The tibial anterior translation was not affected by the application of ATF, whereas the tibial internal rotation was significantly increased by the application of ITT. These data indicate that, in a weight-bearing knee flexion, ACL provides substantial resistance to the externally applied ATF but not to the ITT.  相似文献   

11.
We tested the validity of an instrumented treadmill dynamometer for measuring maximal propulsive power during sprint running, and sought to verify whether this could be done over one single sprint, as shown during sprint cycling. The treadmill dynamometer modified towards sprint use (constant motor torque) allows vertical and horizontal forces to be measured at the same location as velocity, i.e. at the foot, which is novel compared to existing methods in which power is computed as the product of belt velocity and horizontal force measured by transducers placed in the tethering system. Twelve males performed 6 s sprints against default, high and low loads set from the motor torque necessary to overcome the friction due to subjects’ weight on the belt (default load), and 20% higher and lower motor torque values. Horizontal ground reaction force, belt velocity, propulsive power and linear force–velocity relationships were compared between the default load condition and when taking all conditions together. Force and velocity traces and values were reproducible and consistent with the literature, and no significant difference was found between maximal power and force–velocity relationships obtained in the default load condition only vs. adding data from all conditions. The presented method allows one to measure maximal propulsive power and calculate linear force–velocity relationships from one single sprint data. The main novelties are that both force and velocity are measured at the same location, and that instantaneous values are averaged over one contact period, and not over a constant arbitrary time-window.  相似文献   

12.
Pattern of anterior cruciate ligament force in normal walking   总被引:6,自引:0,他引:6  
The goal of this study was to calculate and explain the pattern of anterior cruciate ligament (ACL) loading during normal level walking. Knee-ligament forces were obtained by a two-step procedure. First, a three-dimensional (3D) model of the whole body was used together with dynamic optimization theory to calculate body-segmental motions, ground reaction forces, and leg-muscle forces for one cycle of gait. Joint angles, ground reaction forces, and muscle forces obtained from the gait simulation were then input into a musculoskeletal model of the lower limb that incorporated a 3D model of the knee. The relative positions of the femur, tibia, and patella and the forces induced in the knee ligaments were found by solving a static equilibrium problem at each instant during the simulated gait cycle. The model simulation predicted that the ACL bears load throughout stance. Peak force in the ACL (303 N) occurred at the beginning of single-leg stance (i.e., contralateral toe off). The pattern of ACL force was explained by the shear forces acting at the knee. The balance of muscle forces, ground reaction forces, and joint contact forces applied to the leg determined the magnitude and direction of the total shear force acting at the knee. The ACL was loaded whenever the total shear force pointed anteriorly. In early stance, the anterior shear force from the patellar tendon dominated the total shear force applied to the leg, and so maximum force was transmitted to the ACL at this time. ACL force was small in late stance because the anterior shear forces supplied by the patellar tendon, gastrocnemius, and tibiofemoral contact were nearly balanced by the posterior component of the ground reaction.  相似文献   

13.
Research has identified that the optimal power load for static squat jumps (with no countermovement) is lower than the loads usually recommended for power training. Lower loads may permit the performance of additional repetitions before the onset of fatigue compared with heavier loads; therefore, the aim of this study was to determine the point of fatigue during squat jumps at various loads (0, 20, 40, 60% 1-repetition maximum [1RM]). Seventeen professional rugby league players performed sets of 6 squat jumps (with no countermovement), using 4 loading conditions (0, 20, 40, and 60% of 1RM back squat). Repeated measures analysis of variance revealed no significant differences (p > 0.05) in force, velocity, power, and displacement between repetitions, for the 0, 20, and 40% loading conditions. The 60% condition showed no significant difference (p > 0.05) in peak force between repetitions; however, velocity (1.12 + 0.10 and 1.18 + 0.11 m·s(-1)), power (3,385 + 343 and 3,617 + 396 W) and displacement (11.13 + 2.31 and 11.85 + 2.16 cm) were significantly (p < 0.02) lower during repetition 6 compared with repetition 2. These findings indicate that when performing squat jumps (with no countermovement) with a load <40% 1RM back squat, up to >6 repetitions can be completed without inducing fatigue and a minimum of 4-6 repetitions should be performed to achieve peak power output. When performing squat jumps (with no countermovement) with a load equal to the 60% 1RM only, 5 repetitions should be performed to minimize fatigue and ensure maintenance of velocity and power.  相似文献   

14.
This study presented a method to estimate the complete ground reaction forces from pressure insoles in walking. Five male subjects performed 10 walking trials in a laboratory. The complete ground reaction forces were collected during a right foot stride by a force plate at 1000Hz. Simultaneous plantar pressure data were collected at 100Hz by a pressure insole system with 99 sensors covering the whole plantar area. Stepwise linear regressions were performed to individually reconstruct the complete ground reaction forces in three directions from the 99 individual pressure data until redundancy among the predictors occurred. An additional linear regression was performed to reconstruct the vertical ground reaction force by the sum of the value of the 99 pressure sensors. Five other subjects performed the same walking test for validation. Estimated ground reaction forces in three directions were calculated with the developed regression models, and were compared with the real data recorded from force plate. Accuracy was represented by the correlation coefficient and the root mean square error. Results showed very good correlation in anterior-posterior (0.928) and vertical (0.989) directions, and reasonable correlation in medial-lateral direction (0.719). The root mean square error was about 12%, 5% and 28% of the peak recorded value. Future studies should aim to generalize the methods or to establish specific methods to other subjects, patients, motions, footwear and floor conditions. The method gives an extra option to study an estimation of the complete ground reaction forces in any environment without the constraints from the number and location of force plates.  相似文献   

15.
Training at the optimal load for peak power output (PPO) has been proposed as a method for enhancing power output, although others argue that the force, velocity, and PPO are of interest across the full range of loads. The aim of this study was to examine the influence of load on PPO, peak barbell velocity (BV), and peak vertical ground reaction force (VGRF) during the jump squat (JS) in a group of professional rugby players. Eleven male professional rugby players (age, 26 ± 3 years; height, 1.83 ± 6.12 m; mass, 97.3 ± 11.6 kg) performed loaded JS at loads of 20-100% of 1 repetition maximum (1RM) JS. A force plate and linear position transducer, with a mechanical braking unit, were used to measure PPO, VGRF, and BV. Load had very large significant effects on PPO (p < 0.001, partial η2 = 0.915); peak VGRF (p < 0.001, partial η2 = 0.854); and peak BV (p < 0.001, partial η2 = 0.973). The PPO and peak BV were the highest at 20% 1RM, though PPO was not significantly greater than that at 30% 1RM. The peak VGRF was significantly greater at 1RM than all other loads, with no significant difference between 20 and 60% 1RM. In resistance trained professional rugby players, the optimal load for eliciting PPO during the loaded JS in the range measured occurs at 20% 1RM JS, with decreases in PPO and BV, and increases in VGRF, as the load is increased, although greater PPO likely occurs without any additional load.  相似文献   

16.
Serial manipulators are often used in biomechanical testing of human joints because they are precise, repeatable instruments that can create interesting loading scenarios. Unfortunately, commercial serial manipulators often do not have acceptable global positional accuracy due to manufacturing tolerances, assembly errors, and other mechanical imperfections. Numerous calibration methods have been reported which calibrate geometric and non-geometric parameters to reduce static position errors under constant loading conditions. However, the manipulator's global accuracy during continuous motion with time-varying external loading conditions is often not addressed but is necessary for joint biomechanical testing. Using the Mitsubishi PA10-6CE as a case study, a novel functional calibration procedure was developed that performs both static and dynamic calibration. The calibration uses optimization techniques to populate a 34-parameter model that accounts for the robot's geometric and non-geometric parameters and significantly reduces the mean/peak static and dynamic position errors to 0.368/0.67 mm and 0.353/0.81 mm, respectively, while externally loaded.  相似文献   

17.
A new six-degree-of-freedom force transducer has been manufactured, with the sensitivity to measure forces in the range +/-100 N and moments of up to +/-5 Nm. The transducer incorporates two mechanical components: shear forces and bending moments are measured via a strain-gauged tubular section whilst axial forces are transmitted to a cantilevered load cell. Both components are instrumented with 350 ohms strain gauge full bridge circuits and are temperature compensated. After calibration, measurement errors are less than +/-0.3 N for direct forces and +/-0.03 Nm for applied moments. In order to measure sub-maximal finger loads during activities of daily living, the transducer has been incorporated into several housings representing objects in domestic use: a jar, a tap, a key in a lock and a jug kettle.  相似文献   

18.
Bench press throws are commonly used in the assessment of upper-body power and are often performed on a Smith machine that uses a counterbalance weight to reduce the net load on the barbell. The use of a counterbalanced Smith machine was recently shown to reduce performance measures, but the mechanisms for this reduction have not been established. The purpose of this study was to determine the underlying physiological and biomechanical causes of the reduced performance measures found when using a counterbalanced Smith machine. Twenty-four men (mean ± SE: age, 23 ± 1 years; weight, 91.0 ± 3.5 kg; height, 178.9 ± 1.2 cm) performed Smith machine bench press throws at 30% of 1-repetition maximum under 4 conditions: (a) rebound movement and counterbalance, (b) rebound movement and no counterbalance, (c) concentric-only movement and counterbalance, and (d) concentric-only movement and no counterbalance. Peak power, peak force, and peak concentric and eccentric velocities were measured using a linear accelerometer, and peak ground reaction force was measured using a force plate. The counterbalance condition produced significantly (p < 0.05) lower peak accelerometer-based force (-21.2 and -17.0% for rebound and concentric-only bench press throws, respectively) but increased peak ground reaction force (5.3 and 3.2%). The discrepancy between changes in peak accelerometer-based force and peak ground reaction force suggests that an increase in net external load occurred during the movement. For performance testing of explosive movements, the use of a counterbalance system results in an underestimation of performance capability, likely because of an increase in the net external load during the concentric phase. Therefore, a counterbalance system should not be used for explosive movement performance testing.  相似文献   

19.
It is interesting to ascertain the adaptive reaction of rat neuromuscular junctions (NMJ) of muscle fibers of different types to a chronic physical load. We examined ultrastructural changes in NMJ following both static load (pre- and postnatal ontogenesis of Wistar rats till a 2 month age took place under a constant rotation on the centrifuge at hypergravity conditions 2G), and after three kinds of dynamic loads (1/run on treadmill with a speed 35 m/min for 6 wks, 10-60 min/day; 2/swimmings, each 10 hrs/day for 10 days; 3/strength exercises on a vertical treadmill with load for 6 wks). Differences in NMJ reaction of muscle fibers of the same type to various loads were established. A low secretory activity of axonal terminals of type I muscle fibers of m. soleus was shown after the static load. The dynamic load (run) is accompanied with a high secretory activity of axonal terminals in m. soleus type I muscle fibers and of some axonal terminals of m. quadriceps femoris IIB type muscle fibers after strength exercises; the secretory activity of axonal terminals of m. quadriceps femoris IIA and IIB types muscle fibers is expressed in a lesser degree after swimming. The NMJ ultrastructure remodelling (terminal renewal) of type I muscle fibers of the 2 month old control rats increases after static and dynamic (run) loads. Some correlations between different kinds of physical load, muscle fiber type and the degree of NMJ ultrastructure transformation have been shown.  相似文献   

20.
Small knee flexion angle during landing has been proposed as a potential risk factor for sustaining noncontact ACL injury. A brace that promotes increased knee flexion and decreased posterior ground reaction force during landing may prove to be advantageous for developing prevention strategies. Forty male and forty female recreational athletes were recruited. Three-dimensional videographic and ground reaction force data in a stop-jump task were collected in three conditions. Knee flexion angle at peak posterior ground reaction force, peak posterior ground reaction force, the horizontal velocity of approach run, the vertical velocity at takeoff, and the knee flexion angle at takeoff were compared among conditions: knee extension constraint brace, nonconstraint brace, and no brace. The knee extension constraint brace significantly increased knee flexion angle at peak posterior ground reaction force. Both knee extension constraint brace and nonconstraint brace significantly decreased peak posterior ground reaction force during landing. The brace and knee extension constraint did not significantly affect the horizontal velocity of approach run, the vertical velocity at takeoff, and the knee flexion angle at takeoff. A knee extension constraint brace exhibits the ability to modify the knee flexion angle at peak posterior ground reaction force and peak posterior ground reaction force during landing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号