首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
Six CHO mutants have previously been described as being sensitive to ionizing radiation and bleomycin treatment, with little or no cross sensitivity to UV-radiation (Jeggo and Kemp, 1983). Their ability to rejoin single- and double-strand breaks has been examined here. Using two techniques, gradient sedimentation and alkaline elution, no difference could be observed between wild-type and mutant strains in the initial number of single-strand breaks induced, the rate of rejoining, or the final level of single-strand breaks rejoined. Thus, a major inability to rejoin single-strand breaks is not the basis for sensitivity in these mutants. In contrast, all 6 mutants showed a decreased ability to rejoin the double-strand breaks induced by gamma-irradiation as measured by neutral elution. Rejoining of half of the breaks occurred in 37 min in wild-type cells and reached a maximum level of 72% after 2 h. All the mutants showed a decreased rate of rejoining, and the final level was 17% of that observed in the wild-type in the most defective mutant, and ranged from 35 to 69% in the other 5 mutants. These are the first mammalian cell mutants to be described with a defect in double-strand break rejoining.  相似文献   

2.
Induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) was studied in wild-type Chinese hamster ovary (CHO-K1) cells and its 2 X-ray-sensitive mutants xrs 5 and xrs 6 (known to be deficient in repair of DNA double-strand breaks (DSBs] by restriction endonucleases (REs) and inhibitors of DNA topoisomerase II known to induce DNA strand breaks. Five different types of REs, namely CfoI, EcoRI, HpaII (which induce cohesive DSBs), HaeIII and AluI (which induce blunt DSBs) were employed. REs that induce blunt-end DNA DSBs were found to be more efficient in inducing chromosomal aberrations than those inducing cohesive breaks. xrs 5 and xrs 6 mutants responded with higher sensitivity (50-100% increase in the frequency of aberrations per aberrant cell) to these REs than wild-type CHO-K1 cells. All these REs were also tested for their ability to induce SCEs. The frequency of SCEs increased in wild-type as well as mutant CHO cells, the induced frequency being about 2-fold higher in xrs mutants than in the wild-type cells. We also studied the effect of inhibitors of DNA topoisomerase II, namely 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposid (VP 16), at different stages of the cell cycle of these 3 types of cells. Both drugs increased the frequency of chromosomal aberrations in G2 cells. The mutants showed increased sensitivity to m-AMSA and VP 16, xrs 6 cells being 10- and 2-fold more sensitive than wild-type CHO-K1 cells respectively, and xrs 5 responding with 2-fold higher sensitivity than xrs 6 cells. G1 treatment of CHO cells with m-AMSA increased both chromosome- and chromatid-type aberrations, xrs mutants being about 3-fold more sensitive than CHO-K1 cells. The frequency of SCEs increased also after treatment of exponentially growing and S-phase CHO cells with m-AMSA and the higher sensitivity of xrs mutants (2-fold) was evident. The S-phase appeared to be a specific stage which is most prone for the induction of SCEs by m-AMSA. The results indicate that DNA DSBs induced by REs and inhibitors of DNA topoisomerase II correlate closely with induced chromosomal aberrations and SCEs in these cell lines, indicating that DSBs are responsible for the production of these 2 genetic endpoints.  相似文献   

3.
To investigate a role for surface carbohydrates in cellular malignancy, 15 different glycosylation-defective CHO cell mutants were examined for their tumorigenic and metastatic capacities after subcutaneous injection into nude mice. Most of the glycosylation mutants displayed similar or slightly decreased tumorigenicity compared with parental CHO cells. Neither parental CHO cells nor any of the mutants were observed to metastasize. However, independent isolates of one mutant type, Lec9, showed a dramatic reduction in tumor formation. The altered carbohydrates expressed at the surface of Lec9 cells appeared to be responsible for their loss of tumorigenicity, because revertants for lectin resistance were able to form tumors, and a double mutant (Lec9.Lec1) that expressed a Lec1 glycosylation phenotype also formed tumors. Finally, Lec9 cells were able to form tumors in gamma-irradiated nude mice, suggesting that recognition by an irradiation-sensitive host cell(s) was responsible for their reduced tumorigenicity in untreated nude mice.  相似文献   

4.
DNA damage generated by high-energy and high-Z (HZE) particles is more skewed toward multiply damaged sites or clustered DNA damage than damage induced by low-linear energy transfer (LET) X and gamma rays. Clustered DNA damage includes abasic sites, base damages and single- (SSBs) and double-strand breaks (DSBs). This complex DNA damage is difficult to repair and may require coordinated recruitment of multiple DNA repair factors. As a consequence of the production of irreparable clustered lesions, a greater biological effectiveness is observed for HZE-particle radiation than for low-LET radiation. To understand how the inability of cells to rejoin DSBs contributes to the greater biological effectiveness of HZE particles, the kinetics of DSB rejoining and cell survival after exposure of normal human skin fibroblasts to a spectrum of HZE particles was examined. Using gamma-H2AX as a surrogate marker for DSB formation and rejoining, the ability of cells to rejoin DSBs was found to decrease with increasing Z; specifically, iron-ion-induced DSBs were repaired at a rate similar to those induced by silicon ions, oxygen ions and gamma radiation, but a larger fraction of iron-ion-induced damage was irreparable. Furthermore, both DNA-PKcs (DSB repair factor) and 53BP1 (DSB sensing protein) co-localized with gamma-H2AX along the track of dense ionization produced by iron and silicon ions and their focus dissolution kinetics was similar to that of gamma-H2AX. Spatial co-localization analysis showed that unlike gamma-H2AX and 53BP1, phosphorylated DNA-PKcs was localized only at very specific regions, presumably representing the sites of DSBs within the tracks. Examination of cell survival by clonogenic assay indicated that cell killing was greater for iron ions than for silicon and oxygen ions and gamma rays. Collectively, these data demonstrate that the inability of cells to rejoin DSBs within clustered DNA lesions likely contributes to the greater biological effectiveness of HZE particles.  相似文献   

5.
A low frequency electron paramagnetic resonance (EPR) spectrometer has been used to measure the bioreduction rate of an exogenously added nitroxide free radical species. Measurements have been made in a well controlled, in vitro system using an X-ray and cisplatin sensitive Chinese hamster ovary (CHO) cell line, xrs-5, and partial revertants which display wild-type levels of sensitivity to X-rays but retain xrs-5 levels of cisplatin sensitivity. The xrs-5 cells reduce this radical species at a rate which is approx. 50% that of the wild-type CHO cell line, K1. The partial revertants maintain this defect in bioreduction despite their decrease in radiosensitivity. However, the bioreduction rate observed in these cells correlates with their sensitivity to the chemotherapeutic drug cisplatin. Low frequency EPR allows measurements and imaging of living tissue and may be of value as a predictive assay of human tumor response to chemotherapy.  相似文献   

6.
The genetic diversity of a range of ionising radiation sensitive mutants of cultured mammalian cell lines has been examined. Hybrids were constructed from suitably marked diploid cells by cell fusion and selected using resistance to HAT and ouabain. Hybrids were examined for ploidy and gamma-ray sensitivity. The data suggest that at least 8 and possibly 9 complementation groups exist which confer sensitivity to ionising radiation. Mutants in at least 3 distinct complementation groups have a reduced ability to rejoin DNA double-strand breaks.  相似文献   

7.
Previously, arginine revertants of Escherichia coli WWU, a derivative of E. coli 15T(-), have been subdivided by two independent methods: (i) the streak morphology on nutrient agar, and (ii) the pattern of phage growth using amber and ochre mutants of bacteriophage T4. In the first assay, revertants were subdivided into two classes according to the appearance of streaks after incubation on nutrient agar, a thick, even line of growth defining normal revertants and a thin, irregular line defining aberrant revertants. In the second assay, revertants were classified by the suppressors they contained. The present work demonstrates that revertants containing an amber suppressor show the aberrant morphology and are also able to catabolize thymidine for energy and carbon. This is in contrast to the parent WWU containing no suppressor, which shows a normal morphology and cannot utilize thymidine as an energy source. Revertants containing no suppressor, isolated specifically for their ability to catabolize thymidine, show an aberrant morphology. Together, these results indicate that the aberrant morphology results from suppression of an amber triplet in a gene of the thymidine catabolic pathway. Enzyme assays show the amber triplet to be in the gene specifying deoxyribomutase. It is suggested that the aberrant arginine revertants are analogous to high thymine-requiring mutants and that, in general, high and low thymine-requiring mutants differ from one another in their ability to catabolize deoxyribose-1-phosphate.  相似文献   

8.
C Campbell  P Stanley 《Cell》1983,35(1):303-309
Two rare and dominant mutants of Chinese hamster ovary (CHO) cells, LEC11 and LEC12, express the mouse embryonic antigen SSEA-1. Parental CHO cells and the revertants, LEC11.R9 and LEC12.R10, do not express this antigen as detected by a sensitive radioimmunoassay with a monoclonal antibody to SSEA-1. The presence of the SSEA-1 determinant correlates with the apparent de novo expression of specific N-acetylglucosaminide alpha(1,3)fucosyltransferase activities not detected in parental or revertant cell extracts. Several differences in the enzymes substrate specificities and their products have been identified. The combined data suggest that LEC11 and LEC12 mutants result from regulatory mutations affecting different fucosyltransferase genes.  相似文献   

9.
A V79 Chinese hamster cell line XR-V15B exhibiting hypersensitivity to X-ray has been isolated and characterized. Additionally to increased X-ray-sensitivity (approximately 8-fold, as judged by D10 values), cross-sensitivity to bleomycin (3-fold increase), 4NQO (3-fold), H2O2, EMS, MMS (2-fold) were observed also. No increased sensitivity to UV and MMC was found. Genetic complementation analysis indicates that XR-V15B belongs to the same complementation group as the X-ray-sensitive (xrs) mutants of Chinese hamster ovary (CHO) cells described by Jeggo (1985). Biochemical analysis of XR-V15B confirms this finding: the mutant showed a decreased ability to rejoin double-strand breaks induced by X-ray as measured by neutral elution. After 4 h of repair more than 50% of the double-strand breaks remain in comparison to 3% in V79 cells. No difference was observed between wild-type and XR-V15B cells in the initial number of single-strand breaks induced, in the kinetics of their rejoining and in the final level of unrejoined single-strand breaks. Treatment with 5-azacytidine did not have an effect on the reversion frequency of XR-V15B, contrary to the results obtained with the xrs mutants. XR-V15B has been grown in continuous culture for more than 3 months without evidence of reversion. The mutation induction by X-ray irradiation at the HPRT locus is not significantly increased in the mutant, but at doses giving the same degree of cell killing, XR-V15B cells are hypomutable.  相似文献   

10.
NBS1-deficient cells exhibit pronounced radiosensitivity and defects in chromosome integrity after ionizing radiation (IR) exposure, yet show only a minor defect in DNA double-strand break (DSB) rejoining, leaving an as yet unresolved enigma as to the nature of the radiosensitivity of these cells. To further investigate the relationship between radiosensitivity, DSB repair, and chromosome stability, we have compared cytological and molecular assays of DSB misrejoining and repair in NBS1-defective, wild type, and NBS1-complemented cells after IR damage. Our findings suggest a subtle defect in overall DSB rejoining in NBS1-defective cells and uniquely also reveal reduced ability of NBS1-defective cells to rejoin correct ends of DSBs. In agreement with published results, one of two different NBS1-defective cell lines showed a slight defect in overall rejoining of DSBs compared to its complemented counterpart, whereas another NBS line did not show any difference from wild type cells. Significant defects in the correct rejoining of DSBs compared to their respective controls were observed for both NBS1-defective lines. The defect in DSB rejoining and the increased misrejoining detected at the molecular level were also reflected in higher levels of fragments and translocations, respectively, at the chromosomal level. This work provides both molecular and cytological evidence that NBS1-deficient cells have defects in DSB processing and reveals that these molecular events can be manifest cytologically.  相似文献   

11.
We have optimized a pulsed-field gel electrophoresis assay that measures induction and repair of double-strand breaks (DSBs) in specific regions of the genome (L?brich et al., Proc. Natl. Acad. Sci. USA 92, 12050-12054, 1995). The increased sensitivity resulting from these improvements makes it possible to analyze the size distribution of broken DNA molecules immediately after the introduction of DSBs and after repair incubation. This analysis shows that the distribution of broken DNA pieces after exposure to sparsely ionizing radiation is consistent with the distribution expected from randomly induced DSBs. It is apparent from the distribution of rejoined DNA pieces after repair incubation that DNA ends continue to rejoin between 3 and 24 h postirradiation and that some of these rejoining events are in fact misrejoining events, since novel restriction fragments both larger and smaller than the original fragment are generated after repair. This improved assay was also used to study the kinetics of DSB rejoining and the extent of misrejoining in identical DNA sequences in human GM38 cells and human-hamster hybrid A(L) cells containing a single human chromosome 11. Despite the numerous differences between these cells, which include species and tissue of origin, levels of TP53, expression of telomerase, and the presence or absence of a homologous chromosome for the restriction fragments examined, the kinetics of rejoining of radiation-induced DSBs and the extent of misrejoining were similar in the two cell lines when studied in the G(1) phase of the cell cycle. Furthermore, DSBs were removed from the single-copy human chromosome in the hamster A(L) cells with similar kinetics and misrejoining frequency as at a locus on this hybrid's CHO chromosomes.  相似文献   

12.
Agarwal S  Tafel AA  Kanaar R 《DNA Repair》2006,5(9-10):1075-1081
Translocations are genetic aberrations that occur when a broken fragment of a chromosome is erroneously rejoined to another chromosome. The initial event in the creation of a translocation is the formation of a DNA double-strand break (DSB), which can be induced both under physiological situations, such as during the development of the immune system, or by exogenous DNA damaging agents. Two major repair pathways exist in cells that repair DSBs as they arise, namely homologous recombination, and non-homologous end-joining. In some situations these pathways can function inappropriately and rejoin ends incorrectly to produce genomic rearrangements, including translocations. Translocations have been implicated in cancer because of their ability to activate oncogenes. Due to selection at the level of the DNA, the cell, and the tissue certain forms of cancer are associated with specific translocations that can be used as a tool for diagnosis and prognosis of these cancers.  相似文献   

13.
Genetic analysis of X-ray-sensitive mutants of the CHO cell line   总被引:6,自引:0,他引:6  
P A Jeggo 《Mutation research》1985,146(3):265-270
The genetic diversity of 6 X-ray-sensitive (xrs) mutants of the CHO cell line has been investigated. Hybrids were constructed by fusing ouabain- and 6-thioguanine-resistant cells to ouabain- and 6-thioguanine-sensitive cells and selecting in HAT and ouabain medium. Hybrids were examined for ploidy and X-ray sensitivity. Crosses between xrs mutants and wild-type showed that each mutant was recessive. Crosses between different xrs mutants showed that all were in the same complementation group. Although all the mutants are primarily sensitive to ionizing radiation and bleomycin, and all have a defect in double-strand break rejoining, their cross-sensitivity to other DNA-damaging agents differed to some degree. One explanation is that this repair gene is involved in a pleiotropic response to DNA damage.  相似文献   

14.
The human DNA-excision repair gene ERCC-1 is cloned by its ability to correct the excision-repair defect of the ultraviolet light- and mitomycin-C-sensitive CHO mutant cell line 43-3B. This mutant is assigned to complementation group 2 of the excision-repair-deficient CHO mutants. In order to establish whether the correction by ERCC-1 is confined to CHO mutants of one complementation group, the cloned repair gene, present on cosmid 43-34, was transfected to representative cell lines of the 6 complementation groups that have been identified to date. Following transfection, mycophenolic acid was used to select for transferants expressing the dominant marker gene Ecogpt, also present on cosmid 43-34. Cotransfer of the ERCC-1 gene was shown by Southern blot analysis of DNA from pooled (500-2000 independent colonies) transformants of each mutant. UV survival and UV-induced UDS showed that only mutants belonging to complementation group 2 and no mutants of other groups were corrected by the ERCC-1 gene. This demonstrates that ERCC-1 does not provide an aspecific bypass of excision-repair defects in CHO mutants and supports the assumption that the complementation analysis is based on mutations in different repair genes.  相似文献   

15.
Radiobiological models, such as the lethal and potentially lethal (LPL) model and the repair-misrepair (RMR) model, have been reasonably successful at explaining the cell killing effects of radiation. However, the models have been less successful at relating cell killing to the formation, repair and misrepair of double-strand breaks (DSBs), which are widely accepted as the main type of DNA damage responsible for radiation-induced cell killing. A fully satisfactory model should be capable of predicting cell killing for a wide range of exposure conditions using a single set of model parameters. Moreover, these same parameters should give realistic estimates for the initial DSB yield, the DSB rejoining rate, and the residual number of unrepaired DSBs after all repair is complete. To better link biochemical processing of the DSB to cell killing, a two-lesion kinetic (TLK) model is proposed. In the TLK model, the family of all possible DSBs is subdivided into simple and complex DSBs, and each kind of DSB may have its own repair characteristics. A unique aspect of the TLK model is that break ends associated with both kinds of DSBs are allowed to interact in pairwise fashion to form irreversible lethal and nonlethal damages. To test the performance of the TLK model, nonlinear optimization methods are used to calibrate the model based on data for the survival of CHO cells for an extensive set of single-dose and split-dose exposure conditions. Then some of the postulated mechanisms of action are tested by comparing measured and predicted estimates of the initial DSB yield and the rate of DSB rejoining. The predictions of the TLK model for CHO cell survival and the initial DSB yield and rejoining rate are all shown to be in good agreement with the measured data. Studies suggest a yield of about 25 DSBs Gy(-1) cell(-1). About 20 DSBs Gy(-1) cell(-1) are rejoined quickly (15-min repair half-time), and 4 to 6 DSBs Gy(-1) cell(-1) are rejoined very slowly (10- to 15-h repair half-time). Both the slowly and fast-rejoining DSBs make substantial contributions to the killing of CHO cells by radiation. Although the TLK model provides a much more satisfactory formalism to relate biochemical processing of DSBs to cell killing than did the earlier kinetic models, some small differences among the measured and predicted CHO cell survival and DSB rejoining data suggest that additional factors and processes not considered in the present work may affect biochemical processing of DSBs and hence cell killing.  相似文献   

16.
Spontaneous phenotypic revertants of hypoxanthine phosphoribosyl-transferase (HPRT) temperature-sensitive V79 Chinese hamster cells were selected by plating a temperature-sensitive mutant in HAT medium at 39 degrees C. The incidence of such revertants was approximately 2 X 10(-4) per cell. The majority of the revertants examined had increases of between three- and tenfold in their specific activity of the enzyme, and they were able to grow continuously in the presence of HAT medium at 39 degrees C. When the revertants were cultivated in the absence of HAT, they recovered their HAT-sensitive phenotype and their lowered level of HPRT. Three of the revertants were examined for their temperature inactivation profiles, and all were found to have profiles identical to the ts parent, and quite different from the V79 wild type. The kinetic properties of the cell lines were studied: the Km for both PRPP and hypoxanthine was significantly different in the temperature-sensitive cells but was not significantly altered in the revertants with respect to the ts mutants. A specific antibody to Chinese hamster brain HPRT was employed in immunoprecipitation experiments. By measuring the point at which the immunoprecipitation of the antibody to HPRT was overcome by increasing concentrations of cell supernatant, it was possible to estimate the relative amount of enzyme molecules in the cell lines. From these data, it could be concluded that the revertants overproduced an enzyme with the same immunological properties as the ts line. Southern blots of the Hind III restricted DNA from the ts mutant and two revertant cell lines were examined with an HPRT cDNA probe. This established that the HPRT gene was amplified twofold in one of the revertants, and threefold in the other. However, if the revertants were reintroduced into nonselective medium, the gene copy number declined to one. Finally, northern blots of RNA extracted from the various cell lines demonstrated that the HPRT mRNA was augmented 1.5-fold in one revertant and 1.4-fold in the other. Reintroduction into non-selective medium resulted in a decline in mRNA level for the second mutant, whereas the first mutant appeared to be stabilized. We conclude that gene amplification and concomitant amplification of messenger RNA and enzyme levels are mechanisms of phenotypic reversion at the HPRT locus in Chinese hamster cells.  相似文献   

17.
N-acetylglucosaminyltransferase I (GlcNAc-TI) catalyzes the first reaction in the conversion of ASN-linked cell surface oligosaccharides from a mannose-terminating structure to more complex carbohydrate structures. The mutant Chinese hamster ovary (CHO) cell line, Lec1, is deficient in this enzyme and, therefore, shows increased sensitivity to the lectin, Concanavalin A, which binds to the mannose-terminating oligosaccharides that accumulate on Lec1 cell surface glycoproteins. Spontaneous revertants of the Lec1 phenotype have never been observed. We report here the isolation of stable revertants of Lec1 cells to the parental CHO cell lectin-resistance phenotype after DNA-mediated transformation with human DNA. Both primary and secondary transformants express varying levels of GlcNAc-TI enzyme activity which was stable even when the cells were cultured in nonselective conditions. Human alu repeat DNA sequences are present in the primary transformants, but these sequences could not be detected in the secondary transformants.  相似文献   

18.
The purpose of this study was to determine the feasibility of doing complementation analysis between DNA-repair mutants of CHO cells and human fibroblasts based on the recovery of hybrid cells resistant to DNA damage. Two UV-sensitive CHO mutant lines, UV20 and UV41, which belong to different genetic complementation groups, were fused with fibroblasts of xeroderma pigmentosum in various complementation groups. Selection for complementing hybrids was performed using a combination of ouabain to kill the XP cells and mitomycin C to kill the CHO mutants. Because the frequency of viable hybrid clones was generally < 10−6 and the frequency of revertants of each CHO mutant was 2×10−7, putative hybrids required verification. The hybrid character of clones was established by testing for the presence of human DNA in a dot-blot procedure.

Hybrid clones were obtained from 9 of the 10 different crosses involving 5 complementation groups of XP cells. The 4 attempted crosses with 2 other XP groups yielded no hybrid colonies. Thus, a definitive complementation analysis was not possible. Hybrids were evaluated for their UV resistance using a rapid assay that measures differential cytotoxicity (DC). All 9 hybrids were more resistant than the parental mutant CHO and XP cells, indicating that in each case complementation of the CHO repair defect by a human gene had occurred. 3 hybrids were analyzed for their UV-radiation survival curves and shown to be much more resistant that the CHO mutants but less resistant than normal CHO cells. With 2 of these hybrids, sensitive subclones, which had presumably lost the complementing gene, were found to have similar sensitivity to the parental CHO mutants. We conclude that the extremely low frequency of viable hybrids in this system limits the usefulness of the approach. The possibility remains that each of the nonhybridizing XP strains could be altered in the same locus as one of the CHO mutants.  相似文献   


19.
The X-ray-sensitive Chinese hamster ovary (CHO) mutant cell lines xrs 5 and xrs 6 were used to study the relation between X-ray-induced DNA lesions and biological effects. The frequencies of chromosomal aberrations and sister-chromatid exchanges (SCE) were determined in wild-type CHO-K1 as well as mutants xrs 5 and xrs 6 cells following X-irradiation under aerobic and anaerobic conditions. Furthermore, we used a newly developed immunochemical method (based on the binding of a monoclonal antibody to single-stranded DNA) to assay DNA single-strand breaks (SSBs) induced by gamma-rays in these CHO cells, after a repair time of up to 4 h. For all cell lines tested the frequency of X-ray-induced chromosomal aberrations was strongly increased after irradiation in air compared with hypoxic conditions. When compared to the wild-type line, the xrs mutants known to have a defect in repair of DNA double-strand breaks (DSBs) exhibited a markedly enhanced sensitivity to aerobic irradiation, and a high OER (oxygen enhancement ratio) of 2.8-3.5, compared with 1.8-2 in CHO-K1 cells. The induction of SCE by X-rays was relatively little affected in CHO-K1 irradiated in air compared with hypoxic conditions (OER = 0.8), and in xrs 5 (OER = 0.7). A dose-dependent increase in the frequency of SCEs was obtained in xrs 6 cells treated with X-rays in air, and a further increase by a factor of 2 was evident under hypoxic conditions (OER = 0.4). With the immunochemical assay of SSB following gamma-irradiation, no difference was found between wild-type and mutant strains in the number of SSBs induced. The observed rate of rejoining of SSBs was also the same for all cell lines studied.  相似文献   

20.
Previously known cell size (wee) mutations of fission yeast suppress the mitotic block caused by a defective cdc25 allele. Some 700 revertants of cdc25-22 were obtained after ultraviolet mutagenesis and selection at the restrictive temperature. Most revertants carried the original cdc25 lesion plus a mutation in or very close to the wee1 gene. Two partial wee1 mutations of a new type were found among the revertants. Two new wee mutations mapping at the cdc2 gene (cdc2-w mutants) were also obtained. The various mutations were examined for their effects on cell division size, their efficiency as cdc25 suppressors, and their dominance relations. Full wee1 mutations were found to suppress cdc25 lesions very efficiently, whereas partial wee1 mutations were poor suppressors. The cdc25 suppression ability of cdc2-w mutations was allele specific for cdc2, suggesting bifunctionality of the gene product. The wee1 mutations were recessive for cdc25 suppression; cdc2-w mutations were dominant. A model is proposed for the genetic control of mitotic timing and cell division size, in which the cdc2+ product is needed and is rate limiting for mitosis. The cdc2+ activity is inhibited by the wee1+ product, whereas the cdc25+ product relieves this inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号