首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine([125I]TID) was used to label myelin basic protein or polylysine in aqueous solution and bound to lipid vesicles of different composition. Although myelin basic protein is a water soluble protein which binds electrostatically only to acidic lipids, unlike polylysine it has several short hydrophobic regions. Myelin basic protein was labeled to a significant extent by TID when in aqueous solution indicating that it has a hydrophobic site which can bind the reagent. However, myelin basic protein was labeled 2-4-times more when bound to the acidic lipids phosphatidylglycerol, phosphatidylserine, phosphatidic acid, and cerebroside sulfate than when bound to phosphatidylethanolamine, or when in solution in the presence of phosphatidylcholine vesicles. It was labeled 5-7-times more than polylysine bound to acidic lipids. These results suggest that when myelin basic protein is bound to acidic lipids, it is labeled from the lipid bilayer rather than from the aqueous phase. However, this conclusion is not unequivocal because of the possibility of changes in the protein conformation or degree of aggregation upon binding to lipid. Within this limitation the results are consistent with, but do not prove, the concept that some of its hydrophobic residues penetrate partway into the lipid bilayer. However, it is likely that most of the protein is on the surface of the bilayer with its basic residues bound electrostatically to the lipid head groups.  相似文献   

2.
Boggs JM  Rangaraj G 《Biochemistry》2000,39(26):7799-7806
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes (OLs) and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. MBP in solution has been shown by others to bind to both G- and F-actin, to bundle F-actin filaments, and to induce polymerization of G-actin. Here we show that MBP bound to acidic lipids can also bind to both G- and F-actin and cause their sedimentation together with MBP-lipid vesicles. Thus it can simultaneously utilize some of its basic residues to bind to the lipid bilayer and some to bind to actin. The amount of actin bound to the MBP-lipid vesicles decreased with increasing net negative surface charge of the lipid vesicles. It was also less for vesicles containing the lipid composition predicted for the cytosolic surface of myelin than for PC vesicles containing a similar amount of an acidic lipid. Calmodulin caused dissociation of actin from MBP and of the MBP-actin complex from the vesicles. However, it did not cause dissociation of bundles of actin filaments once these had formed as long as some MBP was still present. These results suggest that MBP could be a membrane actin-binding protein in OLs/myelin and its actin binding can be regulated by calmodulin and by the lipid composition of the membrane. Actin binding to MBP decreased the labeling of MBP by the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine (TID), indicating that it decreased the hydrophobic interactions of MBP with the bilayer. This change in interaction of MBP with the bilayer could then create a cytosol to membrane signal caused by changes in interaction of the cytoskeleton with the membrane.  相似文献   

3.
The lysozyme-induced fusion of phosphatidylserine/phosphatidylethanolamine vesicles as studied at a wide range of pH is found to correlate well with the binding of this protein to the vesicles. An identical 6000 molecular weight segment of lysozyme at the N-terminal region is found to be protected from tryptic digestion when initially incubated with vesicles at several pH values. Only this segment is labeled by dansyl chloride, which is partitioned into the bilayer. These results suggest the penetration of one segment of lysozyme into the bilayer. Photoactivated labeling of the membrane-penetrating segment of lysozyme with 3-(trifluoromethyl)-3-([125I]iodophenyl)diazirine ([125I]TID) and subsequent identification of the labeled residues by Edman degradation and gamma-ray counting indicate that four amino acids from the N-terminal are located outside the hydrophobic core of the bilayer. Although treatment of the membrane-embedded segment with aminopeptidase failed to cleave any amino acids from the N-terminal, it appears that a loop of lysozyme segment near the N-terminal penetrates into the bilayer at acidic pH. A helical wheel diagram shows that the labeling is done mainly on one surface of the alpha-helix. The penetration kinetics as studied by time-dependent [125I]TID labeling coincide with the fusion kinetics, strongly suggesting that the penetration of the lysozyme segment into the vesicles is the cause of the fusion.  相似文献   

4.
Madine J  Doig AJ  Middleton DA 《Biochemistry》2006,45(18):5783-5792
Associations between the protein alpha-synuclein (alpha-syn) and presynaptic vesicles have been implicated in synaptic plasticity and neurotransmitter release and may also affect how the protein aggregates into fibrils found in Lewy bodies, the cellular inclusions associated with neurodegenerative diseases. This work investigated how alpha-syn interacts with model phospholipid membranes and examined what effect protein binding has upon the physical properties of lipid bilayers. Wide line 2H and 31P NMR spectra of phospholipid vesicles revealed that alpha-syn associates with membranes containing lipids with anionic headgroups and can disrupt the integrity of the lipid bilayer, but the protein has little effect on membranes of zwitterionic phosphatidylcholine. A peptide, alpha-syn(10-48), which corresponds to the lysine-rich N-terminal region of alpha-syn, was found to associate with lipid headgroups with a preference for a negative membrane surface charge. Another peptide, alpha-syn(120-140), which corresponds to the glutamate-rich C-terminal region, also associates weakly with lipid headgroups but with a slightly higher affinity for membranes with no net surface charge than for negatively charged membrane surfaces. Binding of alpha-syn(10-48) and alpha-syn(120-140) to the lipid vesicles did not disrupt the lamellar structure of the membranes, but both peptides appeared to induce the lateral segregation of the lipids into clusters of acidic lipid-enriched and acidic lipid-deficient domains. From these findings, it is speculated that the N-terminal and C-terminal domains of full-length alpha-syn might act in concert to organize the membrane components during normal protein function and perhaps play a role in presynaptic vesicle synthesis, maintenance, and fusion.  相似文献   

5.
A systematic study of the membrane-associated regions in the plasma membrane Ca2+ pump of erythrocytes has been performed by hydrophobic photolabeling. Purified Ca2+ pump was labeled with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)-diazirine ([125I]TID), a generic photoactivatable hydrophobic probe. These results were compared with the enzyme labeled with a strictly membrane-bound probe, [3H]bis-phosphatidylethanolamine (trifluoromethyl) phenyldiazirine. A significant light-dependent labeling of an M(r) 135,000-140,000 peptide, corresponding to the full Ca2+ pump, was observed with both probes. After proteolysis of the pump labeled with each probe and isolation of fragments by SDS-PAGE, a common pattern of labeled peptides was observed. Similarly, labeling of the Ca2+ pump with [125I]TID, either in isolated red blood cell membranes or after the enzyme was purified, yields a similar pattern of labeled peptides. Taken together, these results validate the use of either probe to study the lipid interface of the membrane-embedded region of this protein, and sustain the notion that the conformation of the pump is maintained throughout the procedures of solubilization, affinity purification, and reconstitution into proteoliposomes. In this work, we put special emphasis on a detailed analysis of the N-terminal domain of the Ca2+ pump. A labeled peptide of M(r) 40,000 belonging to this region was purified and further digested with V8 protease. The specific incorporation of [125I]TID to proteolytic fragments pertaining to the amino-terminal region indicates the existence of two transmembrane stretches in this domain. A theoretical analysis based on the amino acid sequence 1-322 predicts two segments with high probability of membrane insertion, in agreement with the experimental data. Each segment shows a periodicity pattern of hydrophobicity and variability compatible with alpha-helical structure. These results strongly suggest the existence of a transmembrane helical hairpin motif near the N-terminus of the Ca2+ pump.  相似文献   

6.
The myelin basic protein from bovine brain tissue was purified and the two peptides obtained by cleavage of the polypeptide chain at the single tryptophan residue were isolated. The interaction of these peptides and the intact basic protein with complex lipids was investigated by following the solubilization of lipid-protein complexes into chloroform in a biphasic solvent system. The C-terminal peptide fragment (residues 117-170) and the intact basic protein both formed chloroform-soluble complexes with acidic lipids, but not with neutral complex lipids. The N-terminal fragment (residues 1-115) did not form chloroform-soluble complexes with either acidic or neutral complex lipids. The molar ratio of lipid to protein that caused a 50% loss of protein from the upper phase to the lower chloroform phase was the same for the intact basic protein as for the smaller C-terminal peptide fragment. Phosphatidylserine and phosphatidylinositol were approximately twice as efficient as sulphatide at causing protein redistribution to the chloroform phase. The results are interpreted as indicating that the sites for ionic interactions between lipid and charged groups on the basic protein of myelin are located in the C-terminal region of the protein molecule.  相似文献   

7.
Antibodies were raised in rabbits against synthetic peptides corresponding to the N-terminal (residues 1-15) and the C-terminal (residues 477-492) regions of the human erythrocyte glucose transporter. The antisera recognized the intact transporter in enzyme-linked immunosorbent assays (ELISA) and Western blots. In addition, the anti-C-terminal peptide antibodies were demonstrated, by competitive ELISA and by immunoadsorption experiments, to bind to the native transporter. Competitive ELISA, using intact erythrocytes, unsealed erythrocyte membranes, or membrane vesicles of known sidedness as competing antigen, showed that these antibodies bound only to the cytoplasmic surface of the membrane, indicating that the C terminus of the protein is exposed to the cytoplasm. On Western blots, the anti-N-terminal peptide antiserum labeled the glycosylated tryptic fragment of the transporter, of apparent Mr = 23,000-42,000, showing that this originates from the N-terminal half of the protein. The anti-C-terminal peptide antiserum labeled higher Mr precursors of the Mr = 18,000 tryptic fragment, although not the fragment itself, indicating that the latter, with its associated cytochalasin B binding site, is derived from the C-terminal half of the protein. Antiserum against the intact transporter recognized the C-terminal peptide on ELISA, and the Mr = 18,000 fragment but not the glycosylated tryptic fragment on Western blots.  相似文献   

8.
Identification of membrane-embedded domains of lipophilin from human myelin   总被引:1,自引:0,他引:1  
The organization of lipophilin in the intact human myelin membrane has been studied by labeling with the carbene photogenerated from 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). This hydrophobic probe labels mostly lipophilin (the main intrinsic protein of myelin) and the lipids within the bilayer. The domains of lipophilin which are embedded within the membrane have been identified by proteolytic fragmentation of the [125I]TID-labeled myelin, extraction with organic solvents, and separation by chromatography. Four labeled peptides were purified in this way. Polyacrylamide gel electrophoresis, amino acid compositions, automated sequencing, and carboxy-terminal analyses identified a 15K molecular weight peptide, T1 (residues 1-143), as representing the amino-terminal fragment, a 10K peptide, T2 (residues 1-97), representing a smaller amino-terminal fragment, a 5K peptide, T4 (residues 53-97), which represented the COOH-terminal half of peptide T2, and a 7K peptide, T3 (residues 205-268), which represented a sequence near the COOH terminus of lipophilin. The specific radioactivities of the peptides were determined; peptides T1 and T2 had similar specific activities, which were twice the specific activities of peptides T3 and T4. The data provide direct chemical evidence that human lipophilin has membrane-embedded domains between residues 1-97, 53-97, and 205-268, in agreement with some of the predictions of other investigators based on the sequence of bovine myelin lipophilin (proteolipid apoprotein) and a hydrophobicity diagram.  相似文献   

9.
Immunofluorescence and electron microscopical studies on the intracellular distribution of intermediate filaments (IFs) have demonstrated a close proximity of these cytoskeletal structures to cellular membranes. Moreover, nonepithelial IF (protein)s have been shown to exhibit high affinities for lipids, especially for negatively charged and nonpolar lipids. Here, using hydrophobic labeling with the photoactivatable phosphatidylcholine analogue [3H]1-palmitoyl-2-[11-[4-(trifluoromethyldiazirinyl]undecanoyl+ ++]-sn- glycero-3-phosphorylcholine or with 1-azidopyrene at low and physiological ionic strength, it is demonstrated that the IF subunit protein vimentin can interact with the hydrophobic core of lipid bilayers, in addition to strong ionic relationships between both reactants. Whereas the presence of acidic phospholipids in the lipid vesicles was absolutely essential for efficient vimentin labeling, cholesterol played a synergistic role in this reaction. Proteolytic degradation of photolabeled vimentin localized the derivatization exclusively to the non-alpha-helical, highly positively charged N-terminal domain of the filament protein. Furthermore, circular dichroism studies performed on the isolated N terminus of vimentin revealed a significant increase in the alpha-helical content of the polypeptide upon its interaction with vesicles containing negatively charged phospholipids. These results indicate an amphiphilic character of the N terminus and suggest that the cationic arginine residues of the N-terminal domain react with the negatively charged head groups of acidic phospholipids prior or parallel to interaction of the polypeptide with hydrophobic regions of the lipid bilayer.  相似文献   

10.
Y S Bae  H Kim 《Journal of biochemistry》1989,106(6):1019-1025
The interactions of human apolipoprotein A-I (apo A-I) with dipalmitoylphosphatidylcholine (DPPC) in vesicular complexes at low protein concentrations and in micellar complexes at high protein concentrations are compared. The C-terminal segment of this protein, with a relative molecular weight (Mr) of about 11,000, is protected on trypsin treatment of apo A-I-vesicle complexes. A segment within the sequence from Leu-189 to Arg-215 of apo A-I penetrates the hydrophobic interior of the membrane, as found in a hydrophobic labeling experiment involving 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)-diazirine ([125I]TID). No appreciable stretch of apo A-I in micellar complexes was found to be protected from the tryptic digestion. This indicates that the interactions of apo A-I with lipids in the vesicular and micellar complexes are different. The binding equilibrium of apo A-I as to DPPC vesicles at low protein concentrations, as studied by hydrophobic labeling of the bilayer-penetrating segment, is reached within about 1 h, while the formation of micellar complexes at high protein concentrations takes about 24 h at 42 degrees C. Time-dependent labeling studies involving photoreactive phosphatidylcholine (PC) with high apo A-I concentrations suggested an initial interaction with the head group region of the bilayer followed by interaction with the tail ends of the acyl chains of the lipid. A possible mechanism for the micellization process is discussed.  相似文献   

11.
Two monoclonal antibodies, one raised by immunization with mouse myelin basic protein (MBP) and the second raised by immunization with peptide 68-88 of guinea pig MBP, were compared with respect to specificity. The former antibody (15.32) cross-reacted completely with rat, guinea pig, human, and bovine MBP. It also reacted with peptide 43-88 from each MBP. The latter antibody (22.17) was nonreactive with MBP, but cross-reacted with peptide 43-88 from rat, human, guinea pig, and bovine MBP. When tested with small peptides derived from peptide 43-88, antibody 22.17 reacted with an epitope in the C-terminal region. Antibody 15.32 reacted with an epitope in the N-terminal half of the peptide. The data show that 22.17 reacted with a unique epitope associated only with free peptide, whereas 15.32 recognized an epitope common to both peptide 43-88 and MBP.  相似文献   

12.
A theoretical model is proposed for the association of trans-bilayer peptides in lipid bilayers. The model is based on a lattice model for the pure lipid bilayer, which accounts accurately for the most important conformational states of the lipids and their mutual interactions and statistics. Within the lattice formulation the bilayer is formed by two independent monolayers, each represented by a triangular lattice, on which sites the lipid chains are arrayed. The peptides are represented by regular objects, with no internal flexibility, and with a projected area on the bilayer plane corresponding to a hexagon with seven lattice sites. In addition, it is assumed that each peptide surface at the interface with the lipid chains is partially hydrophilic, and therefore interacts with the surrounding lipid matrix via selective anisotropic forces. The peptides would therefore assemble in order to shield their hydrophilic residues from the hydrophobic surroundings. The model describes the self-association of peptides in lipid bilayers via lateral and rotational diffusion, anisotropic lipid-peptide interactions, and peptide-peptide interactions involving the peptide hydrophilic regions. The intent of this model study is to analyse the conditions under which the association of trans-bilayer and partially hydrophilic peptides (or their dispersion in the lipid matrix) is lipid-mediated, and to what extent it is induced by direct interactions between the hydrophilic regions of the peptides. The model properties are calculated by a Monte Carlo computer simulation technique within the canonical ensemble. The results from the model study indicate that direct interactions between the hydrophilic regions of the peptides are necessary to induce peptide association in the lipid bilayer in the fluid phase. Furthermore, peptides within each aggregate are oriented in such a way as to shield their hydrophilic regions from the hydrophobic environment. The average number of peptides present in the aggregates formed depends on the degree of mismatch between the peptide hydrophobic length and the lipid bilayer hydrophobic thickness: The lower the degree of mismatch is the higher this number is. Received: 30 December 1996 / Accepted: 9 May 1997  相似文献   

13.
Several groups have observed that phosphorylation causes the MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) protein to move off cell membranes and phospholipid vesicles. Our working hypothesis is that significant membrane binding of MARCKS requires both hydrophobic insertion of the N-terminal myristate into the bilayer and electrostatic association of the single cluster of basic residues in the protein with acidic lipids and that phosphorylation reverses this electrostatic association. Membrane binding measurements with myristoylated peptides and phospholipid vesicles show this hydrophobic moiety could, at best, barely attach proteins to plasma membranes. We report here membrane binding measurements with basic peptides that correspond to the phosphorylation domains of MARCKS and neuromodulin. Binding of these peptides increases sigmoidally with the percent acidic lipid in the phospholipid vesicle and can be described by a Gouy-Chapman/mass action theory that explains how electrostatics and reduction of dimensionality produce apparent cooperativity. The electrostatic affinity of the MARCKS peptide for membranes containing 10% acidic phospholipids (10(4) M-1 = chi/[P], where chi is the mole ratio of peptide bound to the outer monolayer of the vesicles and [P] is the concentration of peptide in the aqueous phase) is the same as the hydrophobic affinity of the myristate moiety for bilayer membranes. Phosphorylation decreases the affinity of the MARCKS peptide for membranes containing 15% acidic lipid about 1000-fold and produces a rapid (t1/2 < 30 s) dissociation of the peptide from phospholipid vesicles.  相似文献   

14.
The hydrophobic, photoactivatable probe TID [3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine] was used to label the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. The H(+)-ATPase accounted for 43% of the total label associated with plasma membrane protein and incorporated 0.3 mol of [125I]TID per mol of 100 kDa polypeptide. The H(+)-ATPase was purified by octyl glucoside extraction and glycerol gradient centrifugation, and was cleaved by either cyanogen bromide digestion or limited tryptic proteolysis to isolate labeled fragments. Cyanogen bromide digestion resulted in numerous labeled fragments of mass less than 21 kDa. Seven fragments suitable for microsequence analysis were obtained by electrotransfer to poly(vinylidene difluoride) membranes. Five different regions of amino-acid sequence were identified, including fragments predicted to encompass both membrane-spanning and cytoplasmic protein structure domains. Most of the labeling of the cytoplasmic domain was concentrated in a region comprising amino acids 347 to 529. This catalytic region contains the site of phosphorylation and was previously suggested to be hydrophobic in character (Goffeau, A. and De Meis, L. (1990) J. Biol. 265, 15503-15505). Complementary labeling information was obtained from an analysis of limited tryptic fragments enriched for hydrophobic character. Six principal labeled fragments, of 29.6, 20.6, 16, 13.1, 11.4 and 9.7 kDa, were obtained. These fragments were found to comprise most of the putative transmembrane region and a portion of the cytoplasmic region that overlapped with the highly labeled active site-containing cyanogen bromide fragment. Overall, the extensive labeling of protein structure domains known to lie outside the bilayer suggests that [125I]TID labeling patterns cannot be unambiguously interpreted for the purpose of discerning membrane-embedded protein structure domains. It is proposed that caution should be applied in the interpretation of [125I]TID labeling patterns of the yeast plasma membrane H(+)-ATPase and that new and diverse approaches should be developed to provide a more definitive topology model.  相似文献   

15.
M P Blanton  J B Cohen 《Biochemistry》1992,31(15):3738-3750
To identify regions of the Torpedo nicotinic acetylcholine receptor (AchR) interacting with membrane lipid, we have used 1-azidopyrene (1-AP) as a fluorescent, photoactivatable hydrophobic probe. For AchR-rich membranes equilibrated with 1-AP, irradiation at 365 nm resulted in covalent incorporation in all four AchR subunits with each of the subunits incorporating approximately equal amounts of label. To identify the regions of the AchR subunits that incorporated 1-AP, subunits were digested with Staphylococcus aureus V8 protease and trypsin, and the resulting fragments were separated by SDS-PAGE followed by reverse-phase high-performance liquid chromatography. N-terminal sequence analysis identified the hydrophobic segments M1, M3, and M4 within each subunit as containing the sites of labeling. The labeling pattern of 1-AP in the alpha-subunit was compared with that of another hydrophobic photoactivatable probe, 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID). The nonspecific component of [125I]TID labeling [White, B., Howard, S., Cohen, S. G., & Cohen, J.B. (1991) J. Biol. Chem. 266, 21595-21607] was restricted to the same regions as those labeled by 1-AP. The [125I]TID residues labeled in the hydrophobic segment M4 were identified as Cys-412, Met-415, Cys-418, Thr-422, and Val-425. The periodicity and distribution of labeled residues establish that the M4 region is alpha-helical in nature and indicate that M4 presents a broad face to membrane lipid.  相似文献   

16.
The 1,024-amino-acid acylated hemolysin of Escherichia coli subverts host cell functions and causes cell lysis. Both activities require insertion of the toxin into target mammalian cell membranes. To identify directly the principal toxin sequences dictating membrane binding and insertion, we assayed the lipid bilayer interaction of native protoxin, stably active toxin, and recombinant peptides. Binding was assessed by flotation of protein-liposome mixtures through density gradients, and insertion was assessed by labeling with a photoactivatable probe incorporated into the target lipid bilayer. Both the active acylated hemolysin and the inactive unacylated protoxin were able to bind and also insert. Ca(2+) binding, which is required for toxin activity, did not influence the in vitro interaction with liposomes. Three overlapping large peptides were expressed separately. A C-terminal peptide including residues 601 to 1024 did not interact in either assay. An internal peptide spanning residues 496 to 831, including the two acylation sites, bound to phospholipid vesicles and showed a low level of insertion-dependent labeling. In vitro acylation had no effect on the bilayer interaction of either this peptide or the full-length protoxin. An N-terminal peptide comprising residues 1 to 520 also bound to phospholipid vesicles and showed strong insertion-dependent labeling, ca. 5- to 25-fold that of the internal peptide. Generation of five smaller peptides from the N-terminal region identified the principal determinant of lipid insertion as the hydrophobic sequence encompassing residues 177 to 411, which is conserved among hemolysin-related toxins.  相似文献   

17.
Voltage-sensitive sodium channels purified from rat brain in functional form consist of a stoichiometric complex of three glycoprotein subunits, alpha of 260 kDa, beta 1 of 36 kDa, and beta 2 of 33 kDa. The alpha and beta 2 subunits are linked by disulfide bonds. The hydrophobic properties of these three subunits were examined by covalent labeling with the photoreactive hydrophobic probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) which labels transmembrane segments in integral membrane proteins. All three subunits of the sodium channel were labeled by [125I]TID when the purified protein was solubilized in mixed micelles of Triton X-100 and phosphatidylcholine (4:1). The half-time for photolabeling was approximately 7 min consistent with the half-time of 9 min for photolysis of TID under our conditions. Comparable amounts of TID per mg of protein were incorporated into each subunit. Purified sodium channels reconstituted in phosphatidylcholine vesicles were also labeled by TID with comparable incorporation per mg of protein into all three subunits. The efficiency of photolabeling of the three subunits was reduced from 39 to 44% by a 2-fold expansion of the hydrophobic phase of the reaction mixture but was unaffected by a 2-fold expansion of the aqueous phase, confirming that the photolabeling reaction took place in the lipid phase of the vesicle bilayer. The hydrophobic properties of the sodium channel subunits were examined further using phase separation in the nonionic detergent Triton X-114. Under conditions in which beta 1 is dissociated from alpha, the beta 1 subunit was preferentially extracted into the Triton X-114 phase, and the disulfide-linked alpha beta 2 complex was retained in the aqueous phase. When the disulfide bonds between the alpha and beta 2 subunits were reduced with dithioerythritol, the beta 2 subunit was also preferentially extracted into the Triton X-100 phase leaving the free alpha subunit in the aqueous phase. A preparative method for isolation of the beta 1 and beta 2 subunits was developed based on this technique. Considered together, the results of our hydrophobic labeling and phase separation experiments indicate that the alpha, beta 1, and beta 2 subunits all have substantial hydrophobic domains that may interact with the hydrocarbon phase of phospholipid bilayer membranes. Since the alpha subunit is known to be a transmembrane protein with many potential membrane-spanning segments, we conclude that the beta 1 and beta 2 subunits are likely to also be integral membrane proteins with one or more membrane-spanning segments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Mutations in the collagen-like domain of serum mannose-binding protein (MBP) interfere with the ability of the protein to initiate complement fixation through the MBP-associated serine proteases (MASPs). The resulting deficiency in the innate immune response leads to susceptibility to infections. Studies have been undertaken to define the region of MBP that interacts with MASPs and to determine how the naturally occurring mutations affect this interaction. Truncated and modified MBPs and synthetic peptides that represent segments of the collagen-like domain of MBP have been used to demonstrate that MASPs bind on the C-terminal side of the hinge region formed by an interruption in the Gly-X-Y repeat pattern of the collagen-like domain. The binding sites for MASP-2 and for MASP-1 and -3 overlap but are not identical. The two most common naturally occurring mutations in MBP result in substitution of acidic amino acids for glycine residues in Gly-X-Y triplets on the N-terminal side of the hinge. Circular dichroism analysis and differential scanning calorimetry demonstrate that the triple helical structure of the collagen-like domain is largely intact in the mutant proteins, but it is more easily unfolded than in wild-type MBP. Thus, the effect of the mutations is to destabilize the collagen-like domain, indirectly disrupting the binding sites for MASPs. In addition, at least one of the mutations has a further effect on the ability of MBP to activate MASPs.  相似文献   

19.
Lipid-peptide interaction has been investigated using cationic amphiphilic alpha-helical peptides and systematically varying their hydrophobic-hydrophilic balance (HHB). The influence of the peptides on neutral and acidic liposomes was examined by 1) Trp fluorescence quenched by brominated phospholipid, 2) membrane-clearing ability, 3) size determination of liposomes by dynamic light scattering, 4) morphological observation by electron microscopy, and 5) ability to form planar lipid bilayers from channels. The peptides examined consist of hydrophobic Leu and hydrophilic Lys residues with ratios 13:5, 11:7, 9:9, 7:11, and 5:13 (abbreviated as Hels 13-5, 11-7, 9-9, 7-11, and 5-13, respectively; Kiyota, T., S. Lee, and G. Sugihara. 1996. Biochemistry. 35:13196-13204). The most hydrophobic peptide (Hel 13-5) induced a twisted ribbon-like fibril structure for egg PC liposomes. In a 3/1 (egg PC/egg PG) lipid mixture, Hel 13-5 addition caused fusion of the liposomes. Hel 13-5 formed ion channels in neutral lipid bilayer (egg PE/egg PC = 7/3) at low peptide concentrations, but not in an acidic bilayer (egg PE/brain PS = 7/3). The peptides with hydrophobicity less than Hel 13-5 (Hels 11-7 and Hel 9-9) were able to partially immerse their hydrophobic part of the amphiphilic helix in lipid bilayers and fragment liposome to small bicelles or micelles, and then the bicelles aggregated to form a larger assembly. Peptides Hel 11-7 and Hel 9-9 each formed strong ion channels. Peptides (Hel 7-11 and Hel 5-13) with a more hydrophilic HHB interacted with an acidic lipid bilayer by charge interaction, in which the former immerses the hydrophobic part in lipid bilayer, and the latter did not immerse, and formed large assemblies by aggregation of original liposomes. The present study clearly showed that hydrophobic-hydrophilic balance of a peptide is a crucial factor in understanding lipid-peptide interactions.  相似文献   

20.
Conformation of the renin inhibitor peptide, Pro-His-Pro-Phe-His-Phe-Phe-Val-Tyr-Lys (RIP) has been studied in aqueous solution and in lipid bilayers using 500 MHz 1H NMR spectroscopy. Analysis of the NMR parameters indicates that in aqueous solution, RIP exists as a random coil. On incorporation into lipid bilayers, the peptide adopts a rigid and well defined conformation. The N-terminal end is stabilized by the hydrophobic environment of the lipid bilayer. The C-terminal end is located near the lipid-water interface and attains rigidity due to interaction with the phosphate groups of lipids. The observations emphasize the role of environment in stabilizing significantly different conformations of RIP in three different media--D2O, DMSO and lipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号