首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was designed to investigate whether administration of indomethacin (IMC), a non-selective cyclooxygenase (COX-1 and COX-2) inhibitor, and Rofecoxib, a highly selective COX-2 inhibitor, affect the regulation of regional cerebral blood flow response evoked by somatosensory activation (evoked rCBF). IMC and Rofecoxib were applied intravenously (6.25 and 3 mg/kg/hr, respectively). Somatosensory activation was induced by electrical hind paw stimuli of 0.2, 1, and 5 Hz (5-sec duration, 1.5 mA). The evoked rCBF was measured in alpha-chloralose anesthetized rats using laser-Doppler flowmetry. Before and after drug application, the evoked rCBF showed a frequency-dependent increase in the range of 0.2-5 Hz stimulation. IMC reduced significantly (about 50%-60%) evoked rCBF in response to all frequencies of hind paw stimulation (P< 0.05). Rofecoxib reduced significantly (about 50%) evoked rCBF in response to 1 and 5 Hz stimulation (P< 0.05), but did not affect evoked rCBF at 0.2 Hz. After IMC or Rofecoxib application, the normalized evoked rCBF curves peaked earlier as compared with that before their application (P< 0.05), although the rise time of 0.5 sec was nearly constant regardless of the stimulus frequency. The termination time of evoked rCBF curves was changed significantly after IMC application at 0.2 Hz stimulation (P< 0.05), but was not affected after Rofecoxib application. Neither COX inhibitor significantly affected the baseline level of CBF. The results suggest a participation of COX products in the regulation of evoked rCBF in response to somatosensory stimulation in the brain.  相似文献   

2.
Evoked neural activity (ensemble single-unit activity and evoked field potential) and functional magnetic resonance imaging (fMRI) changes of the primary somatosensory cortex in response to electrical stimulation of the hind paw were studied in rats under anesthesia. The effects of stimulation frequency (ranging from 0.3 to 10 Hz) and types of anesthetics (alpha-chloralose and sodium pentobarbital) on blood oxygen level dependent (BOLD) activation and neural activation were compared. Both ensemble single-unit activity and BOLD signal changes achieved maximal activation at 3 Hz of stimulation and responses were significantly stronger under alpha-chloralose anesthesia. The maximal activation of the integral evoked potential (sigmaEP), in contrast, was the highest at 10 Hz; and the values were similar for alpha-chloralose and pentobarbital. These analyses revealed that fMRI image changes were better correlated with ensemble single-unit activity than with sigmaEP during somatosensory stimulations.  相似文献   

3.
We investigated the role of parasympathetic reflex vasodilation in the regulation of the cerebral hemodynamics, and whether GABAA receptors modulate the response. We examined the effects of activation of the parasympathetic fibers through trigeminal afferent inputs on blood flow in the internal carotid artery (ICABF) and the cerebral blood vessels (rCBF) in parietal cortex in urethane-anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve (LN) elicited intensity- and frequency-dependent increases in ICABF that were independent of changes in external carotid artery blood flow. Increases in ICABF were elicited by LN stimulation regardless of the presence or absence of sympathetic innervation. The ICABF increases evoked by LN stimulation were almost abolished by the intravenous administration of hexamethonium (10 mg kg?1) and were reduced significantly by atropine administration (0.1 mg kg?1). Although the LN stimulation alone had no significant effect on rCBF, LN stimulation in combination with a blocker of the GABAA receptor pentylenetetrazole increased the rCBF markedly. This increase in rCBF was reduced significantly by the administration of hexamethonium and atropine. These observations indicate that the increases in both ICABF and rCBF are evoked by parasympathetic activation via the trigeminal-mediated reflex. The rCBF increase evoked by LN stimulation is thought to be limited by the GABAA receptors in the central nervous system. These results suggest that the parasympathetic reflex vasodilation and its modulation mediated by GABA receptors within synaptic transmission in the brainstem are involved in the regulation of the cerebral hemodynamics during trigeminal afferent inputs.  相似文献   

4.
We observed changes in the local cerebral blood flow (LCBF), red blood cell (RBC) concentration and RBC velocity in alpha-chloralose anesthetized rats using laser-Doppler flowmetry during activation of the somatosensory cortex following electrical stimulation of the hind paw under hyperoxia (PaO(2)=513.5+/-48.4 mmHg; mean+/-S.D.) and normoxia (PaO(2)=106.4+/-8.4 mmHg). Electrical stimuli of 5 and 10 Hz (pulse width 0.1 ms) with an intensity of 1.5 mA were applied for 5 s (n=13 at 5 Hz, n=9 at 10 Hz). Baseline levels of LCBF and RBC concentration under hyperoxia were, respectively, 5.6+/-3.3 and 8.8+/-3.0% lower than those under normoxia (P<0.05), and that of RBC velocity under hyperoxia was slightly higher than that under normoxia (NS), suggesting mild vasoconstriction at rest under hyperoxia. At 5 Hz stimulation, after normalization to each baseline level, normalized response magnitudes of LCBF, RBC concentration and RBC velocity under hyperoxia were, respectively, 68.2+/-48.0, 71.1+/-65.5 and 66.0+/-56.3% greater than those under normoxia (P<0.05). At 10-Hz stimulation, normalized response magnitudes of LCBF and RBC concentration under hyperoxia were, respectively, 44.6+/-32.0 and 55.9+/-43.5% greater than those under normoxia (P<0.05), although a significant difference in the normalized response magnitude of RBC velocity was not detected between both conditions. The evoked LCBF under hyperoxia increased earlier, by approximately 0.15 s, than that under normoxia regardless of the stimulus frequency (P<0.05). These results suggest the involvement of oxygen interaction on the regulation of LCBF during neuronal activation.  相似文献   

5.
BACKGROUND: The correlation between regional changes in neuronal activity and changes in hemodynamics is a major issue for noninvasive neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared optical imaging (NIOI). A tight coupling of these changes has been assumed to elucidate brain function from data obtained with those techniques. In the present study, we investigated the relationship between neuronal activity and hemodynamic responses in the occipital cortex of humans during visual stimulation and in the somatosensory cortex of rats during peripheral nerve stimulation. METHODS: The temporal frequency dependence of macroscopic hemodynamic responses on visual stimuli was investigated in the occipital cortex of humans by simultaneous measurements made using fMRI and NIOI. The stimulus-intensity dependence of both microscopic hemodynamic changes and changes in neuronal activity in response to peripheral nerve stimulation was investigated in animal models by analyzing membrane potential (fluorescence), hemodynamic parameters (visible spectra and laser-Doppler flowmetry), and vessel diameter (image analyzer). RESULTS: Above a certain level of stimulus-intensity, increases in regional cerebral blood flow (rCBF) were accompanied by a decrease in regional cerebral blood volume (rCBV), i.e., dissociation of rCBF and rCBV responses occurred in both the human and animal experiments. Furthermore, the animal experiments revealed that the distribution of increased rCBF and O2 spread well beyond the area of neuronal activation, and that the increases showed saturation in the activated area. CONCLUSIONS: These results suggest that above a certain level of neuronal activity, a regulatory mechanism between regional cerebral blood flow (rCBF) and rCBV acts to prevent excess O2 inflow into the focally activated area.  相似文献   

6.
We investigated whether angiotensin II (ANG II), a peptide that plays a central role in the genesis of hypertension, alters the coupling between synaptic activity and cerebral blood flow (CBF), a critical homeostatic mechanism that assures adequate cerebral perfusion to active brain regions. The somatosensory cortex was activated by stroking the facial whiskers in anesthetized C57BL/6J mice while local CBF was recorded by laser-Doppler flowmetry. Intravenous ANG II infusion (0.25 mug.kg-1.min-1) increased mean arterial pressure (MAP) from 82 +/- 2 to 102 +/- 3 mmHg (P < 0.05) without affecting resting CBF (P > 0.05). ANG II attenuated the CBF increase produced by whisker stimulation by 65% (P < 0.05) but did not affect the response to hypercapnia or to neocortical application of the nitric oxide donor S-nitroso-N-acetyl penicillamine (P > 0.05). The effect of ANG II on functional hyperemia persisted if the elevation in MAP was offset by controlled hemorrhage or prevented by topical application of the peptide to the activated cortex. ANG II did not reduce the amplitude of the P1 wave of the field potentials evoked by whisker stimulation (P > 0.05). Infusion of phenylephrine increased MAP (P > 0.05 from ANG II) but did not alter the functional hyperemic response (P > 0.05). The data suggest that ANG II alters the coupling between CBF and neural activity. The mechanisms of the effect are not related to the elevation in MAP and/or to inhibition of the synaptic activity evoked by whisker stimulation. The imbalance between CBF and neural activity induced by ANG II may alter the homeostasis of the neuronal microenvironment and contribute to brain dysfunction during ANG II-induced hypertension.  相似文献   

7.
The aim of this study was to estimate the timing (latency) of the increase in red blood cell (RBC) velocity and RBC concentration, and the magnitude of response in local cerebral blood flow (LCBF) for neuronal activation. We measured LCBF change during activation of the somatosensory cortex by direct microelectrical stimulation. Electrical stimuli of 5, 10 and 50 Hz of 1 ms pulse with 10-15 microA, were given for 5 s. LCBF, RBC velocity and RBC concentration were monitored by laser-Doppler flowmetry (LDF) in alpha-chloralose anesthetized rats (n = 7). LCBF, RBC velocity and RBC concentration increased nearly proportionally to stimulus frequency, i.e. neuronal activity. LCBF rose approximately 0.5 s after the onset of stimulation, and there was no significant time lag of the latencies among LCBF, RBC velocity and RBC concentration at the same stimulus frequency. We interpret these results to mean that the onset of LCBF increase on cortical activation is reflected by a rapid change in arteriole (resistance vessel) dilation and capillary volume. The data also elucidate the linear relationship between LCBF increase and cortical activity.  相似文献   

8.
Experiments were made on 7 adult male monkeys under nembutal anaesthesia (20-25 mg/kg, intravenously). The evoked potentials to electrical stimulation (0.5-50 mA) of the skin and kinestetic (5.10(3)-6.10(5)degrees/s2) stimulation of the proximal part of the forearm were recorded in the contralateral primary somatosensory cortex. The data obtained indicated direct relationship between the magnitude of angular acceleration and amplitude-temporary parameters of the kinestetic potentials. The threshold for their detections was equal approximately to 5.10(3) degrees/s. Maximum amplitude and the shortest latency were observed at accelerations 100 times higher than threshold ones. These data are compared with parameters of the evoked potentials to the electrical stimulation of the skin.  相似文献   

9.
We employed voltage-sensitive dye (VSD) imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1) Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2) While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3) Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4) Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.  相似文献   

10.
Hyperoxia reduces the hemodynamic latency and enhances the response magnitude of the evoked local cerebral blood flow (LCBF). The objective of this study was to test the hypothesis that a change in the production of nitric oxide (NO) is involved in a unique change in evoked LCBF during hyperoxia. We measured LCBF in alpha-chloralose-anesthetized rats by laser-Doppler flowmetry. Systemic administration of the NO synthase inhibitor N(omega)-nitro-L-arginine (LNA) caused a decline in the baseline level of LCBF (P<0.01). The LNA intravenous injection during hyperoxia (hyperoxia with LNA) reduced the normalized evoked LCBF (normalization with respect to the baseline level of LCBF) in response to somatosensory stimulation by approximately 37% when compared under normal conditions (normoxia without LNA) (P<0.01), although that during normoxia (normoxia with LNA) did not cause a significant difference in the normalized evoked LCBF. The integrated neuronal activity under hyperoxia with LNA was approximately 11% lower than that under normoxia without LNA (P<0.05), although there was no significant difference in integrated neuronal activity between normoxia with LNA and normoxia without LNA. These results do not support our hypothesis and suggest the existence of another interaction mechanism involving oxygen for the enhancement of evoked LCBF under hyperoxia.  相似文献   

11.
蛛网膜下腔出血对大鼠脑血流量和体感诱发电位的影响   总被引:2,自引:0,他引:2  
目的:探讨蛛网膜下腔出血(SAH)后脑血流量、体感诱发电位(SEP)潜伏期的改变及其与一氧化氮(NO)的关系。方法:对假手术对照组和SAH模型组大鼠检测24h局部脑血流量(rCBF)、SEP潜伏期和血清及脑组织NO含量动态变化。结果:非开颅刺破Willis环的方法可成功地诱发SAH。SAH后rCBF立即降低,在24h内无恢复趋势。SEP潜伏期于SAH后1h开始至24h明显延长。血清和脑组织NO含量  相似文献   

12.
Application of glutamate to glial cell cultures stimulates the formation and release of epoxyeicosatrienoic acids (EETs) from arachidonic acid by cytochome P-450 epoxygenases. Epoxygenase inhibitors reduce the cerebral vasodilator response to glutamate and N-methyl-D-aspartate. We tested the hypothesis that epoxygenase inhibitors reduce the somatosensory cortical blood flow response to whisker activation. In chloralose-anesthetized rats, percent changes in cortical perfusion over whisker barrel cortex were measured by laser-Doppler flowmetry during whisker stimulation. Two pharmacologically distinct inhibitors were superfused subdurally: 1) N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH), an epoxygenase substrate inhibitor; and 2) miconazole, a reversible cytochrome P-450 inhibitor acting on the heme moiety. Superfusion with 5 micromol/l MS-PPOH decreased the hyperemic response to whisker stimulation by 28% (from 25 +/- 9 to 18 +/- 7%, means +/- SD, n = 8). With 20 micromol/l MS-PPOH superfusion, the response was decreased by 69% (from 28 +/- 9% to 9 +/- 4%, n = 8). Superfusion with 20 micromol/l miconazole decreased the flow response by 67% (from 31 +/- 6% to 10 +/- 3%, n = 8). Subsequent superfusion with vehicle restored the response to 26 +/- 11%. Indomethacin did not prevent MS-PPOH inhibition of the flow response, suggesting that EET-related vasodilation was not dependent solely on cyclooxygenase metabolism of 5,6-EET. Neither MS-PPOH nor miconazole changed baseline flow, reduced the blood flow response to an adenosine A(2) agonist, or decreased somatosensory evoked potentials. The marked reduction of the cortical flow response to whisker stimulation with two different types of epoxygenase inhibitors indicates that EETs play an important role in the physiological coupling of blood flow to neural activation.  相似文献   

13.
Here we have used the brain microdialysis method to test the effect of the 5-HT precursor L-tryptophan on 5-HT release. The release of endogenous 5-HT was measured in ventral hippocampus of the anesthetized rat both under basal conditions and when serotoninergic neuronal activity was raised by electrical stimulation of the dorsal raphe nucleus (DRN). Low frequency electrical stimulation of the DRN evoked a frequency-dependent (2-10 Hz) release of hippocampal 5-HT. The electrically evoked release of 5-HT was markedly enhanced by pretreatment with L-tryptophan (50 and 100 mg/kg i.p.). The effect of L-tryptophan on evoked release of 5-HT was dose-related, detectable at low (2 Hz) stimulation frequencies, and became stronger as the stimulation frequency increased. L-Tryptophan (10, 50 and 100 mg/kg i.p.) had no effect on basal output of 5-HT. We conclude from these findings that elevation of 5-HT precursor availability increases 5-HT release in hippocampus in vivo under conditions of increased serotoninergic neuronal activity.  相似文献   

14.
We have previously demonstrated that microinjection of dl-homocysteic acid (DLH), a glutamate analog, into the pre-B?tzinger complex (pre-B?tC) can produce either phasic or tonic excitation of phrenic nerve discharge during hyperoxic normocapnia. Breathing, however, is influenced by input from both central and peripheral chemoreceptor activation. This influence of increased respiratory network drive on pre-B?tC-induced modulation of phrenic motor output is unclear. Therefore, these experiments were designed to examine the effects of chemical stimulation of neurons (DLH; 10 mM; 10-20 nl) in the pre-B?tC during hyperoxic modulation of CO2 (i.e., hypercapnia and hypocapnia) and during normocapnic hypoxia in chloralose-anesthetized, vagotomized, mechanically ventilated cats. For these experiments, sites were selected in which unilateral microinjection of DLH into the pre-B?tC during baseline conditions of hyperoxic normocapnia [arterial PCO2 (PaCO2) = 37-43 mmHg; n = 22] produced a tonic (nonphasic) excitation of phrenic nerve discharge. During hypercapnia (PaCO2 = 59.7 +/- 2.8 mmHg; n = 17), similar microinjection produced excitation in which phasic respiratory bursts were superimposed on varying levels of tonic discharge. These DLH-induced phasic respiratory bursts had an increased frequency compared with the preinjection baseline frequency (P < 0.01). In contrast, during hypocapnia (PaCO2 = 29.4 +/- 1.5 mmHg; n = 11), microinjection of DLH produced nonphasic tonic excitation of phrenic nerve discharge that was less robust than the initial (normocapnic) response (i.e., decreased amplitude). During normocapnic hypoxia (PaCO2 = 38.5 +/- 3.7; arterial Po2 = 38.4 +/- 4.4; n = 8) microinjection of DLH produced phrenic excitation similar to that seen during hypercapnia (i.e., increased frequency of phasic respiratory bursts superimposed on tonic discharge). These findings demonstrate that phrenic motor activity evoked by chemical stimulation of the pre-B?tC is influenced by and integrates with modulation of respiratory network drive mediated by input from central and peripheral chemoreceptors.  相似文献   

15.
In cats, we studied the influences of stimulation of the periaqueductal gray (PAG) and locus coeruleus (LC) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulations of the infraorbital nerve and ventroposteromedial nucleus of the thalamus) afferent inputs. Twelve cells activated exclusively by nociceptors and 16 cells activated by both nociceptive and non-nociceptive influences (hereafter, nociceptive and convergent neurons, respectively) were recorded intracellularly. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the latter, of significant duration, up to 200 msec) complex. Electrical stimulation of the PAG (which could itself evoke activation of the cortical neurons under study) resulted in long-term suppression of synaptic responses evoked by excitation of nociceptors (inhibition reached its maximum at a test interval of 600 to 800 msec). We observed a certain parallelism between conditioning influences of PAG activation and effects of systemic injections of morphine. Isolated stimulation of LC by a short high-frequency train of stimuli evoked primary excitatory responses (complex EPSPs) in a part of the examined cortical neurons, while in other cells high-amplitude and long-lasting IPSP (up to 120 msec) were observed. Independently of the type of the primary response to PAG stimulation, the latter resulted in long-term (several seconds) suppression of the responses evoked in cortical cells by stimulation of the nociceptive inputs. The mechanisms of modulatory influences coming from opioidergic and noradrenergic brain systems to somatosensory cortex neurons activated due to excitation of high-threshold (nociceptive) afferent inputs are discussed.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 61–73, January–February, 2005.  相似文献   

16.
Recordings of [Ca2+]i in single AR42J cells loaded with Fura 2 were used to study regulation of [Ca2+]i oscillation. Continuous stimulation with the cholecystokinin analogue, (t-butyloxycarbonyl-Tyr-(SO3)-norleucine-Gly-Trp-Nle-Asp-2-phenylethyl ester) or carbachol evoked long lasting oscillation in [Ca2+]i. Removal of CCK-JMV-180 after brief stimulation did not abruptly stop the oscillation. Rather, removal of CCK-JMV-180 resulted in time-dependent reduction in amplitude with little change in frequency of oscillation. The patterns of [Ca2+]i oscillation were affected by activation of protein kinase C and protein kinase A. However, down-regulation of protein kinase C activity did not prevent stimulation of [Ca2+]i oscillation. Hence, we conclude that an active protein kinase C pathway is not crucial for [Ca2+]i oscillation in this cell line. Variation in extracellular Ca2+ concentration (Ca2+out) was used to further characterize the oscillation. Reducing Ca2+out to approximately 10 microM resulted in a time dependent inhibition of [Ca2+]i oscillation. Subsequent step increases in Ca2+out up to 2-3 mM resulted in increased amplitude and frequency of oscillation. Further increase in Ca2+out or an increase in plasma membrane permeability to Ca2+, brought about by an increase in pHo, resulted in increased amplitude, decreased frequency, and modified shape of the [Ca2+]i spikes. These observations point to the existence of regulatory mechanisms controlling the duration of Ca2+ release and entry during [Ca2+]i oscillation.  相似文献   

17.
In experiments on cats, we studied the effects of electrical stimulation of the cerebral central grey (CG), locus coeruleus (LC), and substantia nigra (SN) on postsynaptic processes evoked by nociceptive volleys in somatosensory cortex neurons. Nineteen cells activated exclusively by stimulation of nociceptors (intense stimulation of the dental pulp) and 26 cells activated by both nociceptive and non-nociceptive (near-threshold) stimulations of the n. infraorbitalis and thalamic nucl. ventroposteromedialis (VPM) were intracellularly recorded (nociceptive and convergent cortical neurons, respectively). In neurons of both groups, stimulation of both nociceptive afferents and the VPM evoked complex responses having on EPSP-spike-IPSP patterns (duration of IPSPs about 200-300 msec). Electrical stimulation of the СG, which per se could activate the examined cortical neurons, induced prolonged suppression of synaptic responses evoked by stimulation of nociceptors; maximum inhibition was observed at 600- to 800-msec-long conditioning–test intervals. A certain parallelism was observed between the conditioning effects of СG stimulation and effects of systemic introduction of morphine. Isolated stimulations of the LC and SN by short high-frequency pulse series evoked primary complex EPSPs in a part of the examined cortical neurons, while high-amplitude IPSPs (up to 120 msec long) were observed in other units. Independently of the type of the primary response, conditioning stimulations of the LC and SN induced long-lasting (several seconds) suppression of synaptic responses evoked in cortical neurons by stimulation of nociceptive inputs. Mechanisms of modulating influences coming from opioidergic, noradrenergic, and dopaminergic cerebral systems to neurons of the somatosensory cortex activated upon excitation of high-threshold (nociceptive) afferent inputs are discussed.  相似文献   

18.
Physiological high frequency activities (HFA) are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections), or different terminal layers (layer IV vs. layer II/III) affect its frequency, we, in the primary somatosensory cortex (SI), compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response) and N80 (late response) of somatosensory evoked potentials (HFASEP(N20) and HFASEP(N80)) and compared those overriding N1 and N2 (first and second responses) of cortico-cortical evoked potentials (HFACCEP(N1) and HFACCEP(N2)). HFASEP(N20) showed the power peak in the frequency above 200 Hz, while HFACCEP(N1) had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFACCEP(N1) and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions.  相似文献   

19.
The investigation was intended for studying the character of the background and evoked impulse activity of embryonic neurotransplant neurons 4 months after homotopical allotransplantation into the barrel field of somatosensory recipient's brain cortex of the rat. It is established, that the current average frequency of background impulse activity of transplant neurons is reduced in comparison with one of the control rats. It is shown that the evoked impulse activity of neurotransplant develops with the long latency than in somatosensory cortex of the control animals. Thus in patterns of the evoked activity of neurotransplant cells reactions, characteristic for the neurons of barrel field somatosensory recipient's cortex of control rats are registered: an increase of frequency of pulses' generating, or alternating of the activation and reduction periods of impulse frequency with its subsequent regeneration up to a pristine level.  相似文献   

20.
In 7 awake patients with neuropathic lower extremity pain, spinal somatosensory evoked potentials (SEP) were elicited from the non-painful leg by electrical stimulation of the peroneal nerve and mechanical stimulation of the hallux ball. Recording was made epidurally in the thoraco-lumbar region by means of an electrode temporarily inserted for trial of pain-suppressing stimulation.In response to peroneal nerve stimulation, two major SEP complexes were found. The first complex consisted, as has been described earlier, of an initial positivity (P12), a spike-like negativity (N14), a slow negativity (N16) and a slow positivity (P23). The second complex consisted of a slow biphasic wave, conceivably mediated by a supraspinal loop. Both complexes had a similar longitudinal distribution with amplitude maxima at the T12 vertebral body.The SEP evoked by mechanical hallux ball stimulation had a relatively small amplitude, and there was no significant second complex. The relationship between stimulus intensity and SEP amplitude was negatively accelerating.The longitudinal distribution of spinal SEP was compated with the somatotopic distribution of paresthesiae induced by stimulation through the epidural electrode. It was found that stimulation applied at the level of maximal SEP generally induced paresthesiae in the corresponding peripheral region. Therefore, spinal SEP may be used as a guide for optimal positioning of a spinal electrode for therapeutic stimulation when implanted under general anesthesia.An attempt was made to record the antidromic potential in the peroneal nerve elicited from the dorsal columns by epidural stimulation. The antidromic response was, however, very sensitive to minimal changes of stimulus strength and body position of the patient, and was also contaminated by simultaneously evoked muscular reflex potentials.Thus, peripheral responses evoked by epidural stimulation appeared too unreliable to be useful for the permanent implantation of a spinal electrode for therapeutic stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号