首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restricted maximum likelihood was used to estimate genetic parameters of male and female wing and thorax length in isofemale lines ofDrosophila melanogaster, and results compared to estimates obtained earlier with the classical analysis of variance approach. As parents within an isofemale line were unknown, a total of 500 parental pedigrees were simulated and mean estimates computed. Full and half sibs were distinguished, in contrast to usual isofemale studies in which animals were all treated as half sibs and hence heritability was overestimated. Heritability was thus estimated at 0.33, 0.38, 0.30 and 0.33 for male and female wing length and male and female thorax length, respectively, whereas corresponding estimates obtained using analysis of variance were 0.46, 0.54, 0.35 and 0.38. Genetic correlations between male and female traits were 0.85 and 0.62 for wing and thorax length, respectively. Sexual dimorphism and the ratio of female to male traits were moderately heritable (0.30 and 0.23 for wing length, 0.38 and 0.23 for thorax length). Both were moderately and positively correlated with female traits, and weakly and negatively correlated with male traits. Such heritabilities confirmed that sexual dimorphism might be a fast evolving trait inDrosophila. An erratum to this article is available at .  相似文献   

2.
Li H  Qu YF  Ding GH  Ji X 《Zoological science》2011,28(5):332-338
We compared adult size, female reproductive traits, and offspring phenotypes between multiocellated racerunners (Eremias multiocellata) from two thermally different sites (populations) in Inner Mongolia (North China): the colder one in Wulatehouqi (WQ) and the warmer one in Dalateqi (DQ). Both adults and neonates were smaller in the colder site. Females from the two sites both produced a single litter of 2-5 young per season, and did not differ in allocation of energy to reproduction after accounting for differences in body size. Female neonates had more ventral scales than did males, and the WQ neonates had fewer ventral scales than did the DQ neonates. The WQ neonates were slower than the DQ neonates. When body length was normalized across populations, we found that (1) hindlimb length correlated positively with sprint speed in both WQ and DQ neonates, (2) forelimb length correlated positively with sprint speed only in the DQ neonates, and (3) tail length correlated positively with sprint speed only in the WQ neonates. Hindlimb length played a more important role in locomotion than did tail length or forelimb length. Though differing in size and morphology, neonates from the two sites did not differ in early growth and survival under identical laboratory conditions. Our data are consistent with many studies that have shown countergradient variation in physiological traits (growth rate and reproductive output) and cogradient variation in morphological traits.  相似文献   

3.
ANOVA designs for estimating heritabilities of fecundity traits inHirudo medicinalis including batch size, the number of juveniles per cocoon, and juvenile weight. Accounting for reproduction mode of this species, different types of kinship were identified, which were taken into account in the ANOVA designs: juveniles from one batch and one cocoon were considered respectively full sibs and polyzygotic twins. Variation components were analyzed in the following kinship groups: for batch size, in full sibs; for the number of juveniles per cocoon, between sibships, full sins, and replicates; and for juvenile weight, in full sibs and polyzygotic twins. Using these designs, heritabilities of basic reproductive traits of H. medicinalis were obtained: for batch size, h 2 = 0.35–0.40, H 2 = 0.40–0.45; for the number of juveniles per cocoon, h 2 = 0.33–0.36, H 2 = 0.36–0.39; and for juvenile weight, h 2 = 0.40–0.44, H 2 = 0.44–0.48.  相似文献   

4.
Developmental instability results from small, random perturbations to developmental processes of individual traits. Phenotypic outcomes of developmental instability include fluctuating asymmetry (FA, subtle deviations from perfect bilateral symmetry) and phenodeviance (minor morphological abnormalities). A great deal of research over the past 18 years has focused on the role of developmental instability in sexual selection. A driving force behind this research has been the developmental instability-sexual selection hypothesis, which posits that symmetry and lack of phenodeviance in secondary sexual traits are assessed by mates and rivals because they provide a reliable cue of individual genetic quality. The present article tests this hypothesis by evaluating its five main predictions using published results: expressions of developmental instability in secondary sexual traits should be (1) negatively correlated with mating success; (2) directly assessed by mates and sexual rivals; (3) heritable; (4) condition-dependent; and (5) negatively correlated with ornament size. The first two predictions receive considerable, though not ubiquitous, support from a range of animal species. However, FA in secondary sexual traits is generally not significantly heritable, indicating that FA is unlikely to reveal genetic quality that can be transmitted to offspring. Similarly, there is little evidence to support the predictions that FA is condition dependent, and that it is negatively phenotypically or genetically correlated with sexual trait size. Based on an evaluation of the evidence overall, it is concluded that this hypothesis is unlikely to be viable; it appears unlikely that mate choice for symmetry evolves by “good genes” sexual selection. Hypotheses that do not require asymmetry and phenodeviance to reveal heritable genetic quality may explain observed links between FA/phenodeviance and mating success. Results of a case study of Drosophila bipectinata are summarized, which reinforce this general conclusion. It is suggested that nonadditive genetic variation arising from an interaction between trait-specific developmental genes and genetic background may drive sexual selection for reducing developmental instability in some cases. Levels of developmental instability variation in a population may need to surpass a critical threshold for sexual selection to operate, possibly explaining some of the pronounced heterogeneity in the effect of developmental instability on sexual selection reported in the literature.  相似文献   

5.
To understand the evolution of biological traits, information on the degree and origins of intraspecific variation is essential. Because adaptation can take place only if the trait shows heritable variation, it is important to know whether (at least) part of the trait variation is genetically based. We describe intra- and interindividual variation in three performance measures (sprint speed, climbing, and clambering speed) in juvenile Gallotia galloti lizards from three populations and examine how genetic, environmental (incubation temperature), and ontogenetic (age, size) effects interact to cause performance variation. Moreover, we test whether the three performance traits are intercorrelated phenotypically and genetically. Sprint speed is highest in juveniles incubated at the lowest temperature (26 degrees C) irrespective of population. Climbing speed differs among populations, and the differences persist at least until the lizards are 30 wk old. This suggests that the three populations experience different selective pressures. Moreover, mass, snout-vent length, and hindlimb length seem to affect climbing performance differently in the three populations. The variation in sprinting and climbing ability appears to be genetically based. Moreover, the two performance traits are intercorrelated and thus will not evolve independently from each other. Clambering speed (i.e., capacity to climb up an inclined mesh) varies among individuals, but the origin of this variation remains obscure.  相似文献   

6.
SPEED AND STAMINA TRADE-OFF IN LACERTID LIZARDS   总被引:5,自引:0,他引:5  
Abstract.— Morphological and physiological considerations suggest that sprinting ability and endurance capacity put conflicting demands on the design of an animal's locomotor apparatus and therefore cannot be maximized simultaneously. To test this hypothesis, we correlated size‐corrected maximal sprint speed and stamina of 12 species of lacertid lizards. Phylogenetically independent contrasts of sprint speed and stamina showed a significant negative relationship, giving support to the idea of an evolutionary trade‐off between the two performance measures. To test the hypothesis that the trade‐off is mediated by a conflict in morphological requirements, we correlated both performance traits with snout‐vent length, size‐corrected estimates of body mass and limb length, and relative hindlimb length (the residuals of the relationship between hind‐ and forelimb length). Fast‐running species had hindlimbs that were long compared to their forelimbs. None of the other size or shape variables showed a significant relationship with speed or endurance. We conclude that the evolution of sprint capacity may be constrained by the need for endurance capacity and vice versa, but the design conflict underlying this trade‐off has yet to be identified.  相似文献   

7.
Indirect sexual selection arises when reproductive individuals choose their mates based on heritable ornaments that are genetically correlated to fitness. Evidence for genetic associations between ornamental colouration and fitness remains scarce. In this study, we investigate the quantitative genetic relationship between different aspects of tail structural colouration (brightness, hue and UV chroma) and performance (cell‐mediated immunity, body mass and wing length) in blue tit (Cyanistes caeruleus) nestlings. In line with previous studies, we find low heritability for structural colouration and moderate heritability for performance measures. Multivariate animal models show positive genetic correlations between the three measures of performance, indicating quantitative genetic variation for overall performance, and tail brightness and UV chroma, two genetically independent colour measures, are genetically correlated with performance (positively and negatively, respectively). Our results suggest that mate choice based on independent aspects of tail colouration can have fitness payoffs in blue tits and provide support for the indirect benefits hypothesis. However, low heritability of tail structural colouration implies that indirect sexual selection on mate choice for this ornament will be a weak evolutionary force.  相似文献   

8.
Migration is a complex trait although little is known about genetic correlations between traits involved in such migration syndromes. To assess the migratory responses to climate change, we need information on genetic constraints on evolutionary potential of arrival dates in migratory birds. Using two long-term data sets on barn swallows Hirundo rustica (from Spain and Denmark), we show for the first time in wild populations that spring arrival dates are phenotypically and genetically correlated with morphological and life history traits. In the Danish population, length of outermost tail feathers and wing length were negatively genetically correlated with arrival date. In the Spanish population, we found a negative genetic correlation between arrival date and time elapsed between arrival date and laying date, constraining response to selection that favours both early arrival and shorter delays. This results in a decreased rate of adaptation, not because of constraints on arrival date, but constraints on delay before breeding, that is, a trait that can be equally important in the context of climate change.  相似文献   

9.
We used the frog‐eyed sand gecko (Teratoscincus scincus) as a model system to evaluate the locomotor costs of tail loss, and to examine whether tailless geckos use alternative anti‐predator behavior to compensate for the costs of tail loss. Of the 16 field‐captured geckos, eight were used as experimental animals and the remaining ones as controls. Locomotor performance, activity level and anti‐predator behavior were measured for experimental geckos before and after the tail‐removing treatment. Control geckos never undergoing the tail‐removing manipulation were measured to serve as controls for the measurements taken at the same time for experimental geckos. Experimental geckos did not differ from controls in activity level before they underwent the tail‐removing manipulation, but became less active thereafter. The mean locomotor stamina of tailless geckos was reduced by about 30% of the mean value for tailed ones. However, as the maximum stamina predicted from the laboratory trials is seldom required in nature, we expect that the costs associated with the reduced locomotor stamina may be relatively minor in T. scincus. All other examined locomotor (overall speed, maximal speed and stride length) and behavioral (distance to refuge, approach distance and flight distance) traits were not affected by the tail‐removing manipulation. Overall, our results suggest that tail autotomy plays no important role in influencing locomotor performance and anti‐predator behavior in lizards where the tail has no direct role in locomotion but is used to direct predatory strikes away from the torso.  相似文献   

10.
Recent conceptual advances in physiological ecology emphasize the potential selective importance of whole-animal performance. Empirical studies of locomotor performance in reptiles have revealed surprising amounts of individual variation in speed and stamina. The present study is the first in a series examining the genetic basis of variation in locomotor performance, activity metabolism, and associated behaviors in garter snakes. Maximal sprint crawling speed, treadmill endurance, and antipredator displays (Arnold and Bennett, 1984; exhibited as snakes reached exhaustion on the treadmill) were measured for approximately six offspring (presumed to be full siblings) from each of 46 wild-caught gravid garter snakes (Thamnophis sirtalis). Each character was measured on two days; all were individually repeatable. Correlations of these characters with body mass, snout–vent length, age at testing, litter size, dam mass, and dam snout–vent length were removed by computing residuals from multiple-regression equations. These residuals were used in subsequent genetic analyses. Approximate coefficients of variation of residuals were 17% for speed, 48% for endurance, and 31% for antipredator displays. Broad-sense heritabilities were significant for all characters: speed h2 = 0.58; stamina h2 = 0.70; antipredator display h2 = 0.42. All three residual characters showed positive and statistically significant phenotypic correlations (r = 0.19–0.36). Genetic correlations (estimated and tested by restricted maximum likelihood) among residuals were positive and highly significant between speed and endurance (0.58), but nonsignificant between speed and antipredator display (0.43), and between endurance and antipredator display (0.26). All environmental correlations were nonsignificant. These data suggest that, contrary to expectations based on previous physiological studies, there may be no necessary evolutionary trade-off between speed and stamina in these animals. This tentative conclusion will have important implications for future theoretical studies of the evolution of locomotor performance and associated antipredator behaviors.  相似文献   

11.
Genetic variances, heritabilities, and genetic correlations of floral traits were measured in the monocarpic perennial Ipomopsis aggregata (Polemoniaceae). A paternal half-sib design was employed to generate seeds in each of four years, and seeds were planted back in the field near the parental site. The progeny were followed for up to eight years to estimate quantitative genetic parameters subject to natural levels of environmental variation over the entire life cycle. Narrow-sense heritabilities of 0.2–0.8 were detected for the morphometric traits of corolla length, corolla width, stigma position, and anther position. The proportion of time spent by the protandrous flowers in the pistillate phase (“proportion pistillate”) also exhibited detectable heritability of near 0.3. In contrast, heritability estimates for nectar reward traits were low and not significantly different from zero, due to high environmental variance between and within flowering years. The estimates of genetic parameters were combined with phenotypic selection gradients to predict evolutionary responses to selection mediated by the hummingbird pollinators. One trait, corolla width, showed the potential for a rapid response to ongoing selection through male function, as it experienced both direct selection, by influencing pollen export, and relatively high heritability. Predicted responses were lower for proportion pistillate and corolla length, even though these traits also experienced direct selection. Stigma position was expected to respond positively to indirect selection of proportion pistillate but negatively to selection of corolla length, with the net effect sensitive to variation in the selection estimates. Anther position also was not directly selected but could respond to indirect selection of genetically correlated traits.  相似文献   

12.

Background

The focus in dairy cattle breeding is gradually shifting from production to functional traits and genetic parameters of calving traits are estimated more frequently. However, across countries, various statistical models are used to estimate these parameters. This study evaluates different models for calving ease and stillbirth in United Kingdom Holstein-Friesian cattle.

Methods

Data from first and later parity records were used. Genetic parameters for calving ease, stillbirth and gestation length were estimated using the restricted maximum likelihood method, considering different models i.e. sire (−maternal grandsire), animal, univariate and bivariate models. Gestation length was fitted as a correlated indicator trait and, for all three traits, genetic correlations between first and later parities were estimated. Potential bias in estimates was avoided by acknowledging a possible environmental direct-maternal covariance. The total heritable variance was estimated for each trait to discuss its theoretical importance and practical value. Prediction error variances and accuracies were calculated to compare the models.

Results and discussion

On average, direct and maternal heritabilities for calving traits were low, except for direct gestation length. Calving ease in first parity had a significant and negative direct-maternal genetic correlation. Gestation length was maternally correlated to stillbirth in first parity and directly correlated to calving ease in later parities. Multi-trait models had a slightly greater predictive ability than univariate models, especially for the lowly heritable traits. The computation time needed for sire (−maternal grandsire) models was much smaller than for animal models with only small differences in accuracy. The sire (−maternal grandsire) model was robust when additional genetic components were estimated, while the equivalent animal model had difficulties reaching convergence.

Conclusions

For the evaluation of calving traits, multi-trait models show a slight advantage over univariate models. Extended sire models (−maternal grandsire) are more practical and robust than animal models. Estimated genetic parameters for calving traits of UK Holstein cattle are consistent with literature. Calculating an aggregate estimated breeding value including direct and maternal values should encourage breeders to consider both direct and maternal effects in selection decisions.  相似文献   

13.
This paper reports the results of an investigation into whether selection on genetically based differences in the timing or rate of development (heterochrony) can give rise to nonadaptive morphological differences among individual frogs. We used a quantitative-genetics approach to examine the relationships among the life-history characters time to metamorphosis and larval-growth rate and a functionally significant morphological features, relative hind-limb length, in the spring peeper, Hyla crucifer. Time to metamorphosis and growth rate had low heritabilities in our population. Morphological traits had moderate heritabilities. There were positive genetic correlations between the life-history traits and the components of relative hind-limb length but no significant correlations with the shape variable itself. We used field observations of pond-drying time and experimental results of selection on growth rate to simulate the correlated responses of hind-limb shape to four reasonable selection regimes on the life-history traits. We found little evidence to suggest that relative hind-limb length would display much of a correlated response to such selection. The differences in relative hind-limb length seen among closely related species or among populations of a single species that appear to be unrelated to performance differences are not obviously explicable as neutral correlated responses to selection on larval traits.  相似文献   

14.
Phenotypic variation of traits can reflect the ability of plants to adjust to particular environments, but how much of this variation is heritable is not frequently analyzed in natural populations. In the present paper, we investigated the patterns of phenotypic expression in light-related leaf traits of Olea europaea subsp. guanchica, a woody sclerophyllous species endemic to the Canary Islands. We explored phenotypic differentiation and heritable variation across several island populations differing in light environment. A suite of morpho-functional (leaf size, SLA and leaf angle) and physiological (pigment pools: Chl a/b ratio, xantophyll cycle and β-carotene) traits was measured in six populations on three islands. In addition, we estimated heritabilities for these traits following Ritland’s method. Variation in morpho-functional, but not in physiological, traits was observed across the islands and was significantly related to the amount of diffuse light experienced by each population. In addition, significant heritabilities were found for morpho-functional traits, whereas expression of similar phenotypes among populations was accompanied by a lack of heritable variation in physiological traits. Most recently established populations did not exhibit lower heritabilities in quantitative traits than older populations, and apparently displayed congruent phenotypes under the local conditions. Our results strongly support the idea that different types of traits show contrasted levels of genetic and phenotypic variation in populations experiencing marked environmental differences.  相似文献   

15.
A barn swallow Hirundo rustica partial cross‐fostering experiment with simultaneous brood size manipulation was conducted in two years with contrasting weather conditions, to estimate heritable variation in tarsus, tail and wing size and fluctuating asymmetry. Environmental stress had contrasting effects depending on trait type. Significant heritabilities for tarsus, tail and wing size were found only in enlarged broods irrespective of year effects, while tarsus asymmetry was significantly heritable in the year with benign weather conditions irrespective of brood size manipulation effects. Tail, wing and composite (multicharacter) asymmetry were never significantly heritable. The environment with the higher heritability generally had higher additive genetic variance and lower environmental variance, irrespective of trait type. Heritability was larger for trait size than for trait asymmetry. Patterns of genetic variation in nestlings do not necessarily translate to the juvenile or adult stage, as indicated by lack of correlation between nestling and fledgling traits.  相似文献   

16.
Genetic selection for milking speed is feasible. The existence of a correlation structure between milking speed and milk yield, however, necessitates a selection strategy to increase milking speed with no repercussion on genetic merit for milk yield. Residual milking duration (RMD) and residual milking duration including somatic cell score (RMDS), defined as the residuals from a regression model of milking duration on milk yield or milk yield plus somatic cell score (SCS) have been advocated. The objective of this study was to undertake a first ever genetic analysis of these novel traits. Data on electronically recorded milking duration and other milking characteristics from 235 005 test-day records on 74 608 cows in 1075 Irish dairy herds were available. Variance components for the milking characteristic traits were estimated using animal linear mixed models and covariances with other performance traits, including udder-related type traits, were estimated using sire models. The heritability of milking duration, RMD and RMDS was 0.20, 0.22 and 0.18, respectively. There were little differences in the heritability of RMD or RMDS when defined using genetic regression. The genetic standard deviation of RMDS defined on the phenotypic or genetic level was 36.8 s and 37.6 s, respectively, clearly indicating considerable exploitable genetic variation in milking duration independent of both milk yield and SCS. The genetic correlation between phenotypically derived RMDS and milk yield was favourable (−0.43), but RMDS was unfavourably genetically correlated with SCS (−0.30); the genetic correlations with both traits when RMDS was defined at a genetic level were zero. RMDS defined at the phenotypic level was negatively (i.e. unfavourable) genetically correlated (−0.35; s.e. = 0.15) with mastitis; however, when defined using genetic regression, shorter RMDS was not associated with greater expected incidence of mastitis. RMDS, defined at the genetic level, is a useful heritable trait with ample genetic variation for inclusion in a national breeding strategy without influencing genetic gain in either milk yield or udder health.  相似文献   

17.
132 cultivated populations (2x–16x) of 15 arctic-alpine species ofDraba were investigated to clarify a possible relationship between reproductive strategies and polyploid evolution in the genus. The populations were exclusively sexual and produced viable seed after spontaneous self-pollination, but showed large variation both in traits promoting cross-pollination and in autogamous fruit and seed set. Traits promoting cross-pollination, e.g., floral display, protogyny, and delayed selfing, were positively correlated, and these traits were negatively correlated with autogamous fruit and seed set. All diploid and many polyploid populations had high autogamous seed set and small, unscented, non-protogynous, and rapidly selfing flowers. In contrast, all populations with low autogamous seed set and large, scented, and strongly protogynous flowers with distinctly delayed selfing were polyploid. These results are consistent with those previously obtained from enzyme electrophoresis, suggesting that the genetically depauperate diploids are extreme inbreeders and that the highly fixed-heterozygous polyploids vary from extreme inbreeders to mixed maters. The reproductive data lend additional support to the hypothesis that allopolyploidy in arcticDraba serves as an escape from genetic depauperation caused by uniparental inbreeding at the diploid level.  相似文献   

18.
Seven innate immune parameters were investigated in 64 full-sib families (the offspring of 64 sires and 45 dams) from two year-classes of farmed rohu carp (Labeo rohita). Survival rates were also available from Aeromonas hydrophila infection (aeromoniasis) recorded in controlled challenge tests on a different sample of individuals from the same families. Due to strong confounding between the animal additive genetic effect and the family effects (common environmental + non-additive genetic), reliable additive (co)variance components and hence heritabilities and genetic correlations could not be obtained for the investigated parameters. Therefore, estimates of the association of challenge test survival with the studied immune parameters were obtained as product moment correlations between family least square means. These correlations revealed statistically significant (p < 0.05) negative correlations of survival with bacterial agglutination titre (−0.48), serum haemolysin titre (−0.29) and haemagglutination titre (−0.34); and significant positive correlation with ceruloplasmin level (0.51). The correlations of survival to aeromoniasis with myeloperoxidase activity, superoxide production and lysozyme activity were found to be not significantly different from zero (p > 0.05). Assuming that the negatively correlated candidate traits are not favourable as indirect selection criteria, the results suggest that ceruloplasmin level could potentially be a marker for resistance to aeromoniasis in rohu. The use of this immune parameter as an indirect selection criterion for increased resistance to aeromoniasis in rohu will, however, require that the parameter shows significant additive genetic variation and a significant genetic correlation with survival. Further studies are therefore needed to obtain a reliable heritability estimate for ceruloplasmin and its genetic correlation with survival from aeromoniasis.  相似文献   

19.
Using breeding values in parental selection of self-pollinating crops seems to be superior to conventional selection strategies, where selection is often based on several traits which are correlated among each other. However, analysing each trait separately can bias estimates of breeding values. This study examined responses to selection for total merit indices based on breeding values resulting from single- and multiple-trait best linear unbiased prediction (BLUP). We generated data for a multi-environment trial of a “virtual” parental population in which the phenotypic value of inbred lines was influenced by additive, additive-by-additive epistatic, year, location, block and genotype-by-environment interaction effects. Two traits with heritabilities of 0.7 and 0.3 and nine different correlation scenarios between traits (estimated phenotypic correlation ranging from −0.39 to +0.36) were simulated. Gain in selection response was greater for multiple-trait than for single-trait breeding values, especially if traits were negatively correlated. For all correlation scenarios, the overall standard errors of difference of multiple-trait predictors were lower than those of single-trait analysis.  相似文献   

20.
Previous studies on the mechanisms of birch resistance to herbivores and foliar micro-fungi (both pathogenic and endophytic) have focused mainly on the role of internal leaf chemistry. In the present study, we examined genetic correlations between leaf surface traits (glandular trichome density and total concentrations of surface flavonoid aglycones) and occurrence of three species of foliar micro-fungi, one pathogenic rust (Melampsoridium betulinum) and two endophytic fungi (Fusicladium sp. and Melanconium sp.), and performance of autumnal moth larvae (Epirrita autumnata) in two birch species, Betula pubescens ssp. czerepanovii and B. pendula. The performance of autumnal moth larvae on B. pubescens ssp. czerepanovii was negatively correlated with density of glandular trichomes (RGR: r=–0.855; pupal mass: r=–0.709). In addition, rust infection was negatively correlated with trichome density in B. pendula (r=–0.675) and with epicuticular flavonoid aglycones in B. pubescens ssp. czerepanovii (r=–0.855). The frequency of the endophytic fungus Fusicladium sp., was related to epicuticular flavonoid aglycones (r=–0.782), while another endophytic fungus, Melanconium sp., showed no associations with any of the studied variables in B. pubescens ssp. czerepanovii. Our results indicate that leaf surface traits may be at least as important determinants of herbivore performance and micro-fungi abundance in birch as leaf internal chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号