首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We evaluated the persistence and proliferation of a Chinese Metarhizium anisopliae s.s. isolate (M202-1) at different distances from peanut roots during peanut development. The results showed that the duration, distance from root and depth resulted in significant effects and interactions on the survival of the fungus. The fungal population showed a rapid early decline, followed by a gradual stabilisation or a slight re-establishment. The rhizospheric population declined by 50% within 21 d, faster than other population away from the root. The decline reached the lowest level between days 60 and 90, with levels of 10.8–24.7% of the initial inoculum. In comparison, the rhizospheric population re-established earliest and increased to 52.9% of the initial on day 150. The 3–5-cm shallow layer was more suitable than the 13–15-cm layer for fungal persistence. When Metarhizium was applied outside the 11.5-cm radius around the root, it would diffuse inward in 30 d, causing a significant increase at the rhizosphere on day 90. In accordance with the sampling date corresponding to the root development stage, the results suggest that the rhizosphere of peanut middle–later development was conducive to Metarhizium proliferation, promoting Metarhizium application for pest control in the soil.  相似文献   

2.
Studies were conducted to investigate potentialinteractions between brassicaceous plants, theisothiocyanates they produce and insectpathogenic fungi. Studies in vitro showedthat 100 ppm of 2-phenylethyl isothiocyanatecompletely inhibited growth of Metarhiziumanisopliae and Tolypocladiumcylindrosporum. T. cylindrosporum wassignificantly inhibited by 10 ppm 2-phenylethylisothiocyanate, but not by 1 ppm. M.anisopliae was not inhibited by 10 or 1 ppm2-phenylethyl isothiocyanate. The effect offreshly grated rutabaga on virulence of M.anisopliae to Galleria mellonella larvaewas also tested, resulting in reduced infectionby M. anisopliae. To study the effect ofplants in the Brassicaceae under morefield-like conditions fungi were added to soilwithout plants or at the bases of two differentplant species, Barbarea vulgaris and Eruca vesicaria sativa. Soil was sampled at 5,10 and 15 days to determine the concentrationof colony forming units (CFUs). Treatments withplants did not have fewer CFUs than thecontrol. Instead significantly fewer CFUsresulted when M. anisopliae was added topots with soil only than to pots with plants.There were no significant differences betweenthe two plant species in the number of CFUs atday 5. For days 10 and 15, however,significantly more M. anisopliae CFUswere found in pots containing E. vesicariasativa than B. vulgaris. T.cylindrosporum was less affected by thedifferent treatments than M. anisopliae.Our studies demonstrated that whileisothiocyanates can inhibit insect pathogenicfungi in Petri dishes, when using a morerealistic fungus/plant/soil microcosm no fungalinhibition was found.  相似文献   

3.
In Australia, sweetpotato (Ipomoea batatas L.) is vulnerable to root feeding insect pests such as wireworms (e.g., Agrypnus spp.). The number of registered insecticides to control these insect pests is limited and often pest pressure, for example by wireworms, is severe close to harvest, further limiting what insecticides can be applied. Incorporating biological control agents such as entomopathogenic fungi (e.g., Metarhizium anisopliae) into integrated pest management programmes may be feasible in sweetpotato. M. anisopliae has been shown to be effective in controlling more than 200 insects and it is able to reside and grow in the rhizosphere and rhizoplane, suggesting that M. anisopliae could be a promising candidate against soil insect pests. In the study presented here, M. anisopliae was formulated into calcium alginate granules fortified with nutrients. The resporulation of the fungal granules was tested on four different soil types in the laboratory. The biocontrol efficacy of the resulting fungal growth was also examined using larval mealworms, Tenebrio molitor as a model insect in the laboratory and the glasshouse. Our results indicated that sterilised soil favoured optimal fungal resporulation, although different soil types did not have a significant effect on fungal resporulation. The resulting fungal resporulation and growth on sterilised soil caused high mortality (up to 76%) of larval mealworms in the glasshouse, whereas the fungal granules applied to non-sterile soil demonstrated poor resporulation that led to low mortality (13%) of larval mealworms. The result of this study indicates that the manipulation of microbial populations in field soil is required to enhance the fungal growth and potential insect control against wireworms in the field.  相似文献   

4.
The potential of several entomopathogenic fungi to control soil‐dwelling stages of western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), was evaluated in various growing media. Two Metarhizium anisopliae (Metsch) Sorokin strains, V275 and ERL700, were the most effective, causing 85–96% mortality of thrips larvae and pupae (as measured by relative adult emergence rates), 11 days after inoculation. Mortality in other M. anisopliae‐treated media ranged from 51–84%; Beauveria bassiana (Balsamo) Vuillemin strains caused 54–84% mortality, and Paecilomyces fumosoroseus (Wize) 63–75% mortality. In contrast, mortality from the insecticide treatment (fipronil 1 g l?1 medium) was only 15–54%. Metarhizium anisopliae V275 was selected for more in‐depth evaluation under greenhouse conditions. There was no significant difference in M. anisopliae efficacy in growing media whether it was applied as drench (84–93%) or premixed into the medium as dry conidia (85–92%). The use of M. anisopliae with reduced rates of either fipronil or imidacloprid did not significantly improve control. Overall, our study shows that M. anisopliae V275 is robust and offers much promise for the control of soil‐dwelling stages of thrips as part of an integrated pest‐management programme.  相似文献   

5.
Three Metarhizium anisopliae and three Beauveria bassiana isolates were cultivated in media containing casamino acids, soybean flour or sunflower seed flour and were shaken for three days. M. anisopliae presented similar yields of around 106 submerged spores/ml without significant differences among them, whereas B. bassiana produced yields of around 108 spores/ml, of which GHA strain produced more submerged spores in the casamino acids medium. The other two strains showed no significant difference in the production of submerged spores in the three media used. Differences in mortality on Aedes aegypti larvae were observed with the submerged spores of Metarhizium depending on isolate and medium used. M. anisopliae 2157 caused significantly higher mortality (40%) when cultivated in casamino acids medium. It presented an LC50 of 8.93 × 105 submerged spores/ml water against mosquito larvae five days after application, whereas it caused 27% mortality in Ae. aegypti adults 10 days after application. In conclusion, fungal nutrition affected virulence of some isolates of M. anisopliae against Ae. aegypti larvae while such an effect was not noted for B. bassiana isolates.  相似文献   

6.
Little is known about the role of endophytic fungi against abiotic stresses and isoflavonoids (IF) contents of soybean. In current study, we investigated the role of fungal endophytes on the growth of soybean under salt stress conditions. Pure cultures of nine endophytic fungi were isolated from the roots of field-grown soybean plants, and their culture filtrates were screened on Waito-C and Dongjin-byeo rice cultivars; for identification of plant growth promoting fungal strains. It was observed that fungal isolate GMC-2B significantly promoted the growth of both Waito-C and Dongjin-byeo. GMC-2B was later identified as a new strain of Metarhizium anisopliae LHL07 on the basis of 18S rDNA sequences and phylogenetic analysis. Metarhizium anisopliae LHL07 inoculated soybean plants recorded significantly higher shoot length, shoot fresh and dry biomass, chlorophyll contents, transpiration rate, photosynthetic rate and leaf area; under sodium chloride induced salt stress as compared to non-inoculated control plants. An elevated proline and reduced superoxide dismutase and malondialdehyde contents in M. anisopliae LHL07 inoculated soybean plants demonstrated mitigation of salt induced oxidative stress. Furthermore, reduced abscisic acid and elevated jasmonic acid contents in soybean plants confirmed that lesser stress was convened to M. anisopliae inoculated-plants under salinity stress. We also assessed the role of M. anisopliae interaction on IF biosynthesis of soybean, and found significantly higher IF contents in M. anisopliae inoculated soybean plants. In conclusion, endophytic fungal interactions with soybean can be beneficial to improve soybean quality and quantity under salt affected agricultural systems.  相似文献   

7.
8.
A genetic variant of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae, isolated from a soil in Alberta, Canada, from a location with a history of severe grasshopper infestations, was evaluated for pathogenicity in bioassays of living grasshoppers. Mortality in treated individuals drawn from a laboratory colony was 99% (LT50 = 6.7 days, LT90 = 9.6 days) at 12 days post-inoculation compared to 100% (LT50 = 4.1 days, LT90 = 5.8 days) mortality at 8 days in insects exposed to a commercial isolate of M. anisopliae var. acridum (IMI 330189). Experimental infection of field-collected grasshoppers under laboratory conditions with the native isolate of M. anisopliae var. anisopliae resulted in 100% (LT50 = 4.4 days, LT90 = 5.4 days) mortality attained within 7 days compared to 100% (LT50 = 4.7 days, LT90 = 6.3 days) mortality in 9 days in insects treated with M. anisopliae var. acridum. Amplification of fungal genomic DNA from the indigenous isolate with primers for the specific detection of M. anisopliae var. anisopliae produced a product almost 300 bp larger than expected based on previously known isolates. This is the first demonstration of a highly virulent, indigenous non-chemical control agent of grasshoppers in North America. GenBank Accession Nos. DQ342236, DQ342237.  相似文献   

9.
Musca domestica is a major problem in poultry production where management has relied mostly on pesticides, which eventually have led to the development of widespread resistance in insect populations and environmental contamination. In this study, we explored the use of entomopathogenic fungi for the control of houseflies in Brazil. A total of 10 isolates of different fungal pathogens were tested on the larval stages of M. domestica, which were originally derived from a commercial aviary. Among the test fungi, Metarhizium anisopliae (sensu stricto) CG46 and CG30 were the most virulent isolates, causing up to 60% mortality at day 10, but only CG46 was selected for a field trial as it attained higher sporulation on larval cadavers. A commercial product based on the M. anisopliae isolate ESALQ-1037 (Metarril®) was also field-tested using standard treatment procedures. After spraying both fungi in the aviary manure, there was a significant reduction (twofold lower) in adult density of M. domestica captured per trap compared to the control shed. Therefore, our results indicate that M. anisopliae is a promising biological control agent for M. domestica larvae, but new strategies for fungal application and appropriate formulation need to be developed to improve its effectiveness in poultry environments.  相似文献   

10.
Chagas disease is one of the most important insect-vectored diseases in Brazil. The entomopathogenic fungus Metarhizium anisopliae was evaluated against nymphs and adults of Panstrongylus megistus, Triatoma infestans, and T. sordida. Pathogenicity tests at saturated humidity demonstrated high susceptibility to fungal infection. The shortest estimates of 50% lethal time (LT50) for P. megistus varied from 4.6 (isolate E9) to 4.8 days (genetically modified strain 157p). For T. infestans, the shortest LT50 was 6.3 (E9) and 7.3 days (157p). For T. sordida, the shortest LT50 was 8.0 days (157p). The lethal concentration sufficient to kill 50% of T. infestans (LC50) was 1.9 × 107 conidia/ml for strain 157p. In three chicken coops that were sprayed with M. anisopliae, nymphs especially were well controlled, with a great population reduction of 38.5% after 17 days. Therefore M. anisopliae performed well, controlling Triatominae in both laboratory and field studies.  相似文献   

11.
Li Y  Cai SH 《Current microbiology》2011,62(5):1400-1404
A set of six specific primers was designed by targeting intergenic spacer region (IGS) sequences. With Bst DNA polymerase, the products could be clearly amplified for 60 min at 62°C in a simple water bath. The sensitivity of the loop-mediated isothermal amplification (LAMP) for detecting Metarhizium anisopliae var. anisopliae was about 0.01 pg fungal DNA per reaction (equivalent to 27 conidia). LAMP products could be judged with agar gel or naked eye after addition of SYBR Green I. There were no cross reactions with other fungal isolates indicating high specificity of the LAMP. The LAMP could detect the presence of M. anisopliae var. anisopliae from soil. The detection limits for M. anisopliae var. anisopliae of LAMP reaction was 50 conidia per reaction in soil.  相似文献   

12.
The entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) was applied in maize fields to control the Western Corn Rootworm Diabrotica virgifera virgifera Le Conte (Coleoptera: Chrysomelidae). Establishment and persistence of two strains of M. anisopliae were investigated after application as ‘fungal colonized barley kernels’ (FCBK) into the soil and as a spore suspension on maize leaves and on the soil surface in 2006 and 2007 at two locations in Hungary. The applied fungal strains were able to establish at both locations and a long‐term persistence of at least 15 months could be recorded in the soil. A positive correlation between density of colony forming units (CFU) in the soil and the soil inhabiting stages of the host insect D. v. virgifera could be found. M. anisopliae spores applied on maize leaves were able to survive for no longer than 3 days after application, whereas on the soil surface a noticeably increase of fungus densities were found after treatments. Molecular markers were used to identify the applied M. anisopliae strains before and after application of FCBK into the soil of the maize field.  相似文献   

13.
Methods for enhancing conidial yield and for harvesting pure fungal conidia of entomopathogenic fungi were investigated. Fermentation conditions (liquid-to-solid ratio, MgSO4·7H2O, incubation temperature, inoculum sizes, KNO3 and relative humidity) of Beauveria bassiana s.l. and Metarhizium anisopliae s.l. were optimised to increase the conidial yields that reached 11.2 mg/g and 24.5 mg/g, increases of 72% and 52% compared to the unoptimised yields of 6.5 mg/g and 16.1 mg/g, respectively. Three methods were compared for harvesting pure conidia of B. bassiana: dual cyclone equipment (DCE), sieving 200 and elution with 0.02% Tween-80 suspension. DCE performed the best, giving a conidial yield of 12.6 mg/g and 1.8 × 1010 conidia·g–1. To further enhance the harvest efficiency, response surface methodology combined with a Box–Behnken design was employed, and the conidial yield of B. bassiana reached 20.9 mg/g, a total increase of 221% compared to the original conditions. Under these optimised harvest parameters, the conidial yield of M. anisopliae rose to 42.2 mg/g, an increase of 162%. The conidia of B. bassiana and M. anisopliae harvested in this way were pure, with no mycelial fragments or substrate visible in microscopic images.  相似文献   

14.
Field trials were conducted for two seasons in mango orchards at Nthagaiya, Kenya, to evaluate the efficacy of soil inoculation with Metarhizium anisopliae (Hypocreales: Clavicipitaceae) and GF-120 spinosad bait sprays, applied either alone or in combination, for suppression of the invasive fruit fly, Bactrocera invadens (Diptera: Tephritidae). During the 2006/2007 season, average post-treatment samples showed that B. invadens catches from the control orchards were four times higher than the number of flies captured in the plots receiving M. anisopliae+GF-120. Fruit infestation was 16, 45, 30 and 60% in the M. anisopliae+GF-120, M. anisopliae alone, GF-120 alone and control orchards, respectively. In the 2007/2008 season, average B. invadens post-treatment samples in the control orchards were seven times higher than the treatment with M. anisopliae+GF-120; and fruit infestation was 11, 38, 28, and 52% in the orchards assigned to M. anisopliae+GF-120, M. anisopliae alone, GF-120 alone and control treatments, respectively. Enumeration of conidial densities from soil samples on agar plates showed initial densities of 1.1–2.1×105 colony forming units (cfu)/g of dry weight of soil but decreased to 1.0–1.4×103 cfu/g at the end of the experimental period. Exposure of laboratory-reared pupariating larvae to soil samples taken from fungus-treated fields showed significant reduction in B. invadens adult emergence (25–36%) compared with the control (80–82%). Our results suggest that the combined use of soil application of M. anisopliae and GF-120 spinosad bait spray is an effective IPM strategy for field suppression of B. invadens on mango.  相似文献   

15.
Abstract Feeding experiments using three strains of entomopathogenic fungi, Beauveria bassiana, Metarhizium anisopliae and Isaria fumosorosea were conducted with newly moulted 3rd–5th instar Ocinara varians Walker larvae in the laboratory. The mortality of larvae immersed individually in spore suspension (1 × 107 spores/mL) of all the strains was ≥ 80% except 5th instar larvae treated with M. anisopliae which transformed into pupae, but did not result in adult emergence. The growth (total body mass), consumption, relative consumption rate and relative growth rate, were reduced at all three larval stages, while developmental time was extended in infected larvae with concurrent significant increase in approximate digestibility in infected larvae. Conversion of digested food (ECD) and ingested food (ECI) values declined in infected larvae as compared to the healthy larvae (control). The 5th instar larvae treated with M. anisopliae showed higher ECD and ECI values than control. Based on mortality and growth inhibition it can be suggested that all the studied fungal strains have a high potential for biocontrol and could be developed into biocontrol agents against O. varians.  相似文献   

16.
Rhipicephalus sanguineus is a canine tick that infests dogs throughout the world and is frequently found in homes and dog kennels. Management of this tick species is complicated by the presence of resistance to commonly utilized acaricides. Fungal formulations could provide a valuable alternative tool for management and are especially relevant indoors where detrimental environmental effects on fungal spores are of less concern. Two commercially available fungal formulations, one containing Metarhizium anisopliae and the other containing Beauveria bassiana, were compared for time to death and sporulation in nymphal ticks exposed for 60 min in treated filter paper packets. Beauveria bassiana exposure killed ticks faster than M. anisopliae exposure and B. bassiana was more likely to sporulate on tick cadavers than M. anisopliae. To determine whether infected ticks could disseminate fungus to their conspecifics, ticks were marked and treated with fungus before being placed with untreated ticks. Fungus was successfully transmitted from treated to untreated ticks. Mortality of ticks exposed to B. bassiana-exposed conspecifics occurred sooner than for those exposed to M. anisopliae-exposed conspecifics, indicating faster dissemination in the former. Therefore, although both formulations resulted in decreased longevity of ticks compared with the controls, the B. bassiana formulation holds the most promise for direct or indirect application with respect to brown dog tick management.  相似文献   

17.
Nymph and adult ticks from Ambylomma americanum and Ambylomma maculatum were treated with conidia and blastospores of the entomopathogenic fungi Beauveria bassiana (90517) and Metarhizium anisopliae (20500). Fungal suspensions of conidia harvested from potato dextrose plates containing 108 conidia/ml caused greater than 90% mortality in adult A. maculatum but less than 10% mortality in adult A. americanum over a 28 day time course. Similarly, infection with M. anisopliae (108 conidia/ml) resulted in 60 and 15% mortality in A. maculatum and A. americanum, respectively. Nymphs of both tick species were more susceptible to fungal infection reaching mortality rates of almost 100% for A. maculatum and over 35% for A. americanum. Scanning electron microscopy of infected ticks showed rapid attachment, germination, and proliferation of fungal spores on A. maculatum cuticles, and to a much lesser extent on A. americanum cuticles. Pentane extracts of A. americanum cuticle hydrocarbons inhibited germination and hyphal growth of B. bassiana conidia, whereas no inhibition was observed using A. maculatum extracts. Significant mortality towards A. americanum was observed (>60%, 28 days) only when the ticks were treated with B. bassiana directly from the growth medium (107 blastospores/ml, grown for 3–4 days in Sabouraud dextrose + 0.5% yeast extract liquid media). These results indicate tick species display differential susceptibility to the entomopathogenic fungi B. bassiana and M. anisopliae, and that the ability to overcome fungistatic compounds present in the tick epicuticle may determine the likelihood of successful infection and virulence.  相似文献   

18.
Aims: Larval stages of Frankliniella occidentalis are known to be refractory to fungal infection compared with the adult stage. The objective of this study was to identify promising fungal isolate(s) for the control of larval stages of F. occidentalis. Methods and Results: Ten isolates of Metarhizium anisopliae and eight of Beauveria bassiana were screened for virulence against second‐instar larvae of F. occidentalis. Conidial production and genetic polymorphism were also investigated. Metarhizium anisopliae isolates ICIPE 7, ICIPE 20, ICIPE 69 and ICIPE 665 had the shortest LT50 values of 8·0–8·9 days. ICIPE 69, ICIPE 7 and ICIPE 20 had the lowest LC50 values of 1·1 × 107, 2·0 × 107 and 3·0 × 107 conidia ml?1, respectively. Metarhizium anisopliae isolate ICIPE 69 produced significantly more conidia than M. anisopliae isolates ICIPE 7 and ICIPE 20. Internally transcribed spacers sequences alignment showed differences in nucleotides composition, which can partly explain differences in virulence. Conclusion: These results coupled with the previous ones on virulence and field efficacy against other species of thrips make M. anisopliae isolate ICIPE 69 a good candidate. Significance and Impact of the Study: Metarhizium anisopliae isolate ICIPE 69 can be suggested for development as fungus‐based biopesticide for thrips management.  相似文献   

19.
Microsclerotia (MS), overwintering structures produced by many plant pathogenic fungi, have not been described for Metarhizium anisopliae. Three strains of M. anisopliae – F52, TM109, and MA1200 – formed MS in shake flask cultures using media with varying carbon concentrations and carbon-to-nitrogen (C:N) ratios. Under the conditions of this study, all strains produced MS, compact hyphal aggregates that become pigmented with culture age, in addition to more typical blastospores and mycelia. While all strains formed desiccation tolerant MS, highest concentrations (2.7–2.9 × 108 L−1 liquid medium) were produced in rich media with C:N ratios of 30:1 and 50:1 by strain F52. All three strains of M. anisopliae produced similar biomass concentrations when media and growth time were compared. Strain MA1200 produced higher concentrations of blastospores than the other two strains of M. anisopliae with highest blastospore concentrations (1.6 and 4.2 × 108 blastospores ml−1 on days 4 and 8, respectively) in media with the highest carbon and nitrogen concentrations. Microsclerotial preparations of M. anisopliae containing diatomaceous earth survived air-drying (to <5 % moisture) with no significant loss in viability. Rehydration and incubation of air-dried MS granules on water agar plates resulted in hyphal germination and sporogenic germination to produce high concentrations of conidia. Bioassays using soil-incorporated, air-dried MS preparations resulted in significant infection and mortality in larvae of the sugar beet root maggot, Tetanops myopaeformis. This is the first report of the production of sclerotial bodies by M. anisopliae and provides a novel approach for the control of soil-dwelling insects with this entomopathogenic fungus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号