首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的甲型H1N1流感病毒A/California/7/2009与A/California/4/2009病毒序列比较同源性在99%以上,本实验旨在比较两株病毒感染BALB/c小鼠研究感染力强弱。方法分别将A/California/7/2009(CA7)与A/California/4/2009(CA4)两株病毒分别连续10倍稀释后,对4~6周龄雌性BALB/c小鼠经乙醚麻醉后进行滴鼻攻毒,每个稀释度接种10只实验小鼠,测定CA7 MLD50为101.24/0.05 mL,检测小鼠感染、致病的多项指标,观察期为14 d。结果相同TCID50的CA7和CA4病毒感染小鼠,CA4感染小鼠后14 d内死亡率为20%,而CA7感染小鼠后8 d内死亡率为100%。CA7 106TCID50感染的小鼠病理表现为重度弥漫性间质性肺炎,CA4 106TCID50感染的小鼠病理表现为中度-重度间质性肺炎。结论在相同条件下,CA7感染力明显强于CA4。  相似文献   

2.
Abstract: In this report, the phosphorylation sites of neurofilament protein of medium molecular mass (NF-M) by protein kinase FA/glycogen synthase kinase 3α (kinase FA/GSK-3α) were determined by two-dimensional electrophoresis/TLC, phosphoamino acid analysis, HPLC, Edman degradation, and peptide sequencing. Kinase FA/GSK-3α phosphorylates NF-M predominantly on serine, residue. Three major tryptic phosphopeptide peaks were resolved by C18 reverse-phase HPLC. Edman degradation and peptide sequence analysis revealed that AKS(p)PVSK is the phosphorylation site sequence for the first major peak. When mapping with the amino acid sequence of neurofilament, we finally demonstrate Ser603-Pro, one of the in vivo sites in NF-M, as the major site phosphorylated by kinase FA/GSK-3α. By using the same approach, we also identified the in vivo sites of Ser502-Pro, Ser506-Pro, and Ser666-Pro as the other three major sites in NF-M phosphorylated by kinase FA/GSK-3α. Taken together, the results provide initial evidence that kinase FA/GSK-3α may represent a physiologically relevant protein kinase involved in the in vivo phosphorylation of NF-M. Because Ser502, Ser506, Ser603, and Ser666 are all flanked by a carboxyl-terminal proline residue, the results provide further evidence that FA/GSK-3α may represent a proline-directed protein kinase involved in the structure-function regulation of the neuronal cytoskeletal system.  相似文献   

3.
Cyanidium caldarium (Tilden) Geitler, a non-vacuolate unicellular alga, resuspended in medium flushed with air enriched with 5% CO2, assimilated NH4+ at high rates both in the light and in the dark. The assimilation of NO3, by contrast, was inhibited by 63% in the dark. In cell suspensions flushed with CO2-free air, NH4+ assimilation decreased with time both in the light and in the dark and ceased almost completely after 90 min. The addition of CO2 completely restored the capacity of the alga to assimilate NH4+. NO3 assimilation, by contrast, was 33% higher in the absence of CO2 and was linear with time. It is suggested that NO3 and NH4+ metabolism in C. caldarium are differently controlled in response to the light and carbon conditions of the cell.  相似文献   

4.
The role of a recently identified K+ATP channel in preventing H2O2 formation was examined in isolated pea stem mitochondria. The succinate-dependent H2O2 formation was progressively inhibited, when mitochondria were resuspended in media containing increasing concentration of KCl (from 0.05 to 0.15  M ). This inhibition was linked to a partial dissipation of the transmembrane electrical potential (ΔΨ) induced by KCl. Conversely, the malate plus glutamate-dependent H2O2 formation was not influenced. The succinate-sustained H2O2 generation was also unaffected by nigericin (a H+/K+ exchanger), but completely prevented by valinomycin (a K+ ionophore). In addition, cyclosporin A (a K+ATP channel opener) inhibited this H2O2 formation, while ATP (an inhibitor of the channel opening) slightly increased it. The inhibitory effect of ATP was strongly stimulated in the presence of atractylate (an inhibitor of the adenine nucleotide translocase), thus suggesting that the receptor for ATP on the K+ channel faces the intermembrane space. Finally, the succinate-dependent H2O2 formation was partially prevented by phenylarsine oxide (a thiol oxidant).  相似文献   

5.
Passive fluxes of K+ (86Rb) into roots of sunflower ( Helianthus annuus L. cv. Uniflorus) were determined at low K+ concentration (0.1 and 1.0 mM K+) in the ambient solution. Metabolic uptake of K+ was inhibited by 10−4M 2,4-dinitrophenol (DNP). K+ (86Rb) fluxes were studied both continuously and by time differentiation of uptake. In high K+ roots passive uptake was directly proportional to the K+ concentration of the uptake solution, indicating free diffusion. This assumption was supported by the fact that passive Rb+ uptake was not affected by high K+ concentrations. In low K+ roots the passive uptake of K+ was higher than in high K+ roots. The increase was possibly due to carrier-mediated K+ transport. As K+ effluxes were quantitatively similar to influxes, it is suggested that passive K+ fluxes represent exchange diffusion without relation to net K+ transport.  相似文献   

6.
The H+/PPi stoichiometry of the mitochondrial H+‐PPiase from pea ( Pisum sativum L.) stem was determined by two kinetic approaches, and compared with the H+/substrate stoichiometries of the mitochondrial H+‐ATPase, and the vacuolar H+‐PPiase and H+‐ATPase. Using sub‐mitochondrial particles or preparations enriched in vacuolar membranes, the rates of substrate‐dependent H+‐transport were evaluated: by a mathematical model, describing the time‐course of H+‐gradient (ΔpH) formation; or by determining the rate of H+‐leakage following H+‐pumping inhibition by EDTA at the steady‐state ΔpH. When the H+‐transport rates were divided by those of PPi or ATP hydrolysis, measured under identical conditions, apparent stoichiometries of ca 2 were determined for the mitochondrial H+‐PPiase and H+‐ATPase, and for the vacuolar H+‐ATPase. The stoichiometry of the vacuolar H+‐PPiase was found to be ca 1. From these results, it is suggested that the mitochondrial H+‐PPiase may, in theory, function as a primary H+‐pump poised towards synthesis of PPi and, therefore, acting in parallel with the main H+‐ATPase.  相似文献   

7.
Abstract: Tyrosine hydroxylase (TOH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated by phosphorylation. Activation of histaminergic H1 receptors on cultured bovine adrenal chromaffin cells stimulated a rapid increase in TOH phosphorylation (within 5 s) that was sustained for at least 5 min. The initial increase in TOH phosphorylation (up to 1 min) was essentially unchanged by the removal of extracellular Ca2+. In contrast, the H1-mediated response was abolished by preloading the cells with BAPTA acetoxymethyl ester (50 µ M ) and significantly reduced by prior exposure to caffeine (10 m M for 10 min) to deplete intracellular Ca2+. Trypticphosphopeptide analysis by HPLC revealed that the H1 response in the presence or absence of extracellular Ca2+ resulted in a major increase in the phosphorylation of Ser19 with smaller increases in that of Ser40 and Ser31. In contrast, although a brief stimulation with nicotine (30 µ M for 60 s) also resulted in a major increase in Ser19 phosphorylation, this response was abolished in the absence of extracellular Ca2+. These data indicate that the mobilization of intracellular Ca2+ plays a crucial role in supporting H1-mediated TOH phosphorylation and may thus have a potentially important role in regulating catecholamine synthesis.  相似文献   

8.
The rate of nitrogen uptake by seven Sphagnum species, which from a gradient from hummock to hollow and from ombrotrophic to minerotrophic conditions, was measured as the decrease in the concentrations of NH4+ and NO3 from solutions in which capitula were grown under laboratory conditions.
The highest uptake rate was by individuals of each species with large capitula and a high number of ion exchange sites, i.e. lawn species ( S. pulchrum , S. fallax , S. papillosum and S. magellanicum ). On a dry-mass basis, the most effective species were the hummock species ( S. fuscum and S. rubellum ), even though these species have a low dry mass. Hummock species, which occur in high densities and have high potential N-uptake rates on a dry-mass basis, were the most effective species in retaining available nitrogen.  相似文献   

9.
When 1 m M spermidine or spermine was included in an absorption solution which contained 20 m M Na+ and 1 m M Rb+, Na+ influx into excised maize roots ( Zea mays L. cv. Golden Cross Bantam) was reduced. Rb+ influx was reduced in the presence of spermidine and uneffected in the presence of spermine when compared with control solutions. When 1 m M Ca2+ replaced the polyamines, Na+ influx was strongly reduced and Rb+ influx was promoted. Rb+ influx from 1 m M Rb+ solutions which did not contain Na+ was also promoted by 1 m M Ca2+, but was inhibited by 1 m M spermidine. This Ca2+ promotion of Rb+ influx could be reversed by 10 times greater concentration of spermidine in the absorption solution. H+ efflux from excised roots was inhibited by spermidine when compared with Ca2+ or control solutions, however, the plasma membrane ATPase was not inhibited by spermidine. It is concluded that external Ca2+ plays two separate roles in membrane function, only one of which can be substituted for by polyamines. The first role, maintenance of membrane integrity, can be substituted for by spermidine or spermine. The second function, maintenance of the Rb+ transport mechanism, is Ca2+ specific and cannot be substituted for by spermidine or spermine. The results of this study are discussed in terms of electrostatic interactions between the plasma membrane and the Ca2+ or polyamines.  相似文献   

10.
This work tests two models to account for the effects of depletion of stromal inorganic phosphate (Pi), which results in down-regulation of light capture via the exciton quenching (qE) mechanism and has been proposed to act in feedback regulation of the light reactions. In both models, antenna down-regulation is activated by acidification of the lumen, despite the fact that linear electron flow (LEF) (and associated proton flux) is decreased upon Pi depletion. In one model, an imbalance of ATP or NADPH activates cyclic electron transfer around photosystem I (CEF1), increasing proton influx to the lumen. In the second, the effective conductivity of the CFO-CF1 ATP synthase to protons ( g H+) is decreased, retarding proton efflux from the lumen. Sequestering of Pi by mannose infiltration increased sensitivities of qE and pmf to LEF. The effects were attributable to decreases in g H+, but not to CEF1 and were largely reversed by subsequent Pi feeding. Rapid recovery of g H+ in the dark suggested that dark-labile metabolic pools are responsible for regulation of the ATP synthase. Overall, these results support models where accumulation of Benson–Calvin cycle intermediates or lowering of stromal Pi below its K Mat the ATP synthase, retards proton efflux from the lumen, leading to build-up of pmf and subsequent down-regulation of photosynthetic light capture.  相似文献   

11.
Genetic engineering has improved the product yield of a variety of compounds by overexpressing, inactivating, or introducing new genes in microbial systems. The production of flavor-enhancing ester compounds is an emerging area of heterologous gene expression for desired product yield in Escherichia coli. Isoamyl acetate, butyl acetate, ethyl acetate, and butyl butyrate are reported here to be produced by expressing Saccharomyces cerevisiae genes ATF1 or ATF2 and the strawberry gene SAAT in E. coli when the appropriate substrates are provided. Increasing the concentration of alcohol added to the reaction generally resulted in increased ester production. ATF1 expression was found to produce more isoamyl acetate and butyl acetate than ATF2 expression or SAAT expression in the strains and culture conditions examined. Additionally, SAAT expression resulted in greater isoamyl acetate and butyl acetate production than ATF2 expression. Butyl butyrate is produced by cell-free extracts of E. coli harboring SAAT but not ATF1 or ATF2.  相似文献   

12.
Desensitization of CholecystokininB Receptors in GH3 Cells   总被引:1,自引:0,他引:1  
Abstract: Desensitization of the cholecystokinin (CCK) octapeptide (CCK-8)-induced rise in intracellular free calcium concentration ([Ca2+],) was characterized in GH3 cells, a pituitary tumor cell line, which are known to possess CCKB receptor subtype. The CCK-8-induced [Ca2+], transient was reduced following the initial application of CCK-8. A similar desensitization of the CCK-8-induced response was observed following the first application of thyrotropin-releasing hormone (TRH). By contrast, the TRH- induced response was not desensitized by the preceding application of CCK-8. Desensitization of the CCK-8-induced [Ca2+], transient was associated with diminished inositol 1,4,5-trisphosphate formation. The recovery of desensitization of the CCK-8-induced response was delayed by a phosphoserine/phosphothreonine phosphatase inhibitor, calyculin A (100 n M ). The responsiveness to CCK-8 was also reduced by phorbol 12, 13-dibutyrate (PDBu), and this effect of PDBu was completely abolished by preincubation with staurosporine. Staurosporine significantly attenuated the desensitization caused by preincubation with CCK-8, but this effect was too small to attribute the desensitization to the protein kinase C transduction pathway alone. It is likely that desensitization of CCK receptors involves multiple transduction pathways.  相似文献   

13.
Excretion of minerals by the NaCl-resistant and comparatively cadmium-resistant tree Tamarix aphylla (L.) Karst, was investigated. Cd2+ was excreted by plants exposed for 1–10 days to 9 or 45 μ M Cd2+ solutions. Excretion of this toxic ion increased considerably with time but was less than 5% of the quantities that had been accumulated in the shoots. Excretion of Na+ and Cl was positively correlated with NaCl concentration (1.5, 10, 50 m M ) of the medium. The Na+/Cl ratios of the excrete were positively correlated with the concentration of the treatment solution. Ca2+ excretion decreased with increasing NaCl concentrations of the solution. Excretion of K+ and Mg2+ was only little affected by NaCl. Excretion of Li+ occurred whenever this element was supplied in the uptake solution; daily excretion rates of Li+ increased with time. The ecological significance of excretion is discussed in relation to the low selectivity of the mechanism in T. aphylla .  相似文献   

14.
Abstract: We investigated the regulation by intracellular Ca2+ of agonist-induced sequestration of Gq protein-coupled histamine H1 receptors in human U373 MG astrocytoma cells. Histamine-induced sequestration of H1 receptors from the cell surface membrane was detected as the loss of [3H]mepyramine binding sites on intact cells accessible to the hydrophilic H1-receptor antagonist pirdonium. The changes in the pirdonium-sensitive binding of [3H]mepyramine were mirrored by changes in the subcellular distribution of H1 receptors detected by sucrose density gradient centrifugation. The histamine-induced sequestration of H1 receptors did not occur in hypertonic medium, in which clathrin-mediated endocytosis is known to be inhibited, but was significantly accelerated in the absence of extracellular Ca2+ or in the presence of the calmodulin antagonists W-7 and calmidazolium. Inhibitors of protein kinase C (H-7 and GF109203X), Ca2+/calmodulin-dependent protein kinase II (KN-62), or protein phosphatase 2B (FK506) did not alter the time course of H1-receptor sequestration. These results provide the first evidence that agonist-induced, clathrin-mediated sequestration of Gq protein-coupled receptors is transiently inhibited by Ca2+/calmodulin, with the result that receptors remain on the cell surface membrane during the early stage of agonist stimulation.  相似文献   

15.
Abstract: The termination of neurotransmission is achieved by rapid uptake of the released neurotransmitter by specific high-affinity neurotransmitter transporters. Most of these transporters are encoded by a family of genes (Na+/Cl transporters) having a similar membrane topography of 12 transmembrane helices. An evolutionary tree revealed five distinct subfamilies: γ-aminobutyric acid transporters, monoamine transporters, amino acid transporters, "orphan" transporters, and the recently discovered bacterial transporters. The bacterial transporters that belong to this family may help to develop heterologous expression systems with the aim of solving the three-dimensional structure of these membrane proteins. Some of the neurotransmitter transporters have been implicated as important sites for drug action. Monoamine transporters, for example, are targeted by major classes of antidepressants, psychostimulants, and antihypertensive drugs. Localization of individual transporters in specific cells and brain areas is pertinent to understanding their contribution to neurotransmission and their potential as targets for drugs. The most important questions in the field include resolving the mechanism of neurotransmitter transport, the structure of the transporters, and the interaction of each transporter in complex neurological activities.  相似文献   

16.
Abstract: Gangliosides GD3 and GM1 were coupled to proteins by their car-boxyl groups and antisera were raised against the complexes. Anti-ganglioside antibodies were isolated by affinity chromatography on ganglioside-amino-propyl silica gel columns and the specificity of the antibodies was determined by a quantitative microcomplement fixation assay. Antibodies to GD3 were highly specific and did not crossreact with GM3, lactosyl ceramide, or other glycolipids. Purified antibodies to GM1, in contrast, crossreacted with asialo-GM1, GD1b and to a lesser extent, GM2 and asialo-GM2. A derivative of GM1, containing a C-7 sialic acid residue produced by periodate oxidation, reacted with the anti-GM1 antibodies almost as readily as with GM1. The specificities of anti-GM1 antibodies elicited by the covalent ganglioside-protein complexes were similar to those produced by immunization with noncovalent complexes of GM1 and methylated bovine serum albumin. The ganglioside-protein complexes described here should be useful for preparing antibodies to polysialo-gangliosides that contain neuraminidase-sensitive linkages.  相似文献   

17.
Neuropeptide Y (NPY) and NPY receptors are widely distributed in the CNS, including the retina, but the role of NPY in the retina is largely unknown. The aim of this study was to investigate whether NPY modulates intracellular calcium concentration ([Ca2+]i) changes in retinal neurons and identify the NPY receptors involved. As NPY decreased the [Ca2+]i amplitudes evoked by 30 mM KCl in only 50% of neurons analyzed, we divided them in two populations: NPY-non-responsive neurons (Δ2/Δ1 ≥ 0.80) and NPY-responsive neurons (Δ2/Δ1 < 0.80), being the Δ2/Δ1 the ratio between the amplitude of [Ca2+]i increase evoked by the second (Δ2) and the first (Δ1) stimuli of KCl. The NPY Y1/Y5, Y4, and Y5 receptor agonists (100 nM), but not the Y2 receptor agonist (300 nM), inhibited the [Ca2+]i increase induced by KCl. In addition, the inhibitory effect of NPY on evoked-[Ca2+]i changes was reduced in the presence of the Y1 or the Y5 receptor antagonists. In conclusion, NPY inhibits KCl-evoked [Ca2+]i increase in retinal neurons through the activation of NPY Y1, Y4, and Y5 receptors. This effect may be viewed as a potential neuroprotective mechanism of NPY against retinal neurodegeneration.  相似文献   

18.
Entry of the divalent cations Ni2+, Co2+ and Zn2+ into cells of maize ( Zea mays L. cv. Dekalb XL 85) root tissue is accompanied by an acidification of the incubation medium, a decrease in both the pH of the cell sap and the level of malate in the cells, and by an inhibition of dark fixation of CO2. K+, on the contrary, induces only a very low acidification of the incubation medium, does not change either the pH of the cell sap or the malate level in the cells, and induces an increase in CO2 dark fixation. Different mechanisms are postulated for the stimulation of proton extrusion by divalent cations and K+.  相似文献   

19.
Abstract: The ability of adenosine agonists to modulate K+-evoked 4D†-[3H]aminobutyric acid ([3H]GABA) and acetylcholine (ACh) release from rat striatal synaptosomes was investigated. The A2a receptor-selective agonist CGS 21680 inhibited Ca2+-dependent [3H]GABA release evoked by 15 m M KCI with a maximal inhibition of 29 ± 4% (IC50 of ∼4 ± 10 −12 M ). The relative order of potency of three agonists was CGS 21680 ± 5'- N -ethylcarboxamidoadenosine > R-phenylisopropyladenosine (R-PIA), with the inhibition being blocked by A2a receptor-selective antagonists (CP 66,713 and CGS 15943A) but not by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). When release of [3H]GABA was evoked by 30 mM KCI, no significant inhibition was observed. In contrast, CGS 21680 stimulated the release of [3H]ACh evoked by 30 m M KCI, with a maximal stimulation of 26 ± 5% (IC50 of ∼10−11 M ). This effect was blocked by CP 66,713 but not by DPCPX. The A1 agonist R -PIA inhibited [3H]ACh release, an effect blocked by DPCPX. It is concluded that adenosine A2a receptors are present on both GABAergic and cholinergic striatal nerve terminals where they inhibit and stimulate transmitter release, respectively. Key Words : GABA—Acetylcholine—Adenosine receptors—Striatum.  相似文献   

20.
Abstract: GABAB and dopamine D2 receptors, both of which acutely inhibit adenylyl cyclase and high voltage-activated Ca2+ channels (HVA-CCs), are found in high levels in the melanotrope cells of the pituitary intermediate lobe. Chronic D2 receptor agonist application in vitro has been reported to result in inhibition of HVA-CC activity by down-regulation. Here we report that chronic GABAB, but not GABAA, agonist treatment also resulted in HVA-CC inhibition. Two GABAB receptor variants have been cloned and shown to inhibit adenylyl cyclase in HEK-293 cells. We have constructed an antisense deoxynucleotide knockdown-type probe that is complementary to 18 bp from the point at which the two sequences first become homologous. Chronic coincubation with baclofen and GABAB antisense nucleotide completely eliminated the inhibition of the channels by baclofen alone but had no reversing effect on HVA-CC inhibition by the D2 agonist quinpirole. A scrambled, missense nucleotide also had no reversing effect. Incubation with a D2 antisense knockdown probe eliminated the ability of a D2 agonist to inhibit the channels but had no effect on baclofen blockade. These results show the existence an R1a/R1b type of GABAB receptor, which, like the D2 receptor, is coupled to chronic HVA-CC inhibition in melanotropes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号