首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Measurements of human forearm viscoelasticity   总被引:2,自引:0,他引:2  
In human subjects, stiffness of the relaxed elbow was measured by three methods, using a forearm manipulandum coupled to a.d.c. torque motor. Elbow stiffness calculated from frequency response characteristics increased as the driving amplitude decreased. Step displacements of the forearm produced restoring torques linearly related to the displacement. The stiffness was very similar to that calculated from natural frequencies at amplitudes above 0.1 rad. Thirdly, elbow stiffness was estimated from brief test pulses, 120 ms in duration, by mathematically simulating the torque-displacement functions. Stiffness values in the limited linear range (under +/- 0.1 rad) were higher than in the linear range of the first two methods. A major component of elbow stiffness appears to decay within 1 s. The coefficients of viscosity determined from the simulation were, however, very similar to those calculated from the frequency response. Test pulse simulation was then used to determine joint impedance for different, actively maintained elbow angles. Joint stiffness and viscosity increased with progressive elbow flexion.  相似文献   

3.
It is widely known that the pinch-grip forces of the human hand are linearly related to the weight of the grasped object. Less is known about the relationship between grip force and grip stiffness. We set out to determine variations to these dependencies in different tasks with and without visual feedback. In two different settings, subjects were asked to (a) grasp and hold a stiffness-measuring manipulandum with a predefined grip force, differing from experiment to experiment, or (b) grasp and hold this manipulandum of which we varied the weight between trials in a more natural task. Both situations led to grip forces in comparable ranges. As the measured grip stiffness is the result of muscle and tendon properties, and since muscle/tendon stiffness increases more-or-less linearly as a function of muscle force, we found, as might be predicted, a linear relationship between grip force and grip stiffness. However, the measured stiffness ranges and the increase of stiffness with grip force varied significantly between the two tasks. Furthermore, we found a strong correlation between regression slope and mean stiffness for the force task which we ascribe to a force stiffness curve going through the origin. Based on a biomechanical model, we attributed the difference between both tasks to changes in wrist configuration, rather than to changes in cocontraction. In a new set of experiments where we prevent the wrist from moving by fixing it and resting it on a pedestal, we found subjects exhibiting similar stiffness/force characteristics in both tasks.  相似文献   

4.
The objective of this study was to validate a single-spring model in predicting measured impact forces during an outstretched arm falling scenario. Using an integrated force plate, impact forces were assessed from 10 young adults (5 males; 5 females), falling from planted knees onto outstretched arms, from a random order of drop heights: 3, 5, 7, 10, 15, 20, and 25 cm. A single-spring model incorporating body mass, drop height plus the estimated linear stiffness of the upper extremity (hand, wrist and arm) was used to predict impact force on the hand. We used an analysis of variance linearity test to test the validity of using a linear stiffness coefficient in the model. We used linear regression to assess variance (R2) in experimental impact force predicted by the single-spring model. We derived optimum linear stiffness coefficients for male, female and sex-combined. Our results indicated that the association between experimental and predicted impact forces was linear (P < 0.05). Explain variance in experimental impact force was R2 = 0.82 for sex-combined, R2 = 0.88 for males and R2 = 0.84 for females. Optimum stiffness coefficients were 7436 N/m for sex-combined, 8989 N/m for males and 4527 N/m for females. In conclusion, a linear spring coefficient used in the single-spring model proved valid for predicting impact forces from fall heights up to 25 cm. Results also suggest the use of sex-specific spring coefficients when estimating impact force using the single-spring model. This model may improve impact force to bone strength ratios (factor-of-risk) and prediction of forearm and wrist fracture.  相似文献   

5.
Diabetic neuropathy is related to joint stiffness during late stance phase   总被引:1,自引:0,他引:1  
The majority of plantar ulcers in the diabetic population occur in the forefoot. Peripheral neuropathy has been related to the occurrence of ulcers. Long-term diabetes results in the joints becoming passively stiffer. This static stiffness may translate to dynamic joint stiffness in the lower extremities during gait. Therefore, the purpose of this investigation was to demonstrate differences in ankle and knee joint stiffness between diabetic individuals with and without peripheral neuropathy during gait. Diabetic subjects with and without peripheral neuropathy were compared. Subjects were monitored during normal walking with three-dimensional motion analysis and a force plate. Neuropathic subjects had higher ankle stiffness (0.236 N.m/deg) during 65 to 80% of stance when compared with non-neuropathic subjects (-0.113 N.m/deg). Neuropathic subjects showed a different pattern in ankle stiffness compared with non-neuropathic subjects. Neuropathic subjects demonstrated a consistent level of ankle stiffness, whereas non-neuropathic subjects showed varying levels of stiffness. Neuropathic subjects demonstrated lower knee stiffness (0.015 N.m/deg) compared with non-neuropathic subjects (0.075 N.m/deg) during 50 to 65% of stance. The differences in patterns of ankle and knee joint stiffness between groups appear to be related to changes in timing of peak ankle dorsiflexion during stance, with the neuropathic group reaching peak dorsiflexion later than the non-neuropathic subjects. This may partially relate to the changes in plantar pressures beneath the metatarsal heads present in individuals with neuropathy.  相似文献   

6.
Spinal stability is related to the recruitment and control of active muscle stiffness. Stochastic system identification techniques were used to calculate the effective stiffness and dynamics of the trunk during active trunk extension exertions. Twenty-one healthy adult subjects (10 males, 11 females) wore a harness with a cable attached to a servomotor such that isotonic flexion preloads of 100, 135, and 170 N were applied at the T10 level of the trunk. A pseudorandom stochastic force sequence (bandwidth 0-10 Hz, amplitude +/-30 N) was superimposed on the preload causing small amplitude trunk movements. Nonparametric impulse response functions of trunk dynamics were computed and revealed that the system exhibited underdamped second-order behavior. Second-order trunk dynamics were determined by calculating the best least-squares fit to the IRF. The quality of the model was quantified by comparing estimated and observed displacement variance accounted for (VAF), and quality of the second-order fits was calculated as a percentage and referred to as fit accuracy. Mean VAF and fit accuracy were 87.8 +/- 4.0% and 96.0 +/- 4.3%, respectively, indicating that the model accurately represented active trunk kinematic response. The accuracy of the kinematic representation was not influenced by preload or gender. Mean effective stiffness was 2.78 +/- 0.96 N/mm and increased significantly with preload (p < 0.001), but did not vary with gender (p = 0.425). Mean effective damping was 314 +/- 72 Ns/m and effective trunk mass was 37.0 +/- 9.3 kg. We conclude that stochastic system identification techniques should be used to calculate effective trunk stiffness and dynamics.  相似文献   

7.
The purpose of this study was to understand how humans regulate their 'leg stiffness' in hopping, and to determine whether this regulation is intended to minimize energy expenditure. 'Leg stiffness' is the slope of the relationship between ground reaction force and displacement of the centre of mass (CM). Variations in leg stiffness were achieved in six subjects by having them hop at maximum and submaximum heights at a frequency of 1.7 Hz. Kinematics, ground reaction forces and electromyograms were measured. Leg stiffness decreased with hopping height, from 350 N m(-1) kg(-1) at 26 cm to 150 N m(-1) kg(-1) at 14 cm. Subjects reduced hopping height primarily by reducing the amplitude of muscle activation. Experimental results were reproduced with a model of the musculoskeletal system comprising four body segments and nine Hill-type muscles, with muscle stimulation STIM(t) as only input. Correspondence between simulated hops and experimental hops was poor when STIM(t) was optimized to minimize mechanical energy expenditure, but good when an objective function was used that penalized jerk of CM motion, suggesting that hopping subjects are not minimizing energy expenditure. Instead, we speculated, subjects are using a simple control strategy that results in smooth movements and a decrease in leg stiffness with hopping height.  相似文献   

8.
Event-related brain potentials (ERPs) were recorded in a visuo-spatial attention task where the position of an imperative stimulus was indicated either validly or invalidly by a central arrow (trial-by-trial cueing). Subjects had to perform choice RT tasks with the response being dependent either on the identity of the target stimulus or on its position. When target identity was relevant for response selection, validly cued stimuli elicited amplitude enhancements of the early, sensory-evoked P1 and N1 components at lateral posterior sites. The N1 validity effect was limited to scalp sites ipsilateral to the visual field of stimulus presentation. Although these effects were found only when the sensory discrimination task was considerably difficult, they are in line with models assuming that modulations of sensory-perceptual processing (“sensory gating”) are induced by spatial cueing. However, when target location was response-relevant, N1 amplitude enhancements were consistently elicited by invalidly cued letters.CNV and LRP measures indicated that the arrow elicited response-related processing in the cue-target interval. Such processes occurred even when the cue contained no information about an upcoming response. Two consecutive lateralization phases were distinguishable in the LRP, with experimentally induced response assignments becoming effective only during the second phase.  相似文献   

9.
To confirm the existence of epimuscular myofascial force transmission in humans, this study examined if manipulating joint angle to stretch the muscle can alter the shear modulus of a resting adjacent muscle, and whether there are regional differences in this response. The biceps brachii (BB: manipulated muscle) and the brachialis (BRA: resting adjacent muscle) were deemed suitable for this study because they are neighboring, yet have independent tendons that insert onto different bones. In order to manipulate the muscle length of BB only, the forearm was passively set at supination, neutral, and pronation positions. For thirteen healthy young adult men, the shear modulus of BB and BRA was measured with shear-wave elastography at proximal and distal muscle regions for each forearm position and with the elbow joint angle at either 100° or 160°. At both muscle regions and both elbow positions, BB shear modulus increased as the forearm was rotated from a supinated to pronated position. Conversely, BRA shear modulus decreased as function of forearm position. The effect of forearm position on shear modulus was most pronounced in the distal muscle region when the elbow was at 160°. The observed alteration of shear modulus of the resting adjacent muscle indicates that epimuscular myofascial force transmission is present in the human upper limb. Consistent with this assertion, we found that the effect of muscle length on shear modulus in both muscles was region-dependent. Our results also suggest that epimuscular myofascial force transmission may be facilitated at stretched muscle lengths.  相似文献   

10.
System identification techniques have been used to track changes in dynamic stiffness of the human ankle joint over a wide range of muscle contraction levels. Subjects lay supine on an experimental table with their left foot encased in a rigid, low-inertia cast which was fixed to an electro-hydraulic actuator operating as a position servo. Subjects generated tonic plantarflexor or dorsiflexor torques of different magnitudes ranging from rest to maximum voluntary contractions (MVC) during repeated presentations of a stochastic ankle angular position perturbation. Compliance impulse response functions (IRF) were determined from every 2.5 s perturbation sequence. The gain (G), natural frequency (omega n), and damping (zeta) parameters of the second-order model providing the best fit to each IRF were determined and used to compute the corresponding inertial (I), viscous (B) and elastic (K) stiffness parameters. The behaviour of these parameters with mean torque was found to follow two simple rules. First, the elastic parameter (K) increased in proportion to mean ankle torque as it was varied from rest to MVC; these changes were considerable involving increases of more than an order of magnitude. Second, the damping parameter (zeta) remained almost invariant over the entire range of contractions despite the dramatic changes in K.  相似文献   

11.
Rat sperm that are demembranated with Triton X-100 and reactivated with Mg-ATP show a strong mechanical response to the presence of free calcium ion. At pCa < 4, the midpiece region of the flagellum develops a strong and sustained curvature that gives the cell the overall appearance of a fishhook [Lindemann and Goltz, 1988: Cell Motil. Cytoskeleton 10:420-431]. In the present study, the force and torque that maintain the calcium-induced hook have been examined quantitatively. In addition, full-length and shortened flagella were manipulated to evaluate the plasticity of the hooks and determined the critical length necessary for maintaining the curvature. The hooks were found to be highly resilient, returning to their original configuration (>95%) after being straightened and released. The results from manipulating the shortened flagella suggest that the force holding the hook in the curved configuration is generated in the basal 60 microm of the flagellum. The force required to straighten the calcium-induced hooks was measured with force-calibrated glass microprobes, and the bending torque was calculated from the measured force. The force and torque required to straighten the flagellum were found to be proportional to the change in curvature of the hooked region of the flagellum, suggesting an elastic-like behavior. The average torque to open the hooks to a straight position was 2.6 (+/-1.4) x 10(-7) dyne x cm (2.6 x 10(-14) N x m) and the apparent stiffness was 4.3 (+/-1.3) x 10(-10) dyne x cm(2) (4.3 x 10(-19) N x m(2)). The stiffness of the hook was determined to be approximately one quarter the rigor stiffness of a rat sperm flagellum measured under comparable conditions.  相似文献   

12.
The development of a novel instrumented implant for ulnar head replacement is presented in this study. This implant was instrumented with strain gauges to quantify bending moments about the anatomic axes of the distal ulna, and subsequently the distal radioulnar joint (DRUJ) reaction force magnitude. The implant was surgically inserted in seven cadaveric upper extremities, which were subsequently mounted in a custom joint simulator. Simulated active unresisted pronation and supination motion trials were conducted using computer-controlled pneumatic actuators to simulate forearm musculature. Passive (unloaded) trials were also conducted. The reaction force across the DRUJ ranged from 2 to 10 N in magnitude during this unresisted motion. Increased bending moment magnitudes were measured when the forearm was positioned in supination compared to pronation. The magnitude of joint bending moments showed a consistent pattern with forearm position, regardless of simulated active or passive rotation, or supination and pronation motion trials. This result illustrates that the primary influence on joint load is likely the position and contact with the radial articulation. This study of DRUJ loading should be useful for biomechanical modeling, implant design considerations and improved knowledge of articular mechanics.  相似文献   

13.
Time to failure and electromyogram activity were measured during two types of sustained submaximal contractions with the elbow flexors that required each subject to exert the same net muscle torque with the forearm in two different postures. Twenty men performed the tasks, either by maintaining a constant force while pushing against a force transducer (force task), or by supporting an equivalent load while maintaining a constant elbow angle (position task). The time to failure for the position task with the elbow flexed at 1.57 rad and the forearm horizontal was less than that for the force task (5.2 +/- 2.6 and 8.8 +/- 3.6 min, P = 0.003), whereas it was similar when the forearm was vertical (7.9 +/- 4.1 and 7.8 +/- 4.5 min, P = 0.995). The activity of the rotator cuff muscles was greater during the position tasks (25.1 +/- 10.1% maximal voluntary contraction) compared with the force tasks (15.2 +/- 5.4% maximal voluntary contraction, P < 0.001) in both forearm postures. However, the rates of increase in electromyogram of the accessory muscles and mean arterial pressure were greater for the position task only when the forearm was horizontal (P < 0.05), whereas it was similar for the elbow flexors. These findings indicate that forearm posture influences the difference in the time to failure for the two fatiguing contractions. When there was a difference between the two tasks, the task with the briefer time to failure involved greater rates of increase in accessory muscle activity and mean arterial pressure.  相似文献   

14.
The purpose of this study was to investigate how gripping modulates forearm muscle co-contraction prior to and during sudden wrist perturbations. Ten males performed a sub-maximal gripping task (no grip, 5% and 10% of maximum) while a perturbation forced wrist flexion or extension. Wrist joint angles and activity from 11 muscles were used to determine forearm co-contraction and muscle contributions to wrist joint stiffness. Co-contraction increased in all pairs as grip force increased (from no grip to 10% grip), corresponding to a 36% increase in overall wrist joint stiffness. Inclusion of individual muscle contributions to wrist joint stiffness enhanced the understanding of forearm co-contraction. The extensor carpi radialis longus (ECRL) and brevis had the largest stiffness contributions (34.5 ± 1.3% and 20.5 ± 2.3%, respectively), yet muscle pairs including ECRL produced the lowest co-contraction. The muscles contributing most to wrist stiffness were consistent across conditions (ECRL for extensors; Flexor Digitorum Superficialis for flexors), suggesting enhanced contributions rather than muscular redistribution. This work provides investigation of the neuromuscular response to wrist perturbations and gripping demands by considering both co-contraction and muscle contributions to joint stiffness. Individual muscle stiffness contributions can be used to enhance the understanding of forearm muscle control during complex tasks.  相似文献   

15.
The mechanical properties of a boxing punch have been determined using several techniques. The results are consistent with the medical consequences of boxing discussed in the report of the Board of Science and Education Working Party on boxing. Data were gathered from a world ranked British professional heavyweight, Frank Bruno, as he punched an instrumented, padded target mass suspended as a ballistic pendulum. Within 0.1 s of the start the punch had travelled 0.49 m and attained a velocity on impact of 8.9 m/s. The peak force on impact of 4096N (0.4 ton), attained within 14 ms of contact, represents a blow to the human head of up to 6320N (0.63 ton). The transmitted impulse generated an acceleration of 520 m/s2 (53 g) in the target head. For comparison an equivalent blow would be delivered by a padded wooden mallet with a mass of 6 kg (13 lbs) if swung at 20 mph.  相似文献   

16.
In situ force in the anterior cruciate ligament (ACL) has been quantified both in vitro in response to relatively simple loads by means of robotic technology, as well as in vivo in response to more complex loads by means of force transducers and computational models. However, a methodology has been suggested to indirectly estimate the in situ forces in the ACL in a non-invasive, non-contact manner by reproducing six-degree of freedom (six-DOF) in vivo kinematics on cadaveric knees using a robotic/UFS testing system. Therefore, the objective of this study was to determine the feasibility of this approach. Kinematics from eight porcine knees (source knees) were collected at 30 degrees , 60 degrees , and 90 degrees of flexion in response to: (1) an anterior load of 100 N and (2) a valgus load of 5 N m. The average of each kinematic data set was reproduced on a separate set of eight knees (target knees). The in situ forces in the ACL were determined for both sets of knees and compared. Significant differences (rho<0.05) were found between the source knees and the target knees for all flexion angles in response to an anterior load. However, in response to valgus loads, there was no significant difference between the source knees and the target knees at 30 degrees and 90 degrees of flexion. It was noted that there was a correlation between anterior knee laxity (the distance along the displacement axis from the origin to the beginning of the linear region of the load-displacement curve) and internal-external rotation. These data suggest that in order to obtain reproducible results one needs to first match knees to knees with comparable anterior knee laxity. Thus, an estimate of the in situ forces in the ACL during in vivo activities might be obtainable using this novel methodology.  相似文献   

17.
The goal of this study was to address some of the factors that contribute to the human ability to detect the presence of weak electric fields generated by direct current (DC) and alternating current (AC) sources. An exposure chamber allowed us to expose a limited surface of the body (forearm and hand) to DC fields of up to 65 kV/m and AC fields up to a maximum of 35 kV/m (frequency 60 Hz). Perception was examined using a staircase procedure and a rating procedure derived from signal detection theory. Sixteen subjects participated in the experiments, and none detected the local DC fields. In contrast, 9/16 subjects were sensitive to local AC electric fields, although detection thresholds (index of sensitivity, d' = 1.0) were widely variable between subjects. When regional exposure was limited to the dorsal forearm, performance was similar to that seen when the forearm and hand were exposed. In contrast, subjects did not reliably detect the AC electric fields when exposure was limited to the hand (either hairy or glabrous skin), although a minority of subjects (3/9) showed some evidence of detecting fields presented to the glabrous palm. Subjects were unable to detect AC electric fields when the hair was removed from the forearm and hand, suggesting that the evoked sensation is mainly dependent on movement of hair located in the exposed region.  相似文献   

18.
Our objective was to determine the effect of muscle fatigue on the dynamic stiffness of the human ankle. Four subjects were required to maintain constant-force contractions of tibialis anterior until the required force could no longer be maintained. Repeated pseudo-random displacements of ankle angular position were applied throughout each contraction. The dynamic relation between ankle angular position and ankle torque was identified by determining non-parametric compliance impulse response functions (CIRFs). The CIRFs were redetermined every 2.55s throughout the sustained contractions to provide a quantitative measure of changes in ankle stiffness dynamics. Inspection of these CIRFs revealed little change in shape or magnitude throughout the contractions, despite large increases in tibialis anterior EMG. The dynamics were further quantified by estimating the equivalent joint inertia, viscosity and elasticity associated with each CIRF. As each contraction progressed, the inertial and elastic terms remained constant whereas the viscous term decreased slightly. These findings demonstrate that fatigue of tibialis anterior during sustained constant mean force contractions results in little change in the mechanical dynamics of the human ankle.  相似文献   

19.
Posttranslational modification by small ubiquitin-like modifiers (SUMOs), known as SUMOylation, is a key regulatory event in many eukaryotic cellular processes in which SUMOs interact with a large number of target proteins. SUMO binding motifs (SBMs) are small peptides derived from these target proteins that interact noncovalently with SUMOs and induce conformational changes. To determine the effect of SBMs on the mechanical properties of SUMO1 (the first member of the human SUMO family), we performed single-molecule force spectroscopy experiments on SUMO1/SBM complexes. The unfolding force of SUMO1 (at a pulling speed of 400 nm/s) increased from ∼130 pN to ∼170 pN upon binding to SBMs, indicating mechanical stabilization upon complexation. Pulling-speed-dependent experiments and Monte Carlo simulations measured a large decrease in distance to the unfolding transition state for SUMO1 upon SBM binding, which is by far the largest change measured for any ligand binding protein. The stiffness of SUMO1 (measured as a spring constant for the deformation response along the line joining the N- and C-termini) increased upon SBM binding from ∼1 N/m to ∼3.5 N/m. The relatively higher flexibility of ligand-free SUMO1 might play a role in accessing various conformations before binding to a target.  相似文献   

20.
Relative net vertical impulse determines jumping performance   总被引:1,自引:0,他引:1  
The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号