首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the rabies virus G cDNA was expressed with the help of T7 RNA polymerase provided by a recombinant vaccinia virus (RVV-T7), functional G proteins were produced in terms of their ability to induce low pH-dependent syncytium formation and the formation of conformational epitopes, including the acid-sensitive epitope recognized by mAb #1-30-44. Such an ability and the 1-30-44 epitope formation, however, were not associated with the G gene products when G cDNA was expressed without the help of RVV-T7 using a tetracycline-regulated expression vector (pTet-G), although they were normally transported to the surface of established G protein-producing BHK-21 (G-BHK) cells. But, when the G-BHK cells were treated with 2.5 m M sodium butyrate (NaB) after the removal of tetracycline, we could observe not only a much increased frequency of G protein-producing cells, but also the greatly enhanced maturation of the protein. Another short acylate, sodium propionate (NaP), similarly induced increased G protein synthesis at a concentration of 2.5 m M as NaB; however, such proteins were mostly not endowed with the fusion activity nor the 1-30-44 epitope, while NaP at a higher concentration as 5.0 m M did induce similarly the increased production and enhanced maturation of G protein, including the 1-30-44 epitope formation. From these results, we conclude that functional maturation of G protein to acquire fusogenic activity is correlated with 1-30-44 epitope formation, and 2.5 m M NaB not only stimulates G protein production, but also provides such cellular conditions as are required for the structural and functional maturation of the protein.  相似文献   

2.
Monoclonal antibody (mAb) #1-30-44 recognized an acid-sensitive conformational epitope of rabies virus glycoprotein (G). The antigenicity of G protein exposed on the cell surface was lost when the infected cells were exposed to pH 5.8. By comparing the deduced amino acid sequence of G protein between the HEP-Flury strain and the epitope-negative CVS strain as well as the mAb-resistant escape mutants, two distant sites that contained Lys-202 and Asn-336 were shown to be involved in the epitope formation. Lys-202 is located in the so-called neurotoxin-like sequence, while Asn-336 is included in antigenic site III and is very near the amino acid at position 333, which is known to affect greatly the neuropathogenicity of rabies virus when changed. Consistent with this finding, antigenicity of a neurovirulent revertant of the HEP-Flury strain, in which Gln-333 of G protein was replaced by Arg, was also affected as shown by its greatly decreased reactivity with mAb #1-30-44 compared to that of the original avirulent HEP virus. Based on these results, we hypothesize that the neurotoxin-like domain and some amino acids in antigenic site III come into contact with each other to form a conformational epitope for mAb #1-30-44, and such a configuration would be lost when exposed to acidic conditions to perform a certain low pH-dependent function of G protein.  相似文献   

3.
In this study, we investigated the antigenic structures and maturation of some C-terminal-deficient derivatives of rabies virus glycoprotein (G). The Gs protein, a soluble form of G protein shed from infected cells, displayed antigenicity to most of our conformational epitope-specific anti-G mAbs, but took the 1-30-44 epitope-deficient conformation (termed G(C) form). (The 1-30-44 epitope was acid-sensitive and dependent on two separate regions, the Lys-202-containing and Asn-336-containing regions; Kankanamge et al., Microbiol. Immunol., 47: 507-519). Intact G proteins took the 1-30-44 epitope-positive form (referred to as G(B) form) on the cell surface, but not inside the cell. A deletion mutant G(1-429) (termed GDeltaTC), lacking the transmembrane (TM) and cytoplasmic domains, was shown to be accumulated in the rough endoplasmic reticulum (rER) with BiP and did not seem to be shed. Another C-terminal-deficient mutant G(1-462) (termed CT1) was deprived of the whole cytoplasmic domain except for a basic amino acid left at the C-terminus, but was transported to the cell surface, where it showed pH-dependent cell fusion activity and almost full antigenicity to most of the anti-G mAbs with the exception of very weak antigenicity to mAb #1-30-44. No Gs protein could be detected in the CT1-producing cultures. Based on these results, we think that the cytoplasmic domain was not necessary for the G protein to be transported to the cell surface, but was necessary to keep its 1-30-44 epitope-positive G(B) conformation. Gs proteins might have lost the C-terminal regions during the maturation process after being exported from the rER.  相似文献   

4.
We previously reported that the rabies virus glycoprotein (G) takes either of two different conformations (referred to as B and C forms) under neutral pH conditions, that could be differentiated by their reactivity to a monoclonal antibody (mAb), #1-30-44, that recognizes the acid-sensitive conformational epitope, and the formation taken is dependent on two separate regions containing Lys-202 and Asn-336 of the protein (Kankanamge et al., Microbiol. Immunol., 47, 507-519, 2003). Semi-quantitative antibody-binding assays demonstrated that only one-third to one-fourth of mature G proteins on the cell surface were taking the 1-30-44 epitope-positive B form even at pH 7.4. The ratio of B to C varied, depending on the environmental pH, but did not decrease to zero even at pH 5.8-6.2, preserving a certain content (about 15-20%) of B form. Immunoprecipitation studies demonstrated that a portion of G proteins were intimately associated with a dimer form of matrix (M) protein in terms of resistance to treatment with a mixture of 1% deoxycholate and 1% Nonidet P-40, and seemed to preserve the B form even at lower pHs. Similar results were also obtained with the virion-associated G proteins, including the intimate association of a portion of the G proteins with the M protein dimer. From these results, we assume that a certain portion of the rabies virion-associated G proteins are associated with a dimer form of M protein, keeping the 1-30-44 epitope-positive B conformation under various pH conditions, which might possibly assure the virion's recognition of host cell receptor molecules in the body.  相似文献   

5.
We investigated a virus-neutralizing conformational epitope of the rabies virus glycoprotein (G) that is recognized by an anti-G monoclonal antibody (mAb; #1-46-12) and shared by most of the laboratory strains of the virus. To investigate the epitope structure, we isolated escape mutants from the HEP-Flury virus (wild-type; wt) after repeated passages in culture in the presence of the mAb. Immunofluorescence studies indicated that the mutants could be classified into two groups; the Group I lacked the epitope, while Group II preserved the epitope. The latter was dominant under the passage conditions, since Group I disappeared during the continuous passages. G proteins showed different electrophoretic mobilities; G protein of Group I migrated at the same rate as wt G protein, while that of Group II migrated at a slower rate, which was shown to be due to acquisition of an additional oligosaccharide side chain. Nucleotide sequencing of the G gene strongly suggested that amino acid substitutions at Thr-36 by Pro and Ser-39 by Thr of the G protein are responsible for the escape mutations of Groups I and II, respectively. The latter is a unique mutation of the rabies virus that allows the G protein to be glycosylated additionally at Asn-37, a potential glycosylation site that is not glycosylated in the parent virus, in preserving the epitope-positive conformation. These results suggest that to keep the 1-46-12 epitope structure is of greater survival advantage for the virus to escape the neutralization than to destroy it, which could be achieved by acquiring an additional oligosaccharide chain at Asn-37.  相似文献   

6.
We investigated structural changes in the rabies virus (HEP-Flury strain) nucleocapsid (NC) during the virus replication, for which we used two anti-nucleoprotein (N) monoclonal antibodies (mAbs), #404-11 (specific for a conformation-dependently exposed linear epitope) and #1-7-11 (specific for a conformational epitope which is exposed after the nucleocapsid formation). Both mAbs recognized the N protein of the viral NC, but not of the RNA-free N-P complex. The 1-7-11 and 404-11 epitopes could be mapped to the N-terminal and the C-terminal regions of N protein, respectively. Immunoprecipitation studies demonstrated that treatment of the NC either with the alkaline phosphatase or sodium deoxycholate (DOC) resulted in dissociation of most P proteins from the NC and in the reduced reactivity to mAb #404-11, but not to mAb #1-7-11. NC-like structures produced in the N cDNA-transfected cells displayed strong reactivity to mAb #1-7-11; however, reactivity to mAb #404-11 was very weak. And, coexpression with viral phosphoprotein (P) resulted in little increase in reactivity to mAb #404-11 of the NC-like structures, while the reactivity was significantly increased by cotransfection with P and the viral minigenome whose 3'- and 5'-end structures were derived from the viral genome. From these results, we assume that, although the 404-11 epitope is a linear one, the epitope-containing region is exposed only when N proteins encapsidate properly the viral RNA in collaboration with the P protein. Further, exposure of the 404-11 epitope region might be function-related, and be regulated by association and dissociation of the P protein.  相似文献   

7.
We previously reported that a conformational epitope-specific monoclonal antibody (mAb; #1-46-12) neutralized the rabies virus by binding only a small number (less than 20) of the antibody molecules per virion, while a linear epitope-specific mAb (#7-1-9) required more than 250 IgG molecules for the neutralization. We also isolated both the epitope-negative (R-31) and-positive (R-61) escape mutants that resisted mAb #1-46-12. Co-infection studies with wild type (wt) and R-61 mutant have shown that although the infectivity of R-61 mutant was not affected by the binding of about 300 IgG molecules per virion, incorporation of a small number of wt G protein into the R-61 virion resulted in dramatic loss of the resistance. In this study, we further investigated properties of the mutant G proteins. The R-61 G protein lost reactivity to the mAb when solubilized, even keeping a trimer form, suggesting that membrane-anchorage is essential for the maintenance of its epitope-positive conformation. On the other hand, incorporation of wt G proteins into the R-31 virions did not affect their resistance to the mAb very much. Although we have not so far found the presumed conformational changes induced by the mAb-binding, we think that these results are not inconsistent with our previously proposed novel model (referred to as a domino effect model) for the virus neutralization by mAb #1-46-12 other than a classical spike-blocking model, which implicates successive spreading of the postulated antibody-induced conformational changes of G protein to the neighboring spikes until abolishing the host cell-binding ability of the virion.  相似文献   

8.
The Semliki Forest virus spike protein has a potent membrane fusion activity which is activated in vivo by the low pH of endocytic vacuoles. The spike protein is composed of two transmembrane subunits, E1 and E2, plus E3, a peripheral polypeptide. Acid-induced conformational changes in the E1 or E2 subunits were analyzed by using monoclonal antibodies specific for the acid-treated spike protein. E1 and E2 reacted with the antibodies after treatment of wild-type or mutant virus at the pH of fusion. The E1 conformational change resembled fusion in its requirement for both low pH and cholesterol. Pulse-chase analysis and intracellular pH treatment were then used to determine the ability of the newly synthesized spike to undergo acid-induced conformational changes. p62, the precursor to E2 and E3, was shown to undergo a pH-dependent conformational change similar to that of E2 and was sensitive to acid very soon after biosynthesis. In contrast, a posttranslational maturation event was required for the conversion of E1 to the pH-sensitive form. E1 maturation occurred fairly late in the exocytic pathway, after the virus spike had passed the medial Golgi but before incorporation of the spike into a new virus particle.  相似文献   

9.
We investigated behaviors of the rabies virus matrix (M) protein using a monoclonal antibody (mAb), #3-9-16, that recognized a linear epitope located at the N-terminus of the protein. Based on the reactivity with this mAb, M proteins could be divided into at least two isoforms; an ordinary major form (Malpha) whose 3-9-16 epitope is hidden, and an N-terminal-exposed epitope-positive form (Mbeta). The Mbeta protein accounted for about 25-30% of the total M proteins in the virion, while its content in the cell ranged from 10 to 15% of total M protein. Fluorescent antibody (FA) staining showed that the Mbeta antigen distributed in the Golgi area where the colocalized viral glycoprotein antigen was also detected. Mbeta antigen was shown to be exposed on the surface of infected cells by both immunoprecipitation and FA staining with the mAb, whereby the cells might have become sensitive to the mAb-dependent complement-mediated cytolysis. Similarly, the Mbeta antigen was shown to be exposed on the virion surface, and the infectivity of the virus was destroyed by the mAb in the presence of a complement. Together with these results, we think that the M protein molecule takes either of two conformations, one (Mbeta) of which exposes the 3-9-16 epitope located in the N-terminal region of the M protein, that are also exposed on the surface of the virion and infected cells, whereby it might play a certain important role(s) in the virus replication process differently from the other form (Malpha), probably through its intimate association with the Golgi area and/or the cell membrane.  相似文献   

10.
The glycoprotein (G) of rabies virus can assume at least three different conformations: the native (N) state detected at the viral surface above pH 7; the activated (A) hydrophobic state, which is probably involved in the first steps of the fusion process; and the fusion-inactive (I) conformation. There is a pH-dependent equilibrium between these states, the equilibrium being shifted towards the I state at low pH. It has been supposed that the transition from the N to the I state mediates membrane fusion. By using a lipid-mixing assay, we studied the kinetics of fusion and fusion inactivation for two rabies virus strains, PV and CVS. In addition, by using electron microscopy and a trypsin sensitivity assay, we analyzed the kinetics of the conformational change towards the I state for both strains. Although the PV strain fuses faster, inactivation and the conformational change of PV G occur more slowly than for the CVS strain. This suggests that the structural transition towards the I state is irrelevant to the fusion process. Immunofluorescence and immunoprecipitation experiments performed with infected cells and two different monoclonal antibodies, one specific for the N form of G and one which recognizes both the N and the I states, suggest that G is transported in an I state-like conformation through the Golgi apparatus and acquires its N structure only near or at the cell surface. We propose that the role of the I state is to avoid unspecific fusion during transport of G in the acidic Golgi vesicles.  相似文献   

11.
Genes encoding orthologs of the vaccinia virus G1 protein are present in all poxviruses for which sequence information is available, yet neither the role of the protein nor its requirement for virus replication is known. G1 was predicted to be involved in the cleavage of core proteins, based on a transfection study and the presence of an HXXEH motif found in a subset of metallopeptidases. In the present study, we engineered a recombinant vaccinia virus containing a single copy of the G1L gene with a C-terminal epitope tag that is stringently regulated by the Escherichia coli lac repressor. In the absence of inducer, expression of G1 was repressed and virus replication was inhibited. Rescue of infectious virus was achieved by expression of wild-type G1 in trans, but not when the putative protease active site residues histidine-41, glutamate-44, or histidine-45 were mutated. Nevertheless, the synthesis and proteolytic processing of major core and membrane proteins appeared unaffected under nonpermissive conditions, distinguishing the phenotype of the G1L mutant from one in which the gene encoding the I7 protease was repressed. Noninfectious virus particles, assembled in the absence of inducer, did not attain the oval shape or characteristic core structure of mature virions. The polypeptide composition of these particles, however, closely resembled that of wild-type virus. Full-length and shorter forms of the G1 protein were found in the core fraction of virus particles assembled in the presence of inducer, suggesting that G1 is processed by self-cleavage or by another protease.  相似文献   

12.
The cellular prion protein (PrPc) is a host-encoded sialoglycoprotein bound to the external surface of the cell membrane by a glycosyl phosphatidylinositol anchor. A posttranslationally modified PrP isoform (PrPSc) is a component of the infectious particle causing scrapie and the other prion diseases. mAb have been raised against the protease-resistant core of Syrian hamster (SHa) PrPSc designated PrP 27-30. To map the epitopes within PrP reacting to these antibodies, we have expressed wild-type, chimeric mouse (Mo)/SHa and mutant MoPrP genes using recombinant vaccinia virus systems. The fidelity of the expression of recombinant PrPC was examined using vaccinia viruses expressing SHa-PrPC. It is full length, possesses Asn-linked carbohydrates and is attached to the external surface of the cell membrane by a glycosyl phosphatidylinositol anchor that is sensitive to cleavage by phosphatidylinositol-specific phospholipase C. We have tested 18 mAb for their ability to bind to chimeric prion proteins on immunoblots. Three distinct epitopes were identified that mapped to amino acid differences between SHa and MoPrP sequences. The first epitope, recognized by three of the antibodies tested, was defined by methionines at amino acids 108 and 111 in the mouse protein. The second epitope was dependent upon the presence of asparagines at positions 154 and 174 in MoPrP and was recognized by four of the antibodies tested. The third epitope mapped to a single amino acid substitution at residue 138 in MoPrP. mAb raised against SHaPrP 27-30 specific for this epitope are able to bind MoPrPC which has a single amino acid change (Ile to Met) at position 138. Eleven of the 18 antibodies tested mapped to this immunodominant epitope. It is located within a postulated amphipathic helix, a structure associated with immunodominant Ag. Inasmuch as PrPC, in its native form on the cell surface, is detected by the mAb 13A5 (a prototypic antibody of the immunodominant third epitope class), it is likely that this epitope is accessible in the native conformation of this protein.  相似文献   

13.
Dogs were vaccinated intradermally with vaccinia virus recombinants expressing the rabies virus glycoprotein (G protein) or nucleoprotein (N protein) or a combination of both proteins. The dogs vaccinated with either the G or G plus N proteins developed virus-neutralizing antibody titers, whereas those vaccinated with only the N protein did not. All dogs were then challenged with a lethal dose of a street rabies virus, which killed all control dogs. Dogs vaccinated with the G or G plus N proteins were protected. Five (71%) of seven dogs vaccinated with the N protein sickened, with incubation periods 3 to 7 days shorter than that of the control dogs; however, three (60%) of the five rabid dogs recovered without supportive treatment. Thus, five (71%) of seven vaccinated with the rabies N protein were protected against a street rabies challenge. Our data indicate that rabies virus N protein may be involved in reducing the incubation period in dogs primed with rabies virus N protein and then challenged with a street rabies virus and, of more importance, in subsequent sickness and recovery.  相似文献   

14.
Enveloped animal viruses infect cells via fusion of the viral membrane with a host cell membrane. Fusion is mediated by a viral envelope glycoprotein, which for a number of enveloped animal viruses rearranges itself during fusion to form a trimeric alpha-helical coiled-coil structure. This conformational change from the metastable, nonfusogenic form of the spike protein to the highly stable form involved in fusion can be induced by physiological activators of virus fusion and also by a variety of destabilizing conditions. The E1 spike protein subunit of Semliki Forest virus (SFV) triggers membrane fusion upon exposure to mildly acidic pH and forms a homotrimer that appears necessary for fusion. We have here demonstrated that formation of the E1 homotrimer was efficiently triggered under low-pH conditions but not by perturbants such as heat or urea, despite their induction of generalized conformational changes in the E1 and E2 subunits and partial exposure of an acid-specific E1 epitope. We used a sensitive fluorescence assay to show that neither heat nor urea treatment triggered SFV-liposome fusion at neutral pH, although either treatment inactivated subsequent low-pH-triggered fusion activity. Once formed, the low-pH-induced E1 homotrimer was very stable and was only dissociated under harsh conditions such as heating in sodium dodecyl sulfate. Taken together, these data, as well as protein structure predictions, suggest a model in which the less stable native E1 subunit specifically responds to low pH to form the more stable E1 homotrimer via conformational changes different from those of the coiled-coil type of fusion proteins.  相似文献   

15.
We have mapped a linear epitope recognized by the virus-neutralizing monoclonal antibody 6-15C4 within the primary sequence of the G protein from the Evelyn-Rokitnicki-Abelseth strain of rabies virus. This was accomplished by using fragments of the rabies virus G protein and deduced amino acid sequences of neutralization-resistant variant rabies viruses. The monoclonal antibody 6-15C4 specifically recognized a synthetic peptide (peptide G5-24) which resembles the 6-15C4 epitope in structure. In addition, a tandem peptide constructed from the G5-24 peptide and a dominant TH cell epitope of the rabies virus N protein induced protective immunity against lethal rabies virus challenge infection in mice.  相似文献   

16.
构建汉滩病毒76—118N蛋白及其分别从N-端和C-端缺失的共6个突变体,在大肠杆菌BL-21中进行表达,并对其中一些蛋白进行了纯化。通过Western blot、酶联免疫吸附试验(ELISA)进行汉滩病毒N蛋白的抗原表位分析,N蛋白及6个缺失突变体都与组特异性抗体L13F3呈阳性反应,而缺失突变体与型特异性抗体AH30呈阴性反应。构建汉滩病毒76—118N蛋白及其6个缺失突变体的真核表达载体,并在COS-7细胞中进行表达。通过间接免疫荧光试验(IFA)进行汉滩病毒N蛋白的抗原表位分析,病人血清与真核表达的N蛋白及6个缺失突变体呈阳性反应。而仅有N蛋白及缺失N端1~30位氨基酸序列的NPN30与型特异性抗体AH30呈阳性反应。证实组特异性抗体L13F3结合的抗原表位位于N端1~30位氨基酸;而C端抗原表位对于型特异性抗体AH30与N蛋白的识别和结合具有重要意义,缺失N端100位氨基酸序列可能破坏羧基端构象型表位,也可以影响N蛋白与AH30的结合。  相似文献   

17.
The function of the putative metalloproteinase encoded by the vaccinia virus G1L gene is unknown. To address this question, we have generated a vaccinia virus strain in which expression of the G1L gene is dependent on the addition of tetracycline (TET) when infection proceeds in a cell line expressing the tetracycline repressor. The vvtetOG1L virus replicated similarly to wild-type Western Reserve (WR) virus in these cells when TET was present but was arrested at a late stage in viral maturation in the absence of TET. This arrest resulted in the accumulation of 98.5% round immature virus particles compared to 6.9% at a similar time point when TET was present. Likewise, the titer of infectious virus progeny decreased by 98.9% +/- 0.97% when the vvtetOG1L virus was propagated in the absence of TET. Mutant virus replication was partially rescued by plasmid-encoded G1L, but not by G1L containing an HXXEH motif mutated to RXXQR. Modeling of G1L revealed a predicted structural similarity to the alpha-subunit of Saccharomyces cerevisiae mitochondrial processing peptidase (alpha-MPP). The HXXEH motif of G1L perfectly overlaps the HXXDR motif of alpha-MPP in this model. These results demonstrate that G1L is essential for virus maturation and suggest that G1L is a metalloproteinase with structural homology to alpha-MPP. However, no obvious effects on the expression and processing of the vaccinia virus major core proteins were observed in the G1L conditional mutant in the absence of TET compared to results for the TET and wild-type WR controls, suggesting that G1L activity is required after this step in viral morphogenesis.  相似文献   

18.
Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422-8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive.  相似文献   

19.
We have investigated the pH-dependent fusion activity of influenza virus toward human erythrocyte ghosts, utilizing a recently developed fluorescence assay, which permits continuous monitoring of the fusion reaction. The rate of fusion is negligible at neutral pH but shows a sharp increase at pH values just below 5.5. This pH dependence profile closely corresponds to that of virus-induced hemolysis. Fusion is rapidly inactivated by a low-pH preincubation of the virus alone either at 37 or at 0 degrees C. The presence of ghosts during this low-pH preincubation, carried out at 0 degree C under which condition there is hardly any fusion, causes a significant protection of the viral fusion activity against inactivation. Fusion initiated at low pH can be arrested instantaneously by readjustment of the pH to neutral. The characteristics of fusion of influenza virus with ghosts deviate from those of fusion with cardiolipin liposomes (Stegmann, T., Hoekstra, D., Scherphof, G., and Wilschut, J. (1985) Biochemistry 24, 3107-3113). Fusion with ghosts is consistent with a requirement of the well-documented pH-dependent conformational change in the viral hemagglutinin, whereas fusion with cardiolipin liposomes does not exhibit a strict dependence on the conformational change. Rather, the negative surface charge on the liposomes plays a critical role, as zwitterionic liposomes containing gangliosides show fusion behavior similar to that of erythrocyte ghosts.  相似文献   

20.
Gu TJ  Wei W  Duan Y  Jiang CL  Chen Y  Yu XH  Wu JX  Wu YG  Kong W 《Protein and peptide letters》2011,18(11):1099-1106
Single-chain Fv fragment (scFv) of anti-rabies glycoprotein (G protein) has been recommended as a new agent for detecting and neutralizing lethal rabies virus. In this study, we constructed scFv that corresponded to the FV fragment of CR57, a monoclonal antibody against rabies virus, and called it FV57. Despite its virus neutralization activity, FV57 may or may not recognize the same epitope as that recognized by CR57. To resolve this issue, the binding epitope of rabies virus G protein recognized by FV57 was identified. A recombinant rabies virus G protein fragment (RVG179; residues 179-281) comprising several epitopes was expressed in E.coli, purified, and the specificity of its binding with FV57 was determined. In addition, a peptide (abbreviated as EP, residues 224-236) comprising the known epitope of G protein to which CR57 binds was synthesized and the potency of its binding with FV57 was also determined. The results showed that FV57 could specifically bind to RVG179 and EP. Competitive ELISA experiments indicated that RVG179 and EP were able to compete with the rabies virus G protein for binding with FV57. Since no other epitope within residues 224- 236 has been reported, except for the epitope to which CR57 binds (residues 226-231), the epitope recognized by FV57 was the same as its intact antibody CR57. This demonstrated that the complementarity-determining regions (CDRs) of the heavy and light chains of FV57 have folded into the correct conformation as those of CR57.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号