首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensor proteins for blue light using the FAD (BLUF) domain belong to the third family of the photoreceptor proteins using a flavin chromophore, where the other two families are phototropins and cryptochromes. As the first structure of this BLUF domain, we have determined the crystal structure of the Tll0078 protein from Thermosynechococcus elongatus BP-1, which contains a BLUF domain bound to FAD, at 2A resolution. Five Tll0078 monomers are located around the non-crystallographic 5-fold axis to form a pentamer, and two pentamers related by 2-fold non-crystallographic symmetry form a decameric assembly. The monomer consists of two domains, the BLUF domain at the N-terminal region and the C-terminal domain. The overall structure of the BLUF domain consists of a five-stranded mixed beta-sheet with two alpha-helices running parallel with it. The isoalloxazine ring of FAD is accommodated in a pocket formed by several highly conserved amino acid residues in the BLUF domain. Of these, the three apparent key residues (Asn31, Asn32 and Gln50) were substituted with Ala. Mutant proteins of N31A and N32A showed a nearly normal 10nm spectral shift of the flavin upon illumination, while the Q50A mutant did not exhibit such a shift at all. On the basis of the crystal structure, we discussed a possible role of Gln50, which is structurally and functionally linked with the critical Tyr8 (FAD-Gln50-Tyr8 network), with regard to the light-induced spectral shift of the BLUF proteins.  相似文献   

2.
We studied the photoreaction of a blue-light sensor PixD protein of Thermosynechococcus elongatus that has the blue-light-using flavin (BLUF) domain. The Tyr8 and Gln50 residues of the protein were modified to phenylalanine, alanine, or asparagine (Y8F, Y8A, Q50N, and Q50A) by site-directed mutagenesis. The following results were obtained. (1) At room temperature, blue-light illumination induced the red shift of the absorption bands of flavin in the wild-type (WT) protein but not in the Y8F, Y8A, Q50A, and Q50N mutant proteins, as reported [Okajima, K., et al. (2006) J. Mol. Biol. 363, 10-18]. (2) At 80 K, neither the Q50N nor the Q50A mutant protein accumulated the red-shifted form. (3) At 80 K, the Y8F protein photoaccumulated the red-shifted forms to an extent that was half that in the WT protein at a 43-fold slower rate, and the Y8A protein to the one-fourth the extent at a 137-fold slower rate. (4) The red-shifted form in the Y8F protein was stable below 240 K and became unstable above 240 K in the dark. (5) The illumination of the Y8F protein at 150 K accumulated the red-shifted form at the beginning, and the prolonged illumination accumulated the flavin anions by the secondary photoreaction. (6) The results indicate that Tyr8 is not indispensable for the accumulation of the red-shifted form at least at 80 K. (7) Photoconversion mechanisms in the WT and Tyr8-mutated proteins are discussed in relation to the schemes with and without the electron transfer between Tyr8 and flavin in the first step of the photoconversion.  相似文献   

3.
The BLUF (sensor of blue light using FAD) domain is a blue light receptor possessing a flavin molecule as an active cofactor. A conserved Tyr residue located adjacent to flavin has been proposed to be a key amino acid in the mechanism of the photoreaction of the BLUF domain. We have studied the structure of this key Tyr residue and the relevance to the photoreaction in the BLUF protein of the cyanobacterium Thermosynechococcus elongatus, TePixD, by means of Fourier transform infrared (FTIR) difference spectroscopy and density functional theory (DFT) calculations. Light-induced FTIR difference spectra of unlabeled and [4-13C]Tyr-labeled TePixD in H2O and D2O revealed that the nuCO/deltaCOH vibrations of a photosensitive Tyr side chain are located at 1265/1242 cm-1 in the dark-adapted state and at 1273/1235 cm-1 in the light-induced signaling state. These signals were assigned to the vibrations of Tyr8 near flavin from the absence of the effect of [4-13C]Tyr labeling in the Tyr8Phe mutant. DFT calculations of H-bonded complexes of p-cresol with amides as models of the Tyr8-Gln50 interactions showed that Tyr8 acts as a H-bond donor to the Gln50 in both of the dark and light states. Further DFT analysis suggested that this H-bond is strengthened upon photoconversion to the light state accompanied with a change in the H-bond angle. The change in the H-bond structure of Tyr8 is coupled to the flavin photoreaction probably through the Tyr8-Gln50-flavin H-bond network, suggesting a significant role of Tyr8 in the photoreaction mechanism of TePixD.  相似文献   

4.
Wu Q  Ko WH  Gardner KH 《Biochemistry》2008,47(39):10271-10280
BlrB in Rhodobacter sphaeroides is a single domain, flavin-based blue light sensor protein in the BLUF family of photoreceptors. Consistent with other members of this family, blue light excitation induces a putative signaling state characterized by a 10 nm red shift in the UV-visible absorbance spectrum. Structural and spectroscopic characterization of truncated BlrB constructs establishes that the C-terminal 50 amino acids of this protein are essential to its structural integrity despite not being part of the canonical BLUF domain architecture. Mutagenesis studies support the critical roles of Tyr9, Asn33, and Gln51 for flavin binding and the integrity of the BLUF domain fold. Comparison of solution NMR spectra of BlrB acquired under dark and light conditions indicates very limited light-dependent conformational changes except for a few interesting residues: Trp92, Met94, and Ile127. Notably, the Ile127 side chain experiences significant chemical shift changes despite the fact that it is far ( approximately 15 A) from the flavin chromophore in the C-terminal extension. These data suggest that the light-induced signal is propagated from the flavin through the beta sheet to the last two alpha helices in the C-terminal extension, potentially providing a mechanism to transmit this change to initiate a cellular response to blue light.  相似文献   

5.
Anderson S  Dragnea V  Masuda S  Ybe J  Moffat K  Bauer C 《Biochemistry》2005,44(22):7998-8005
The flavin-binding BLUF domain of AppA represents a new class of blue light photoreceptors that are present in a number of bacterial and algal species. The dark state X-ray structure of this domain was determined at 2.3 A resolution. The domain demonstrates a new function for the common ferredoxin-like fold; two long alpha-helices flank the flavin, which is bound with its isoalloxazine ring perpendicular to a five-stranded beta-sheet. The hydrogen bond network and the overall protein topology of the BLUF domain (but not its sequence) bear some resemblance to LOV domains, a subset of PAS domains widely involved in signaling. Nearly all residues conserved in BLUF domains surround the flavin chromophore, many of which are involved in an intricate hydrogen bond network. Photoactivation may induce a rearrangement in this network via reorientation of the Gln63 side chain to form a new hydrogen bond to the flavin O4 position. This shift would also break a hydrogen bond to the Trp104 side chain, which may be critical in induction of global structural change in AppA.  相似文献   

6.
The photosensor YtvA binds flavin mononucleotide and regulates the general stress reaction in Bacillus subtilis in response to blue light illumination. It belongs to the family of light-oxygen-voltage (LOV) proteins that were first described in plant phototropins and form a subgroup of the Per-Arnt-Sim (PAS) superfamily. Here, we report the three-dimensional structure of the LOV domain of YtvA in its dark and light states. The protein assumes the global fold common to all PAS domains and dimerizes via a hydrophobic interface. Directly C-terminal to the core of the LOV domain, an alpha-helix extends into the solvent. Light absorption causes formation of a covalent bond between a conserved cysteine residue and atom C(4a) of the FMN ring, which triggers rearrangements throughout the LOV domain. Concomitantly, in the dark and light structures, the two subunits of the dimeric protein rotate relative to each other by 5 degrees . This small quaternary structural change is presumably a component of the mechanism by which the activity of YtvA is regulated in response to light. In terms of both structure and signaling mechanism, YtvA differs from plant phototropins and more closely resembles prokaryotic heme-binding PAS domains.  相似文献   

7.
Proteins containing a sensor of blue light using FAD (BLUF) domain control diverse cellular processes, such as gene expression, nucleotide metabolism and motility, by relaying blue light signals to distinct output units. Despite its crucial and widespread functions, the mechanism of BLUF signal transduction has remained elusive. We determined crystal structures of the dark-adapted state and of a photo-excited, red-shifted photocycle intermediate of the BLUF unit of AppA, a purple bacterial photoreceptor involved in the light-dependent regulation of photosynthesis gene expression. In contrast to a recently published crystal structure of the AppA BLUF domain determined in the presence of detergent molecules, our structural model of the dark state corresponds well to those reported for the BLUF domains of Tll0078 and BlrB. This establishes that a highly conserved methionine (Met106 in AppA) is next to the active site glutamine (Gln63 in AppA), which is of relevance for the latter's orientation in the dark state and for the mechanism of the photoreaction. The comparison of the dark-adapted and photointermediate state structures shows light-induced conformational alterations, which suggest a path for signal propagation. In particular, we observe a significant movement of the Met106 side-chain. Met106 thereby changes its mode of interaction with Gln63, which supports a light-dependent rotation of the latter. In view of other BLUF structures available, our data further suggest that the hydrogen bond between Asn45 and the backbone carbonyl of His105 breaks upon illumination. The ensuing extensive structural rearrangement of beta-strand 5 is predicted to involve a flip of Met106 out of the flavin-binding pocket and Trp104 moving in to fill the void. We propose that the blue light signal is transmitted towards the surface of the BLUF domain via His44, which serves as a reporter of active site changes.  相似文献   

8.
Dragnea V  Arunkumar AI  Lee CW  Giedroc DP  Bauer CE 《Biochemistry》2010,49(50):10682-10690
The AppA BLUF photoreceptor from Rhodobacter sphaeroides contains a conserved key residue, Gln63, that is thought to undergo a shift in hydrogen-bonding interactions when a bound flavin is light excited. In this study we have characterized two substitution mutants of Gln63 (Q63E, Q63L) in the context of two constructs of the BLUF domain that have differing lengths, AppA1-126 and AppA17-133. Q63L mutations in both constructs exhibit a blue-shifted flavin absorption spectrum as well as a loss of the photocycle. Altered fluorescence emission and fluorescence quenching of the Q63L mutant indicate significant perturbations of hydrogen bonding to the flavin and surrounding amino acids which is confirmed by (1)H-(15)N HSQC NMR spectroscopy. The Q63E substitution mutant is constitutively locked in a lit signaling state as evidenced by a permanent 3 nm red shift of the flavin absorption, quenching of flavin fluorescence emission, analysis of (1)H-(15)N HSQC spectra, and the inability of full-length AppA Q63E to bind to the PpsR repressor. The significance of these findings on the mechanism of light-induced output signaling is discussed.  相似文献   

9.
Yuan H  Dragnea V  Wu Q  Gardner KH  Bauer CE 《Biochemistry》2011,50(29):6365-6375
PixD (Slr1694) is a BLUF (blue-light-using FAD) photoreceptor used by the cyanobacterium Synechocystis sp. PCC6803 to control phototaxis toward blue light. In this study, we probe the involvement of a conserved Tyr8-Gln50-Met93 triad in promoting an output signal upon blue light excitation of the bound flavin. Analysis of acrylamide quenching of Trp91 fluorescence shows that the side chain of this residue remains partially solvent exposed in both the lit and dark states. Mutational analysis demonstrates that substitution mutations at Tyr8 and Gln50 result in the loss of the photocycle while a mutation of Met93 does not appreciably disturb the formation of the light-excited state and only minimally accelerates its decay from 5.7 to 4.5 s. However, mutations of Tyr8, Gln50, and Met93 disrupt the ability of PixD dimers to interact with PixE to form a higher-order PixD(10)-PixE(5) complex, which is indicative of a lit conformational state. Solution nuclear magnetic resonance spectroscopy and X-ray crystallographic analyses confirm that a Tyr8 to Phe mutation is locked in a pseudo-light-excited state revealing flexible areas in PixD that likely constitute part of an output signal upon light excitation of wild-type PixD.  相似文献   

10.
The plant blue light receptor, phot1, a member of the phototropin family, is a plasma membrane-associated flavoprotein that contains two ( approximately 110 amino acids) flavin-binding domains, LOV1 and LOV2, within its N terminus and a typical serine-threonine protein kinase domain at its C terminus. The LOV (light, oxygen, and voltage) domains belong to the PAS domain superfamily of sensor proteins. In response to blue light, phototropins undergo autophosphorylation. E. coli-expressed LOV domains bind riboflavin-5'-monophosphate, are photochemically active, and have major absorption peaks at 360 and 450 nm, with the 450 nm peak having vibronic structure at 425 and 475 nm. These spectral features correspond to the action spectrum for phototropism in higher plants. Blue light excitation of the LOV2 domain generates, in less than 30 ns, a transient approximately 660 nm-absorbing species that spectroscopically resembles a flavin triplet state. This putative triplet state subsequently decays with a 4-micros time constant into a 390 nm-absorbing metastable form. The LOV2 domain (450 nm) recovers spontaneously with half-times of approximately 50 s. It has been shown that the metastable species is likely a flavin-cysteine (Cys(39) thiol) adduct at the flavin C(4a) position. A LOV2C39A mutant generates the early photoproduct but not the adduct. Titrations of LOV2 using chromophore fluorescence as an indicator suggest that Cys(39) exists as a thiolate.  相似文献   

11.
Phototropins (phot1 and phot2, formerly designated nph1 and npl1) are blue-light receptors that mediate phototropism, blue light-induced chloroplast relocation, and blue light-induced stomatal opening in Arabidopsis. Phototropins contain two light, oxygen, or voltage (LOV) domains at their N termini (LOV1 and LOV2), each a binding site for the chromophore flavin mononucleotide (FMN). Their C termini contain a serine/threonine protein kinase domain. Here, we examine the kinetic properties of the LOV domains of Arabidopsis phot1 and phot2, rice (Oryza sativa) phot1 and phot2, and Chlamydomonas reinhardtii phot. When expressed in Escherichia coli, purified LOV domains from all phototropins examined bind FMN tightly and undergo a self-contained photocycle, characterized by fluorescence and absorption changes induced by blue light (T. Sakai, T. Kagawa, M. Kasahara, T.E. Swartz, J.M. Christie, W.R. Briggs, M. Wada, K. Okada [2001] Proc Natl Acad Sci USA 98: 6969-6974; M. Salomon, J.M. Christie, E. Knieb, U. Lempert, W.R. Briggs [2000] Biochemistry 39: 9401-9410). The photocycle involves the light-induced formation of a cysteinyl adduct to the C(4a) carbon of the FMN chromophore, which subsequently breaks down in darkness. In each case, the relative quantum efficiencies for the photoreaction and the rate constants for dark recovery of LOV1, LOV2, and peptides containing both LOV domains are presented. Moreover, the data obtained from full-length Arabidopsis phot1 and phot2 expressed in insect cells closely resemble those obtained for the tandem LOV-domain fusion proteins expressed in E. coli. For both Arabidopsis and rice phototropins, the LOV domains of phot1 differ from those of phot2 in their reaction kinetic properties and relative quantum efficiencies. Thus, in addition to differing in amino acid sequence, the phototropins can be distinguished on the basis of the photochemical cycles of their LOV domains. The LOV domains of C. reinhardtii phot also undergo light-activated spectral changes consistent with cysteinyl adduct formation. Thus, the phototropin family extends over a wide evolutionary range from unicellular algae to higher plants.  相似文献   

12.
LOV domains are the light-sensitive portion of plant phototropins. They absorb light through a flavin cofactor, photochemically form a covalent bond between the chromophore and a cysteine residue in the protein, and proceed to mediate activation of an attached kinase domain. Although the photoreaction itself is now well-characterized experimentally and computationally, it is still unclear how the formation of the adduct leads to kinase activation. We have performed molecular dynamics simulations on the LOV1 domain of Chlamydomonas reinhardtii and the LOV2 domain of Avena sativa, both before and after the photoreaction, to answer this question. The extensive simulations, over 240 ns in duration, reveal significant differences in how the LOV1 and LOV2 domains respond to photoactivation. The simulations indicate that LOV1 activation is likely caused by a change in hydrogen bonding between protein and ligand that destabilizes a highly conserved salt bridge, whereas LOV2 activation seems to result from a change in the flexibility of a set of protein loops. Results of electrostatics calculations, principal component analysis, sequence alignments, and root mean-square deviation analysis corroborate the above findings.  相似文献   

13.
Phototropins (phot1 and phot2) are blue light-activated serine/threonine protein kinases that elicit a variety of photoresponses in plants. Light sensing by the phototropins is mediated by two flavin mononucleotide (FMN)-binding domains, designated LOV1 and LOV2, located in the N-terminal region of the protein. Exposure to light results in the formation of a covalent adduct between the FMN chromophore and a conserved cysteine residue within the LOV domain. LOV2 photoexcitation is essential for phot1 function in Arabidopsis and is necessary to activate phot1 kinase activity through light-induced structural changes within a conserved alpha-helix situated C-terminal to LOV2. Here we have used site-directed mutagenesis to identify further amino acid residues that are important for phot1 activation by light. Mutagenesis of bacterially expressed LOV2 and full-length phot1 expressed in insect cells indicates that perturbation of the conserved salt bridge on the surface of LOV2 does not play a role in receptor activation. However, mutation of a conserved glutamine residue (Gln(575)) within LOV2, reported previously to be required to propagate structural changes at the LOV2 surface, attenuates light-induced autophosphorylation of phot1 expressed in insect cells without compromising FMN binding. These findings, in combination with double mutant analyses, indicate that Gln(575) plays an important role in coupling light-driven cysteinyl adduct formation from within LOV2 to structural changes at the LOV2 surface that lead to activation of the C-terminal kinase domain.  相似文献   

14.
The phototropins phot1 and phot2 are plant blue-light receptors that mediate phototropism, chloroplast movements, stomatal opening, leaf expansion, the rapid Inhibition of hypocotyl growth in etiolated seedlings, and possibly solar tracking by leaves in those species in which It occurs. The phototroplns are plasma membrane-associated hydrophilic proteins with two chromophore domains (designated LOV1 and LOV2 for their resemblance to domains In other signaling proteins that detect light, oxygen, or voltage) in their Nterminal half and a classic serine/threonlne kinase domain in their C-terminal half. Both chromophore domains bind flavin mononucleotide (FMN) and both undergo light-activated formation of a covalent bond between a nearby cystelne and the C(4a) carbon of the FMN to form the signaling state. LOV2-cystelnyl adduct formation leads to the release downstream of a tightly bound amphlpathlc α-helix, a step required for activation of the klnase function. This cysteinyl adduct then slowly decays over a matter of seconds or minutes to return the photoreceptor chromophore modules to their ground state. Functional LOV2 is required for light-activated phosphorylation and for various blue-light responses mediated by the phototroplns. The function of LOV1 is still unknown, although It may serve to modulate the signal generated by LOV2. The LOV domain Is an ancient chromophore module found In a wide range of otherwise unrelated proteins In fungi and prokaryotes, the latter Including cyanobacterla, eubacterla, and archaea. Further general reviews on the phototropins are those by Celaya and Liscum (2005) and Christie and Briggs (2005).  相似文献   

15.
16.
Blue light-induced chloroplast accumulation and avoidance relocation movements are controlled by the blue light photoreceptor phototropin. The Arabidopsis thaliana genome has two phototropin genes encoding phot1 and phot2. Each of these photoreceptors contains two LOV (light oxygen and voltage) domains and a kinase domain. The LOV domains absorb blue light though an associated flavin mononucleotide chromophore, while the kinase domain is thought to be associated with signal transduction. The phototropins control not only chloroplast relocation movement, but also blue light-induced phototropic responses, leaf expansion and stomatal opening. Here I review the role of phototropin as a photoreceptor for chloroplast photorelocation movement. Electronic Publication  相似文献   

17.
18.
Crosson S  Moffat K 《The Plant cell》2002,14(5):1067-1075
The phototropins are flavoprotein kinases that control phototropic bending, light-induced chloroplast movement, and stomatal opening in plants. Two flavin mononucleotide binding light, oxygen, or voltage (LOV) domains are the sites for initial photochemistry in these blue light photoreceptors. We have determined the steady state, photoexcited crystal structure of a flavin-bound LOV domain. The structure reveals a unique photochemical switch in the flavin binding pocket in which the absorption of light drives the formation of a reversible covalent bond between a highly conserved Cys residue and the flavin cofactor. This provides a molecular picture of a cysteinyl-flavin covalent adduct, the presumed signaling species that leads to phototropin kinase activation and subsequent signal transduction. We identify closely related LOV domains in two eubacterial proteins that suggests the light-induced conformational change evident in this structure is an ancient biomolecular response to light, arising before the appearance of plants.  相似文献   

19.
The marine environment has unique properties of light transmission, with an attenuation of long wavelengths within the first meters of the water column. Marine organisms have therefore evolved specific blue‐light receptors such as aureochromes to absorb shorter‐wavelength light. Here, we identify and characterize a light, oxygen, or voltage sensing (LOV) containing histidine kinase (LOV‐HK) that functions as a new class of eukaryotic blue‐light receptor in the pico‐phytoplanktonic cell Ostreococcus tauri. This LOV‐HK is related to the large family of LOV‐HKs found in prokaryotes. Phylogenetic analysis indicates that the LOV domains from LOV‐HKs, including O. tauri LOV‐HK, and phototropins (phot; plant and green algal LOV serine/threonine kinases) have different evolutionary histories. Photochemical analysis shows that the LOV domain of LOV‐HK binds a flavin cofactor and absorbs blue light with a fast photocycle compared with its prokaryotic counterparts. Ostreococcus tauri LOV‐HK expression is induced by blue light and is under circadian control. Further, both overexpression and downregulation of LOV‐HK result in arrhythmia of the circadian reporter CCA1:Luc under constant blue light. In contrast, photochemical inactivation of O. tauri LOV‐HK is without effect, demonstrating its importance for function of the circadian clock under blue light. Overexpression/downregulation of O. tauriLOV‐HK alters CCA1 rhythmicity under constant red light, irrespective of LOV‐HK’s photochemical reactivity, suggesting that O. tauri LOV‐HK also participates in regulation of the circadian clock independent of its blue‐light‐sensing property. Molecular characterization of O. tauri LOV‐HK demonstrates that this type of photoreceptor family is not limited to prokaryotes.  相似文献   

20.
Masuda S  Hasegawa K  Ono TA 《FEBS letters》2005,579(20):4329-4332
A sensor of blue light using FAD (BLUF) protein is a flavin adenine dinucleotide (FAD) based new class blue-light sensory flavoprotein. The BLUF domain of AppA was reconstituted in vitro from apoprotein and flavin adenine dinucleotide, flavin adenine mononucleotide or riboflavin. The light-induced FTIR spectra of the domain reconstituted from various flavins and the 13C-labeled apoprotein showed that identical light-induced structural changes occur in both the flavin chromophore and protein for the signaling state in all of the reconstituted holoproteins. The results showed that an adenosine 5'-dinucleotide moiety is not required for signaling-state formation in a BLUF domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号