首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the transition from rest to steady-state exercise, O2 uptake from the lungs (VO2) depends on the product of pulmonary blood flow and pulmonary arteriovenous O2 content difference. The kinetics of pulmonary blood flow are believed to be somewhat faster than changes in pulmonary arteriovenous O2 content difference. We hypothesized that during CO breathing, the kinetics of CO uptake (VCO) and diffusing capacity for CO (DLCO) should be faster than VO2 because changes in pulmonary arteriovenous CO content difference should be relatively small. Six subjects went abruptly from rest to constant exercise (inspired CO fraction = 0.0005) at 40, 60, and 80% of their peak VO2, measured with an incremental test (VO2peak). At all exercise levels, DLCO and VCO rose faster than VO2 (P less than 0.001), and DLCO rose faster than VCO (P less than 0.001). For example, at 40% VO2peak, the time constant (tau) for DLCO in phase 2 was 19 +/- 5 (SD), 24 +/- 5 s for VCO, and 33 +/- 5 s for VO2. Both VCO and DLCO increased with exercise intensity but to a lesser degree than VO2 at all exercise intensities (P less than 0.001). In addition, no significant rise in DLCO was observed between 60 and 80% VO2peak. We conclude that the kinetics of VCO and DLCO are faster than VO2, suggesting that VCO and DLCO kinetics reflect, to a greater extent, changes in pulmonary blood flow and thus recruitment of alveolar-capillary surface area. However, other factors, such as the time course of ventilation, may also be involved.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Oxygen consumption (VO2) and carbon dioxide emission (VCO2) have been continuously recorded for 24 consecutive hours in 7 premature infants with a range of gestational age of 29-31 weeks at birth, and placed in incubators within a thermal neutral limit. These infants, submitted to continuous light, were fed every 3-4h through a gastric tube which was left in their stomachs throughout the whole experiment. Variance and spectral analyses performed on VCO2 values sampled on the recordings every 10 min showed ultradian variations, in the 40 min-6 h period range, which represent 20 and even 40% of the mean level. Moreover 5 out of the 7 premature infants show ultradian VCO2, VO2 and respiratory quotient rhythms related to feeding frequency.  相似文献   

3.
The kinetics of O2 up-take (VO2), CO2 output (VCO2), ventilation (VE), and heart rate (HR) were studied during exercise in normoxia and hypoxia [inspired O2 fraction (FIO2) 0.14]. Eight male subjects each completed 6 on- and off-step transitions in work rate (WR) from low (25 W) to moderate (100-125 W) levels and a pseudorandom binary sequence (PRBS) exercise test in which WR was varied between the same WRs. Breath-by-breath data were linearly interpolated to yield 1-s values. After the first PRBS cycle had been omitted as a warm-up, five cycles were ensemble-averaged before frequency domain analysis by standard Fourier methods. The step data were fit by a two-component (three for HR) exponential model to estimate kinetic parameters. In the steady state of low and moderate WRs, each value of VO2, VCO2, VE, and HR was significantly greater during hypoxic than normoxic exercise (P less than 0.05) with the exception of VCO2 (low WR). Hypoxia slowed the kinetics of VO2 and HR in on- and off-step transitions and speeded up the kinetics of VCO2 and VE in the on-transition and of VE in the off-transition. Frequency domain analysis confined to the range of 0.003-0.019 Hz for the PRBS tests indicated reductions in amplitude and greater phase shifts in the hypoxic tests for VO2 and HR at specific frequencies, whereas amplitude tended to be greater with little change in phase shift for VCO2 and VE during hypoxic tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A monitor was developed to track weightlessness deconditioning aboard the National Aeronautics and Space Administration (NASA) Space Station by measuring the O2 uptake (VO2) and CO2 production (VCO2) and calculating maximum VO2 and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic flow calibration, and it uses breath-by-breath compensation for sample line transport delay. The accuracy of the system was measured over the range of VO2 and VCO2 from 100 to 800 ml/min by means of simulation. Accuracy was 0.54% for VO2 and 2.9% for VCO2. The system was further evaluated using two laboratory methods, the first method being comparison with a breath-by-breath system. As volunteers performed a maximum effort on a cycle ergometer, the mean difference in readings between the two systems was 17 ml/min for VO2 and 8.0 ml/min for VCO2. The correlation coefficient squared was greater than 0.96 for both. The second laboratory test was to use the system for 2 mo in a Human Performance Laboratory. Readings of maximum VO2 (VO2max) and anaerobic threshold were repeatable and consistent with the individual's activity level. The accuracy and convenience of operation will make this a valuable instrument aboard the Space Station.  相似文献   

5.
Influence of body size and gender on control of ventilation   总被引:3,自引:0,他引:3  
Hypoxic (HVR) and hypercapnic (HCVR) ventilatory responses are influenced by both metabolic activity and hormonal factors. By studying 67 subjects of both sexes, including those at the extremes of stature, we examined the influence of gender, CO2 production (VCO2), O2 consumption (VO2), body surface area (BSA), and vital capacity (VC) on resting ventilation (VE), HVR, and HCVR. We measured resting VE, VO2, and VCO2 and then performed isocapnic progressive hypoxic and hypercapnic ventilatory responses. The effect of stature was reflected in higher VE and metabolic rate (both P less than 0.001) in tall men compared with short men that was ablated by correction for BSA. Perhaps because their heights vary less than those of the men, tall women were not statistically distinguishable from short women in any of these measured parameters. Tall men tended to have greater hypoxic chemosensitivity than short men but this was not significantly different (P = 0.07). Gender affected the control of ventilation in a number of ways. Men had higher VE (P less than 0.05) and metabolic rate (P less than 0.001) than women. Even after correction for BSA men still had higher metabolic rates. Women had higher VE/VCO2 than men (P less than 0.05) and lower resting end-tidal Pco2 (PETCO2) values (P less than 0.05). Both A, the shape parameter of the hyperbolic HVR curve, and HVR determined from mouth occlusion pressure (AP) were greater in women than in men, although only AP reached statistical significance. However, corrections of A for BSA (P less than 0.05), VCO2 (P less than 0.01), and VC (P less than 0.001) amplified these differences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Recent investigation suggests that both ventilation (VE) and the chemical sensitivity of the respiratory control system correlate closely with measures of metabolic rate [O2 consumption (VO2) and CO2 production (VCO2)]. However, these associations have not been carefully investigated during sleep, and what little information is available suggests a deterioration of the relationships. As a result we measured VE, ventilatory pattern, VO2, and VCO2 during sleep in 21 normal subjects (11 males and 10 females) between the ages of 21 and 77 yr. When compared with values for awake subjects, expired ventilation decreased 8.2 +/- 2.3% (SE) during sleep and was associated with a 8.5 +/- 1.6% decrement in VO2 and a 12.3 +/- 1.7% reduction in VCO2, all P less than 0.01. The decrease in ventilation was a product primarily of a significant decrease in tidal volume with little change in frequency. None of these findings were dependent on sleep stage with results in rapid-eye-movement (REM) and non-rapid-eye-movement sleep being similar. Through all sleep stages ventilation remained tightly correlated with VO2 and VCO2 both within a given individual and between subjects. Although respiratory rhythmicity was somewhat variable during REM sleep, minute ventilation continued to correlate with VO2 and VCO2. None of the parameters described above were influenced by age or gender, with male and female subjects demonstrating similar findings. Ten of the subjects demonstrated at least occasional apneas. These individuals, however, were not found to differ from those without apnea in any other measure of ventilation or metabolic rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Nine male patients (mean age 65 yr) with chronic atrial fibrillation underwent maximal exercise testing during placebo, beta-adrenergic (celiprolol, 600 mg), or calcium (diltiazem, 30 or 60 mg four times daily) channel blockade. The results were analyzed to determine which factors most closely related to ratings of perceived exertion (RPE) during exercise. Heart rate (HR), blood pressure (BP), oxygen uptake (VO2), minute ventilation (VE), and carbon dioxide production (VCO2) were evaluated at rest, 3.0 mph/0% grade, the gas exchange anaerobic threshold (ATge), 80% of placebo maximal O2 uptake, and maximal exercise. Both beta-adrenergic and calcium channel blockade significantly reduced heart rate and systolic blood pressure relative to placebo; these effects were more profound during beta-adrenergic blockade and as exercise progressed. Correlation coefficients and estimates of slope were derived for changes in RPE during exercise vs. changes in HR, VO2, VE, and VCO2 during the three treatments (r = 0.76 to 0.92, P less than 0.001). Although RPE was significantly correlated with HR during placebo and diltiazem therapy (r = 0.45, P less than 0.01), this was not the case during beta-adrenergic blockade (r = 0.31, NS). Slope of the regression lines between RPE and VO2, VE, and VCO2 did not differ between the three treatments. Slope of the regression lines between RPE and HR differed only during calcium channel blockade. Because the presence of atrial fibrillation and beta-adrenergic blockade altered the associations between RPE, VO2, and HR, these results suggest that VE is more closely related to RPE than the other parameters.  相似文献   

8.
The purpose of this study was to determine the effect of fitness and work level on the O2 uptake and CO2 output kinetics when the increase in work rate step is adjusted to the subject's maximum work capacity. Nine normal male subjects performed progressive incremental cycle ergometer exercise tests in 3-min steps to their maximum tolerance. The work rate step size was selected so that the symptom-limited maximum work rate would be reached in four steps at 12 min in all subjects. Oxygen consumption (VO2) and carbon dioxide production (VCO2) were calculated breath by breath. For the group, the time (mean, SEM) to reach 75% of the 3-min response (T0.75) for VO2 increased significantly (P less than 0.01) at progressively higher work rate steps, being 53.3 (5.5) s, 63.5 (4.6) s, 79.5 (5.0) s, and 94.5 (5.8) s, respectively. In contrast, T0.75 for VCO2 did not change significantly [74.9 (7.4) s, 75.6 (5.0) s, 85.1 (5.3) s, and 89.4 (6.3) s, respectively]. VCO2 kinetics were slower than VO2 kinetics at the low fractions of the subjects' work capacities but were the same or faster at the high fractions because of the slowing of VO2 kinetics. The first step showed the fastest rise in VO2. While VO2 kinetics slowed at each step, they were faster at each fraction of the work capacity in the fitter subjects. The step pattern in VO2 disappeared at high work rates for the less fit subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The response of respiratory gas exchanges to a 6 week high intensity training program was examined in 5 healthy males during fixed term maximal incremental treadmill exercise. Training was performed 3 d.wk-1 and consisted of a progressive series of repeated 15 sec and 30 sec maximal runs, and weight training exercises for the leg extensor muscles. Respiratory gases during the tests were continuously monitored using an on-line system. Muscle biopsy samples were obtained from the m. vastus lateralis before and after training for histochemical determination of fibre distribution based on myosin ATP-ase activity, and fibre cross-sectional area based on NADH-Tetrazolium Reductase activity. Training significantly increased the proportion of type IIa fibres (+5.9 +/- 2.0%, p less than 0.001) and decreased type I fibres (-6.3 +/- 2.0%, p less than 0.001), the distribution of type IIb fibres remained unchanged (+0.4 +/- 0.9%). Muscle cross-sectional area also showed a significant increase after training in type I (+318 +/- 215 microns 2, p less than 0.05), IIa (+652 +/- 207 microns 2, p less than 0.001) and IIb (+773 +/- 196 microns 2, p less than 0.001) fibres. During fixed term maximal incremental exercise the mean carbon dioxide output (VCO2) and mean respiratory exchange ratio (R = VCO2/VO2) were significantly increased (p less than 0.01) after training. The R-time relationship was at all times shifted to the left after training, being significantly (p less than 0.01) so over the final five min of exercise. No changes in mean exercise oxygen uptake (VO2), maximum oxygen uptake (VO2max) and maximum heart rate (FHRmax) were observed between tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

11.
This study examined the effects of dietary manipulation upon the respiratory exchange ratio (R = VCO2/VO2) as a predictor of maximum oxygen uptake (VO2max). Seven healthy males performed fixed term maximal incremental treadmill exercise after an overnight fast on three separate occasions. The first test took place after the subjects had consumed their normal mixed diet (45 +/- 5% carbohydrate (CHO] for a period of three days. This test protocol was then repeated after three days of a low CHO diet (3 +/- 2% CHO), and again after three days of a high CHO diet (61 +/- 5% CHO). Respiratory gases were continuously monitored during each test using an on-line system. No significant changes in mean exercise oxygen uptake (VO2), VO2max or maximum functional heart rate (FHRmax) were found between tests. Mean exercise carbon dioxide output (VCO2) and R were significantly lower than normal after the low CHO diet (both p less than 0.001) and significantly higher than normal after the high CHO diet (both p less than 0.05). Moreover, compared with the normal CHO diet, the R-time relationship during exercise was at all times significantly (p less than 0.001) shifted to the right after the low CHO diet, and shifted to the left, being significantly so (p less than 0.05) over the final 5 min of exercise, after the high CHO diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
An examination was made of the response of respiratory exchange ratio (R), carbon dioxide output (VCO2) and oxygen uptake (VO2) to sinusoidal work load with periods (T) of 1-16 min in six healthy men to determine whether R response is sinusoidal. The influence of the ratio of the amplitude of VCO2 to that of VO2 and the phase lag between them on R response was also studied by computer simulation. The results and conclusions obtained are as follows: 1) With decrease in the period, the amplitudes of VO2 and VCO2 dropped exponentially, becoming least at T of 1 min (T = 1 min). In contrast, the amplitude of R was largest at T = 4 min and subsequently decreased progressively. 2) The peak amplitude of R at T = 4 min can be explained by the larger phase lag and relatively low of amplitude of VCO2 to VO2. 3) The smallest amplitude of R at T = 1 min was due not to the ratio of amplitude or phase lag, but to remarkably smaller amplitudes of VO2 and VCO2. 4) The phase lag of VO2 to sinusoidal work load was smaller than that of VCO2. Phase lag of R was considerably larger than that of VO2 or VCO2. 5) The response curve of VO2 and VCO2 is a sinusoidal curve with the same period as exercise. However, the response of R is not a real sinusoidal but a deformed biphasic curve with a high crest and low trough. The deformity is determined by the phase lag between VO2 and VCO2 response and also the ratio of amplitude of VCO2 to that of VO2.  相似文献   

13.
The purposes of this investigation were to quantify the noise component of child breath-by-breath data, investigate the major determinants of the breath-to-breath noise, and to characterise the noise statistically. Twenty-four healthy children (12 males and 12 females) of mean (SD) age 13.1 (0.3) years completed 25 min of steady-state cycle ergometry at an exercise intensity of 50 W. Ventilatory and gas exchange variables were computed breath-by-breath. The mean (SD) oxygen consumption (VO2) ranged from 0.72 (0.16) to 0.92 (0.26) l x min(-1); mean (SD) carbon dioxide production (VCO2) ranged from 0.67 (0.20) l x min(-1) to 0.85 (0.16) l x min(-1); and mean (SD) minute ventilation ranged from 17.81 (3.54) l x min(-1) to 24.97 (5.63) l x min(-1). The majority of the breath-to-breath noise distributions differed significantly from Gaussian distributions with equivalent mean and SD parameters. The values of the normalised autocorrelation functions indicated a negligible breath-to-breath correlation. Tidal volume accounted for the majority of the VO2 (43%) and VCO2 (49%) variance. The breath-to-breath noise can be explained in terms of variations in the breathing pattern, although the large noise magnitude, together with the relatively small attainable response amplitudes in children reduces the certainty with which ventilatory and gas exchange kinetics can be measured.  相似文献   

14.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

15.
The purpose of this study was to determine differences in VO2max and metabolic variables between treadmill running and treadmill skating. This study also examined VO2max responses during a continuous skating treadmill protocol and a discontinuous skating treadmill protocol. Sixteen male high school hockey players, who had a mean age of 16 +/- 1 years and were of an above-average fitness level, participated in this study. All subjects completed 4 exercise trials: a 1-hour skating treadmill familiarization trial, a treadmill running trial, and 2 randomized skating treadmill trials. Minute ventilation (VE), oxygen consumption VO2), carbon dioxide production VCO2), respiratory exchange ratio (RER), and heart rate were averaged every 15 seconds up to VO2max for each exercise test. The results showed that there was a significant difference (P < 0.05) for VO2max (mL.kg.min) and maximal VCO2 (L.min) between the running treadmill protocol and discontinuous skating treadmill protocol. There was also a significant difference for maximal RER between the discontinuous and continuous skating treadmill protocol and between the discontinuous skating treadmill protocol and running treadmill protocol. In conclusion, the running treadmill elicited a greater VO2max (mL.kg.min) than the skating treadmill did, but when it comes to specificity of ice skating, the skating treadmill may be ideal. Also, there was no significant difference between the discontinuous and continuous skating treadmill protocols. Therefore, a continuous protocol is possible on the skating treadmill without compromising correct skating position and physiologic responses. However, the continuous skating treadmill protocol should undergo validation before other scientists, coaches, and strength and conditioning professionals can apply it correctly.  相似文献   

16.
The kinetics of oxygen uptake (VO2), carbon dioxide output (VCO2), and expired ventilation (VE) in the transition from rest or from prior exercise were studied in response to step increases in power output (PO). The data were modeled with a single-component exponential function incorporating a time delay (TD). Each subject exercised on four occasions. Test 1 was an incremental test for determination of ventilatory anaerobic threshold (AT). Step increase tests were rest to 80% of PO at AT (test 2), rest-40% AT (3a), 40-80% AT (3b), rest-40% AT (4a), and 40-120% AT (4b). Respiratory gas exchange was monitored by open-circuit techniques. The VO2 kinetics showed the time constant (tau) to be longer in the transitions from prior exercise [tests 3b and 4b were 60.6 +/- 10.8 (SD) and 79.2 +/- 17.4 s] than from rest (tests 2, 3a, and 4a were 37.8 +/- 7.2, 30.0 +/- 7.8, and 39.6 +/- 17.4 s). The mean response time (MRT = tau + TD) was also longer for these tests. Kinetic analysis for VCO2 showed a tendency for tau to be shorter for the tests from prior exercise, but neither tau nor tau + TD were significantly different between tests. In contrast to VCO2, VE kinetics showed a significantly longer tau + TD for test 3b (P less than 0.05) and test 4b (P less than 0.01). This study has shown the VO2 kinetics to be delayed when a given increment in PO occurred from prior exercise, whether the final PO was below or above the AT. Further, the dissociation of VCO2 and VE kinetics does not support a direct link between these two variables as the sole control factor in exercise hyperpnea.  相似文献   

17.
Six subjects pedaled a stationary cycle ergometer to exhaustion on three separate occasions while breathing gas mixtures of 17, 21, or 60% O2 in N2. Each subject rode for 3 min at work rates of 60, 90, 105 W, followed by 15-W increases every 3 min until exhaustion. Inspired and expired gas fractions, ventilation (V), heart rate, and blood lactate were measured. O2 uptake (VO2) and CO2 output (VCO2) were calculated for the last minute of each work rate; blood samples were drawn during the last 5 s. "Break points" for lactate, V, VCO2, V/VO2, and expired oxygen fraction (FEO2) were mathematically determined. VO2 was not significantly different at any work rate among the three different conditions. Nor did maximal VO2 differ significantly among the three treatments (P greater than 0.05). Lactate concentrations were significantly lower during hyperoxia and significantly higher during hypoxia compared with normoxia. Lactate values at exhaustion were not significantly different among the three treatments. Four subjects were able to work for a longer period of time during hyperoxic breathing. The variations in lactate accumulation as reported in this study cannot be explained on the basis of differences in VO2. The results of this research lend support to the hypothesis that differences in the performance of subjects breathing altered fractions of inspired oxygen may be caused by differences in lactate (or H+) accumulation.  相似文献   

18.
Changes in the cellular metabolism assessed by the variability of oxygen consumption (VO(2) ) and carbon dioxide production (VCO(2) ) as well as the association of serum glucose and insulin to energy spectral density (ESD) of VO(2) and VCO(2) were evaluated. Ten nonglucose intolerant and 10 glucose intolerant subjects, aged 21-70 years, were included. Glucose and insulin concentrations and VO(2) and VCO(2) records were collected every 10 min during 3 h. ESD of VO(2) and VCO(2) was estimated and associated with glucose and insulin concentrations. Statistical significance in glucose levels, insulin, and ESD of VO(2) and VCO(2) among nonglucose intolerant subjects and glucose and insulin among glucose intolerance subjects at postload glucose (PLG) state compared with basal state was found. Moreover, glucose was significantly higher in glucose intolerance subjects than nonglucose intolerant subjects for basal and PLG states. These results show an increment in ESD of VO(2) and VCO(2) at PLG state among nonglucose intolerant subjects and suggest that their measurement may be a key indicator of the variability of cellular metabolic activity and contribute to confirm disturbances in glucose metabolism.  相似文献   

19.
The effect of exogenous dopamine on the development of exercise hyperpnea was studied. Using a bicycle ergometer, five subjects performed repetitive square-wave work-load testing from unloaded pedaling to 80% of each subject's estimated anaerobic threshold. The breath-by-breath ventilation (VE), CO2 production (VCO2), and O2 consumption (VO2) responses were analyzed by curve fitting a first-order exponential model. Comparisons were made between control experiments and experiments with a 3-micrograms X kg-1 X min-1 intravenous infusion of dopamine. Steady-state VE, VCO2 and VO2 were unchanged by the dopamine infusion, both during unloaded pedaling and at the heavier work load. The time constants for the increase in VE (tau VE) and VCO2 (tau CO2) were significantly (P less than 0.05) slowed (tau VE = 56.5 +/- 16.4 s for control, and tau VE = 76.4 +/- 26.6 s for dopamine; tau CO2 = 51.5 +/- 10.6 s for control, and tau CO2 = 64.8 +/- 17.4 s for dopamine) (mean +/- SD), but the time constant for VO2 (tau O2) was not significantly affected (tau O2 = 27.5 +/- 11.7 s for control, and tau O2 = 31.0 +/- 10.1 s for dopamine). We conclude that ablation of carotid body chemosensitivity with dopamine slows the transient ventilatory response to exercise while leaving the steady-state response unaffected.  相似文献   

20.
Thirty-three college women (mean age = 21.8 years) participated in a 5 d X wk-1, 12 week training program. Subjects were randomly assigned to 3 groups, above lactate threshold (greater than LT) (N = 11; trained at 69 watts above the workload associated with LT), = LT (N = 12; trained at the work load associated with LT) and control (C) (N = 10). Subjects were assessed for VO2max, VO2LT, VO2LT/VO2max, before and after training, using a discontinuous 3 min incremental (starting at 0 watts increasing 34 watts each work load) protocol on a cycle ergometer (Monark). Respiratory gas exchange measures were determined using standard open circuit spirometry while LT was determined from blood samples taken immediately following each work load from an indwelling venous catheter located in the back of a heated hand. Body composition parameters were determined before and after training via hydrostatic weighing. Training work loads were equated so that each subject expended approximately 1465 kJ per training session (Monark cycle ergometer) regardless of training intensity. Pretraining, no significant differences existed between groups for any variable. Post training the greater than LT group had significantly higher VO2max (13%), VO2LT (47%) and VO2LT/VO2max (33%) values as compared to C (p less than .05). Within group comparisons revealed that none of the groups significantly changed VO2max as a result of training, only the greater than LT group showed a significant increase in VO2LT (48%) (p less than .05), while both the = LT and greater than LT group showed significant increases in VO2LT/VO2max (= LT 16%, greater than LT 42% (p less than .05)).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号