首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progression through the eukaryotic cell division cycle is governed by the activity of cyclin-dependent kinases (CDKs). For a CDK to become active it must (1) bind a positive regulatory subunit (cyclin) and (2) be phosphorylated on its activation (T) loop. In metazoans, multiple CDK catalytic subunits, each with a distinct set of preferred cyclin partners, regulate the cell cycle, but it has been difficult to assign functions to individual CDKs in vivo. Biochemical analyses and experiments with dominant-negative alleles suggested that specific CDK/cyclin complexes regulate different events, but genetic loss of interphase CDKs (Cdk2, -4 and -6), alone or in combination, did not block proliferation of cells in culture. These knockout and knockdown studies suggested redundancy or plasticity built into the CDK network but did not address whether there was true redundancy in normal cells with a full complement of CDKs. Here, we discuss recent work that took a chemical-genetic approach to reveal that the activity of a genetically non-essential CDK, Cdk2, is required for cell proliferation when normal cyclin pairing is maintained. These results have implications for the systems-level organization of the cell cycle, for regulation of the restriction point and G₁/S transition and for efforts to target Cdk2 therapeutically in human cancers.  相似文献   

2.
Progression through the eukaryotic cell division cycle is governed by the activity of cyclin-dependent kinases (CDKs). For a CDK to become active it must (1) bind a positive regulatory subunit (cyclin) and (2) be phosphorylated on its activation (T) loop. In metazoans, multiple CDK catalytic subunits, each with a distinct set of preferred cyclin partners, regulate the cell cycle, but it has been difficult to assign functions to individual CDKs in vivo. Biochemical analyses and experiments with dominant-negative alleles suggested that specific CDK/cyclin complexes regulate different events, but genetic loss of interphase CDKs (Cdk2, -4 and -6), alone or in combination, did not block proliferation of cells in culture. These knockout and knockdown studies suggested redundancy or plasticity built into the CDK network but did not address whether there was true redundancy in normal cells with a full complement of CDKs. Here, we discuss recent work that took a chemical-genetic approach to reveal that the activity of a genetically non-essential CDK, Cdk2, is required for cell proliferation when normal cyclin pairing is maintained. These results have implications for the systems-level organization of the cell cycle, for regulation of the restriction point and G?/S transition and for efforts to target Cdk2 therapeutically in human cancers.  相似文献   

3.
Multiple cyclin-dependent kinases (CDKs) control eukaryotic cell division, but assigning specific functions to individual CDKs remains a challenge. During the mammalian cell cycle, Cdk2 forms active complexes before Cdk1, but lack of Cdk2 protein does not block cell-cycle progression. To detect requirements and define functions for Cdk2 activity in human cells when normal expression levels are preserved, and nonphysiologic compensation by other CDKs is prevented, we replaced the wild-type kinase with a version sensitized to specific inhibition by bulky adenine analogs. The sensitizing mutation also impaired a noncatalytic function of Cdk2 in restricting assembly of cyclin A with Cdk1, but this defect could be corrected by both inhibitory and noninhibitory analogs. This allowed either chemical rescue or selective antagonism of Cdk2 activity in vivo, to uncover a requirement in cell proliferation, and nonredundant, rate-limiting roles in restriction point passage and S phase entry.  相似文献   

4.
The cyclin-dependent kinase (CDK) inhibitor p27 binds and inhibits the kinase activity of several CDKs. Here we report an analysis of the behavior and partners of p27 in Swiss 3T3 mouse fibroblasts during normal mitotic cell cycle progression, as well as in cells arrested at different stages in the cycle by growth factor deprivation, lovastatin treatment, or ultraviolet (UV) irradiation. We found that the level of p27 is elevated in cells arrested in G0 by growth factor deprivation or contact inhibition. In G0, p27 was predominantly monomeric, although some portion was associated with residual cyclin A.Cdk2. During G1, all of p27 was associated with cyclin D1.Cdk4 and was then redistributed to cyclin A.Cdk2 as cells entered S phase. The loss of the monomeric p27 pool as cyclins accumulate in G1 is consistent with the in vivo and in vitro data showing that p27 binds better to cyclin.CDK complexes than to monomeric CDKs. In growing cells, the majority of p27 was associated with cyclin D1 and the level of p27 was significantly lower than the level of cyclin D1. In cells arrested in G1 with lovastatin, cyclin D1 was degraded and p27 was redistributed to cyclin A.Cdk2. In contrast to p21 (which is a p27-related CDK inhibitor and is induced by UV irradiation), the level of p27 was reduced after UV irradiation, but because cyclin D1 was degraded more rapidly than p27, there was a transient increase in binding of p27 to cyclin A.Cdk2. These data suggest that cyclin D1.Cdk4 acts as a reservoir for p27, and p27 is redistributed from cyclin D1.Cdk4 to cyclin A.Cdk2 complexes during S phase, or when cells are arrested by growth factor deprivation, lovastatin treatment, or UV irradiation. It is likely that a similar principle of redistribution of p27 is used by the cell in other instances of cell cycle arrest.  相似文献   

5.
Transforming growth factor beta (TGF-beta) is a potent inhibitor of epithelial cell growth. Cyclins E and A in association with Cdk2 have been shown to play a role in the G1-to-S phase transition in mammalian cells. We have studied the effects of TGF-beta-mediated growth arrest on G1/S cyclins E and A. Inhibition of cyclin A-associated kinase by TGF-beta is primarily due to a decrease in cyclin A mRNA and protein. By contrast, while TGF-beta inhibits accumulation of cyclin E mRNA, the reduction in cyclin E protein is minimal. Instead, we find that the activation of cyclin E-associated kinase that normally accompanies the G1-to-S phase transition is inhibited. A novel inhibitor of cyclin-Cdk complexes was detected in TGF-beta-treated cell lysates. Inhibition is mediated by a heat-stable protein that targets both Cdk2 and Cdc2 kinases. In G0-arrested cells, a similar inhibitor of Cdk2 kinase was detected. These data suggest the existence of an inhibitor of cyclin-dependent kinases induced under different conditions to mediate antiproliferative responses.  相似文献   

6.
7.
Cyclin/cyclin-dependent kinases (Cdks) are critical protein kinases in regulating cell cycle progression. Among them, cyclin D1/Cdk4 exerts its function mainly in the G1 phase. By using the tandem affinity purification tag approach, we identified a set of proteins interacting with Cdk4, including NDR1/2. Interestingly, confirming the interactions between NDR1/2 and cyclin D1/Cdk4, we observed that NDR1/2 interacted with cyclin D1 independent of Cdk4, but NDR1/2 and cyclin D1/Cdk4 did not phosphorylate each other. In addition, we found that NDR1/2 did not affect the kinase activity of cyclin D1/Cdk4 upon phosphorylation of GST-Rb. However, cyclin D1 but not Cdk4 promoted the kinase activity of NDR1/2. We also demonstrated that cyclin D1 K112E, which could not bind Cdk4, enhanced the kinase activity of NDR1/2. To test whether cyclin D1 promotes G1/S transition though enhancing NDR1/2 kinase activity, we performed flow cytometry analysis using cyclin D1 and cyclin D1 K112E Tet-On inducible cell lines. The data show that both cyclin D1 and cyclin D1 K112E promoted G1/S transition. Importantly, knockdown of NDR1/2 almost completely abolished the function of cyclin D1 K112E in promoting G1/S transition. Consistently, we found that the protein level of p21 was reduced in cells overexpressing cyclin D1 K112E but not when NDR1/2 was knocked down. Taken together, these results reveal a novel function of cyclin D1 in promoting cell cycle progression by enhancing NDR kinase activity independent of Cdk4.  相似文献   

8.
Cdk2 knockout mice are viable   总被引:34,自引:0,他引:34  
BACKGROUND: Cyclin-dependent kinases (Cdks) and their cyclin regulatory subunits control cell growth and division. Cdk2/cyclin E complexes are thought to be required because they phosphorylate the retinoblastoma protein and drive cells through the G1/S transition into the S phase of the cell cycle. In addition, Cdk2 associates with cyclin A, which itself is essential for cell proliferation during early embryonic development. RESULTS: In order to study the functions of Cdk2 in vivo, we generated Cdk2 knockout mice. Surprisingly, these mice are viable, and therefore Cdk2 is not an essential gene in the mouse. However, Cdk2 is required for germ cell development; both male and female Cdk2(-/-) mice are sterile. Immunoprecipitates of cyclin E1 complexes from Cdk2(-/-) spleen extracts displayed no activity toward histone H1. Cyclin A2 complexes were active in primary mouse embryonic fibroblasts (MEFs), embryo extracts and in spleen extracts from young animals. In contrast, there was little cyclin A2 kinase activity in immortalized MEFs and spleen extracts from adult animals. Cdk2(-/-) MEFs proliferate but enter delayed into S phase. Ectopic expression of Cdk2 in Cdk2(-/-) MEFs rescued the delayed entry into S phase. CONCLUSIONS: Although Cdk2 is not an essential gene in the mouse, it is required for germ cell development and meiosis. Loss of Cdk2 affects the timing of S phase, suggesting that Cdk2 is involved in regulating progression through the mitotic cell cycle.  相似文献   

9.
The role of cyclin-dependent kinases in cell proliferation is well characterized, whereas their somewhat paradoxical role in catalyzing apoptosis is less understood. One Cdk complex implicated in both cell proliferation and cell death is cyclin A/Cdk2. During early embryonic development of Xenopus laevis, distinct isoforms of cyclin A are expressed at different times. From fertilization through gastrulation, cyclin A1 is the predominant isoform. Cyclin A1 dimerizes with Cdk2 but not Cdk1. In contrast, cyclin A2 is expressed at a low level until gastrulation, when it becomes the major A-type cyclin and associates with both Cdk1 and Cdk2. When Xenopus embryos are treated with ionizing radiation (IR) prior to the midblastula transition (MBT), cyclin A1 protein persists beyond the MBT and forms an active complex with Cdk2. During this window of cyclin A1/Cdk2 activity, the embryo undergoes apoptosis. To test the hypothesis that cyclin A1-associated activity is a mediator of apoptosis, cyclin A1 protein level and associated kinase activity were measured in embryos treated with aphidicolin to induce apoptosis. Both cyclin A1 content and associated kinase activity were sustained after the MBT as embryos underwent apoptosis. To determine whether cyclin A1/Cdk2 was sufficient to induce apoptosis, recombinant cyclin A1/Cdk2 complex was injected into single-celled embryos, which induced apoptosis after the MBT. However, morpholinos targeting translation of cyclins A1 and A2 did not block apoptosis in embryos treated with X-rays or aphidicolin. These data indicate that cyclin A1/Cdk2 is sufficient, but not required for apoptosis during early development.  相似文献   

10.
11.
Cellular proliferation is regulated by cell cycle progression which, in turn, is controlled by sequential activation of various cyclin-dependent kinases (CDKs). To explore the mechanism(s) by which long chain polyunsaturated fatty acids (PUFAs) influence the growth of tumor cells, we compared the effects of different n-3 and n-6 fatty acids on the activity of CDKs. Docosahexaenoic acid (DHA), a major component of fish oil diets, is able to reduce serum-stimulated cyclin D1-, E-, and A- associated kinases activity in synchronized-HT-29 cells. The inhibitory effect of DHA on cyclin A-associated kinase activity is time-dependent, and is probably modulated by down-regulation of cyclin A protein expression. In addition, DHA inhibits the phosphorylation of pRb and DNA-binding activity of E2F-1 in response to serum stimulation, and prevents the serum-stimulated entry of S-phase in HT-29 cells. These results indicate that DHA may exert its negative effect on the growth of tumor cells by inhibiting the activation and expression of G1-associated cell cycle regulatory proteins. Since the synthetic antioxidant BHT is able to reverse the inhibition of serum-stimulated activation of cyclin A/CDK by DHA in a dose-dependent manner, endogenous oxidative stress produced by lipid peroxidation in HT-29 cells may be involved in the control of cell cycle progression.  相似文献   

12.
Down-regulation of p53 expression has been found in a broad range of human cancers and cell proliferation disorders, indicating that p53 plays a key role in cell cycle regulation and tumor suppression. In our current study, we transfected human embryonic lung fibroblast (HELF) cells with pcDNA3-wild-type p53 (pcDNA3-wtp53) plasmid, or pcDNA3-H179Y-mutated p53 (pcDNA3-mtp53) plasmid that mimics the mutation found in some human lung tumors, and further studied the role of p53 in the regulation of cell proliferation. Over expression of wild-type p53 caused cell cycle arrest at G1 phase with reduced cell size, decreased expression of cyclin D3, cyclin E, Cdk2 and Cdk4, and increased expression of p21. In contrast, over expression of H179Y-mutant p53 promoted G1 to S phase transition with enlarged cell size and increased cyclin A1 and Cdk4 expression in HELF cells. These results indicate that mutation at the p53 H179Y residue up-regulates cyclin A1 and Cdk4 expression, and promotes HELF cell proliferation.  相似文献   

13.
Recent literature suggests that cyclin-dependent kinases (CDKs) mediate cell migration. However, the mechanisms were not known. Therefore, the objective of this study is to test whether cyclin/CDKs activate Pak1, an effector of Rac1, whose involvement in the modulation of cell migration and proliferation is well established. Monocyte chemotactic protein 1 (MCP1) induced Pak1 phosphorylation/activation in human aortic smooth muscle cells (HASMCs) in a delayed time-dependent manner. MCP1 also stimulated F-actin stress fiber formation in a delayed manner in HASMCs, as well as the migration and proliferation of these cells. Inhibition of Pak1 suppressed MCP1-induced HASMC F-actin stress fiber formation, migration, and proliferation. MCP1 induced cyclin D1 expression as well as CDK6 and CDK4 activities, and these effects were dependent on activation of NFATc1. Depletion of NFATc1, cyclin D1, CDK6, or CDK4 levels attenuated MCP1-induced Pak1 phosphorylation/activation and resulted in decreased HASMC F-actin stress fiber formation, migration, and proliferation. CDK4, which appeared to be activated downstream of CDK6, formed a complex with Pak1 in response to MCP1. MCP1 also activated Rac1 in a time-dependent manner, and depletion/inhibition of its levels/activation abrogated MCP1-induced NFATc1-cyclin D1-CDK6-CDK4-Pak1 signaling and, thereby, decreased HASMC F-actin stress fiber formation, migration, and proliferation. In addition, smooth muscle-specific deletion of NFATc1 led to decreased cyclin D1 expression and CDK6, CDK4, and Pak1 activities, resulting in reduced neointima formation in response to injury. Thus, these observations reveal that Pak1 is a downstream effector of CDK4 and Rac1-dependent, NFATc1-mediated cyclin D1 expression and CDK6 activity mediate this effect. In addition, smooth muscle-specific deletion of NFATc1 prevented the capacity of vascular smooth muscle cells for MCP-1-induced activation of the cyclin D1-CDK6-CDK4-Pak1 signaling axis, affecting their migration and proliferation in vitro and injury-induced neointima formation in vivo.  相似文献   

14.
The growth rate of malignant F9 embryonal carcinoma cells slows considerably following all-trans-retinoic acid-induced differentiation into benign parietal endoderm. To determine the mechanism of this process, we examined the expression of cyclins D1, D2, and D3 and the activity of their associated kinases. Cyclin D1 and D3 mRNA levels decreased during complete differentiation induced by all-trans-retinoic acid and dibutyryl cAMP, while the levels of cyclin D2 and the cyclin-dependent kinase (Cdk) inhibitor p27 mRNAs increased. Ultimately, terminally differentiated cells possessed 50% of the Cdk4-associated kinase activity observed in undifferentiated cells. Since numerous genes are differentially regulated during parietal endoderm differentiation, it is difficult to determine whether retinoic acid affects cell cycle gene expression directly or if these changes are caused by differentiation. We found that the retinoid X receptor (RXR)-selective agonists LG100153 and LG100268 significantly inhibited F9 cell growth without causing overt terminal differentiation as assessed by anchorage-independent growth and differentiation-associated gene expression. As seen in cells induced to differentiate by the RAR agonist all-trans-retinoic acid, RXR activation led to an increase in the number of cells in G1 phase. RXR agonists also sharply induced the levels of the Cdk regulatory subunits, cyclin D2 and D3. However, Cdk4-dependent kinase activity was reduced by RXR-selective retinoid treatment. These observations suggest that some retinoids can directly inhibit proliferation and regulate Cdk4-dependent kinase activity without inducing terminal differentiation.  相似文献   

15.
Budding and fission yeast Cdc14 homologues, a conserved family of serine-threonine phosphatases, play a role in the inactivation of mitotic cyclin-dependent kinases (CDKs) by molecularly distinct mechanisms. Saccharomyces cerevisiae Cdc14 protein phosphatase inactivates CDKs by promoting mitotic cyclin degradation and the accumulation of a CDK inhibitor to allow budding yeast cells to exit from mitosis. Schizosaccharomyces pombe Flp1 phosphatase down-regulates CDK/cyclin activity, controlling the degradation of the Cdc25 tyrosine phosphatase for fission yeast cells to undergo cytokinesis. In the present work, we show that human Cdc14 homologues (hCdc14A and hCdc14B) rescued flp1-deficient fission yeast strains, indicating functional homology. We also show that hCdc14A and B interacted in vivo with S. pombe Cdc25 and that hCdc14A dephosphorylated this mitotic inducer both in vitro and in vivo. Our results support a Cdc14 conserved inhibitory mechanism acting on S. pombe Cdc25 protein and suggest that human cells may regulate Cdc25 in a similar manner to inactivate Cdk1-mitotic cyclin complexes.  相似文献   

16.
Cdk2 was once believed to play an essential role in cell cycle progression, but cdk2-/- mice have minimal phenotypic abnormalities. In this study, we examined the role of cdk2 in hepatocyte proliferation, centrosome duplication, and survival. Cdk2-/- hepatocytes underwent mitosis and had normal centrosome content after mitogen stimulation. Unlike wild-type cells, cdk2-/- liver cells failed to undergo centrosome overduplication in response to ectopic cyclin D1 expression. After mitogen stimulation in culture or partial hepatectomy in vivo, cdk2-/- hepatocytes demonstrated diminished proliferation. Cyclin D1 is a key mediator of cell cycle progression in hepatocytes, and transient expression of this protein is sufficient to promote robust proliferation of these cells in vivo. In cdk2-/- mice and animals treated with the cdk2 inhibitor seliciclib, cyclin D1 failed to induce hepatocyte cell cycle progression. Surprisingly, cdk2 ablation or inhibition led to massive hepatocyte and animal death following cyclin D1 transfection. In a transgenic model of chronic hepatic cyclin D1 expression, seliciclib induced hepatocyte injury and animal death, suggesting that cdk2 is required for survival of cyclin D1-expressing cells even in the absence of substantial proliferation. In conclusion, our studies demonstrate that cdk2 plays a role in liver regeneration. Furthermore, it is essential for centrosome overduplication, proliferation, and survival of hepatocytes that aberrantly express cyclin D1 in vivo. These studies suggest that cdk2 may warrant further investigation as a target for therapy of liver tumors with constitutive cyclin D1 expression.  相似文献   

17.
BACKGROUND: The ability of cyclin-dependent kinases (CDKs) to promote cell proliferation is opposed by cyclin-dependent kinase inhibitors (CKIs), proteins that bind tightly to cyclin-CDK complexes and block the phosphorylation of exogenous substrates. Mice with targeted CKI gene deletions have only subtle proliferative abnormalities, however, and cells prepared from these mice seem remarkably normal when grown in vitro. One explanation may be the operation of compensatory pathways that control CDK activity and cell proliferation when normal pathways are inactivated. We have used mice lacking the CKIs p21(Cip1) and p27(Kip1) to investigate this issue, specifically with respect to CDK regulation by mitogens. RESULTS: We show that p27 is the major inhibitor of Cdk2 activity in mitogen-starved wild-type murine embryonic fibroblasts (MEFs). Nevertheless, inactivation of the cyclin E-Cdk2 complex in response to mitogen starvation occurs normally in MEFs that have a homozygous deletion of the p27 gene. Moreover, CDK regulation by mitogens is also not affected by the absence of both p27 and p21. A titratable Cdk2 inhibitor compensates for the absence of both CKIs, and we identify this inhibitor as p130, a protein related to the retinoblastoma gene product Rb. Thus, cyclin E-Cdk2 kinase activity cannot be inhibited by mitogen starvation of MEFs that lack both p27 and p130. In addition, cell types that naturally express low amounts of p130, such as T lymphocytes, are completely dependent on p27 for regulation of the cyclin E-Cdk2 complex by mitogens. CONCLUSIONS: Inhibition of Cdk2 activity in mitogen-starved fibroblasts is usually performed by the CKI p27, and to a minor extent by p21. Remarkably p130, a protein in the Rb family that is not related to either p21 or p27, will directly substitute for the CKIs and restore normal CDK regulation by mitogens in cells lacking both p27 and p21. This compensatory pathway may be important in settings in which CKIs are not expressed at standard levels, as is the case in many human tumors.  相似文献   

18.
ABSTRACT: Cyclin-dependent kinases (Cdks) and their cyclin regulatory subunits control cell growth and division. Cdk2-cyclin E complexes, phosphorylating the retinoblastoma protein, drive cells through the G1/S transition into the S phase of the cell cycle. Despite its fundamental role, Cdk2 was found to be indispensable only in specific cell types due to molecular redundancies in its function. Converging studies highlight involvement of Cdk2 and associated cell cycle regulatory proteins in oligodendrocyte progenitor cell proliferation and differentiation. Giving the contribution of this immature cell type to brain plasticity and repair in the adult, this review will explore the requirement of Cdk2 for oligodendrogenesis, oligodendrocyte progenitor cells proliferation and differentiation during physiological and pathological conditions.  相似文献   

19.
Passage through the cell cycle in eukaryotes requires the successive activation of different cyclin-dependent protein kinases. Here, we describe the identification and characterization of a novel class of cyclin-dependent protein kinase, termed Cdk2, in the ciliate Paramecium tetraurelia. It is 301 amino acids long, 7 amino acids shorter than Cdk1, the CDK that is associated with macronuclear DNA synthesis. All the catalytic domains typical of protein kinases can be located within the sequence and putative regulatory phosphorylation sites equivalent to Thr14, Tyr15, and Thr161 in human CDK1 are also conserved. The 'PSTAIRE' region characteristic of most CDKs is perfectly conserved. Cdk2 shares only 48% homology to Cdk1 at the amino acid level, suggesting that the evolutionary separation of Cdk1 and Cdk2 is ancient, and implying that they have different roles in cell cycle regulation. Like Cdk1, Cdk2 does not bind to yeast p13suc1, even though it has better conservation of p13suc1 binding sites than Cdk1 does. The Cdk2 protein level is relatively constant throughout the vegetative cell cycle. Cdk2 exhibits kinase activity towards bovine histone H1 in vitro with the maximal level late in the cell cycle, suggesting it may be involved in the regulation of cytokinesis. Our results further support the view that an analogue of the cyclin-dependent kinase cell cycle regulatory system like that of yeast and higher eukaryotic cells operates in Paramecium and that a family of cyclin-dependent kinases may control different aspects of the Paramecium cell cycle.  相似文献   

20.
Hu F  Gan Y  Aparicio OM 《Genetics》2008,179(2):863-874
Wee1 kinases regulate the cell cycle through inhibitory phosphorylation of cyclin-dependent kinases (CDKs). Eukaryotic cells express multiple CDKs, each having a kinase subunit (Cdk) and a regulatory "cyclin" subunit that function at different stages of the cell cycle to regulate distinct processes. The cyclin imparts specificity to CDK-substrate interactions and also determines whether a particular CDK is subject to Wee1 regulation. Saccharomyces Wee1 (Swe1) inhibits Cdc28 (Cdk1) associated with the mitotic cyclin, Clb2, but not with the G(1) (Cln1, -2, and -3) or the S-phase (Clb5 and -6) cyclins. Here, we show that this specificity depends on two amino acids associated with a conserved "hydrophobic patch" (HP) motif on the cyclin surface, which mediates specificity of CDK-substrate interactions. Mutation of Clb2 residues N260 and K270 largely abrogates Clb2-Cdc28 regulation by Swe1, and reciprocal mutation of the corresponding residues in Clb5 can subject Clb5-Cdc28 to regulation by Swe1. Swe1 phosphorylation by Clb2-Cdc28, which is thought to activate Swe1 kinase, depends on N260 and K270, suggesting that specific regulation of Clb2-Cdc28 by Swe1 derives from the specific ability of Clb2 to target Swe1 for activating phosphorylation. The stable association of Swe1 with Clb2-Cdc28 also depends on these residues, suggesting that Swe1 may competitively inhibit Clb2-Cdc28 interactions with substrates, in addition to its well-known function as a regulator of CDK activity through tyrosine phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号