首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crossbred gilts and sows (n=116) were used for the collection of 1-cell zygotes for DNA microinjection and transfer. Retrospectively, estrus synchronization and superovulation schemes were evaluated to assess practicality for zygote collection. Four synchronization and superovulation procedures were used: 1) sows were observed for natural estrous behavior; 1000 IU human chorionic gonadotrophin (hCG) was administered at the onset of estrus (NAT); 2) cyclic gilts were synchronized with 17.6 mg altrenogest (ALT)/day for 15 to 19 days followed by superovulation with 1500 IU pregnant mares serum gonadotropin (PMSG) and 500 IU hCG (LALT); 3) gilts between 11 and 16 days of the estrous cycle received 17.6 mg ALT for 5 to 9 days and PMSG and hCG were used to induce superovulation (SALT); and 4) precocious ovulation was induced in prepubertal gilts with PMSG and hCG (PRE). A total of 505 DNA microinjected embryos transferred into 17 recipients produced 7 litters and 50 piglets, of which 8 were transgenic. The NAT sows had less (P < 0.05) ovarian activity than gilts synchronized and superovulated by all the other procedures. Synchronization treatments with PMSG did not differ (P > 0.05) in the number of corpora hemorrhagica or unovulated follicles, but SALT and PRE treaments had higher ovulation rates than LALT (24.7 +/- 2.9, 24.3 +/- 1.8 vs 11.6 +/- 2.7 ovulations; X +/- SEM). The SALT and PRE treatments yielded 12.3 +/- 2.6 and 17.7 +/- 1.7 zygotes. Successful transgenesis was accomplished with SALT and PRE procedures for estrus synchronization and superovulation.  相似文献   

2.
Bolamba D  Sirard MA 《Theriogenology》1996,46(6):1045-1052
This study was conducted to compare the in vitro development of embryos from superovulated postpubertal gilts synchronized with progesterone agonist altrenogest (REG, Regu-Mate) and those from superovulated prepubertal gilts synchronized with prostaglandin analogue cloprostenol (PLA, Planate). Ten postpubertal gilts that had exhibited estrus at least once were fed 20 mg/d of REG from Day 0 (the first day of treatment, may have been any day of the estrous cycle) to Day 17. The gilts received intramuscularly (im) 1500 IU of equine chorionic gonadotropin (eCG) on the afternoon of Day 17, followed by 1000 IU of human chorionic gonadotropin (hCG) 84 h later. Eight prepubertal gilts received intramuscularly one dose of a combination of 400 IU of eCG and 200 IU of hCG (PG 600) on Day 0 (the first day of treatment), followed by 750 IU of hCG on Day 3. From Day 16 to Day 19, the prepubertal gilts received 350 mg/d of PLA, followed by 1500 IU of eCG on the afternoon of Day 19, then 1000 IU of hCG 84 h later. Gilts were checked for estrus with an intact boar. At estrus, all gilts were artificially inseminated and/or mated twice at 12-h intervals. Then 50 to 54 h after the hCG injection, a mid-ventral laparotomy was performed on each gilt. Corpora albicans (CA) and corpora hemorrhagica (CH) were counted, and oviducts were flushed in situ. The embryos recovered (1- to 2-cell) were cultured in modified Whitten's medium at 38.5 degrees C under an atmosphere of 5% CO2 in air for 144 h. The number of CA per gilt did not differ between the postpubertal and prepubertal gilts (11.9 vs 7.9, respectively; P > 0.05). However, the number of CH per gilt (27.5 vs 18.1, P = 0.05) and the number of embryos per gilt (26.2 vs 15.3, P < 0.05) were higher in postpubertal gilts than in prepubertal gilts. Furthermore, after 144 h of in vitro culture, the percentage of embryos cleaving to the >-16-cell (morula + blastocysts) or > or =32-cell (blastocysts) was greater (P < 0.05) in prepubertal gilts than in postpubertal gilts (85.2 vs 68.5, 55.7 vs 44.2, respectively). The total numbers of embryos examined were 122 and 260 in prepubertal and postpubertal gilts, respectively. These results show that postpubertal gilts treated with REG produced a higher number of embryos. However, better embryo development was noted with zygotes from prepubertal gilts primed with exogenous gonadotrophin, followed by synchronization with prostaglandin before induction of superovulation and insemination.  相似文献   

3.
Immature rats were injected with pregnant mares' serum gonadotrophin followed by human chorionic gonadotrophin (hCG). Ovaries were removed 0, 2, 5 or 8 days after hCG and either prepared for morphometric analysis or perifused with 0, 5 or 30 ng luteinizing hormone (LH)/min. In a second study, ovaries were removed on Day 2 or 8 and perifused with 0.1 mg 8-br-cyclic adenosine 5'-phosphate/ml (8-br-cAMP). On Day 0, the granulosa cells of the preovulatory follicles were small (53 +/- 0.5 microns2) with a cytoplasmic to nuclear (Cy:Nu) ratio less than or equal to 1.5. By Day 2, corpora lutea (CL) were present and composed of 95% small luteal cells (diameter less than 125 microns2, Cy:Nu greater than or equal to 3.0) and 5% large luteal cells (diameter greater than 125 microns2, Cy:Nu ratio greater than or equal to 3.0). The percentage of large luteal cells increased to 36 +/- 7% by Day 5, suggesting that they are derived from a select population of small luteal cells. Basal progesterone secretion increased from 38 +/- 5 on Day 0 to 1010 +/- 48 pg/mg/ml on Day 8. The rate of 5 ng LH/min stimulated progesterone secretion on Days 0, 2 and 8; 30 ng LH/min stimulated progesterone secretion on Days 0, 2 and 8, but not on Day 5; 8-br-cAMP stimulated progesterone secretion on both Days 2 and 8. These data demonstrate that once granulosa cells are induced to luteinize they lose their capacity to secrete progesterone in response to 5 ng LH/min and do not regain their responsiveness to LH rate until they completely differentiate. The loss of this LH responsiveness appears to be due to an inability to stimulate sufficient intracellular cAMP concentrations, since cAMP stimulates progesterone secretion on both Days 2 and 8.  相似文献   

4.
We administered either saline (group A) or 10 IU of pregnant mare serum gonadotropin (PMS; groups B and C) to female immature rats. Fifty-three hours later, the rats were injected with saline (groups A and B) or 30 IU of human chorionic gonadotropin (hCG; group C). The rats were decapitated 17 h after the last treatment, and the serum levels of progesterone (P4) and estradiol (E2) were measured by specific radioimmunoassays (RIA). The receptor levels of progesterone (PR) and estrogen (ER) in the uterus and ovaries were measured and the dissociation constant (Kd) of PR was obtained. The highest serum level of P4 was found in group C and that of E2 in group B. Cytosol levels of PR and ER in the uterus and ovary of the group B were the highest. It was indicated that the PMS treated-group (B), which had developing follicles in the ovary and the high serum level of E2, showed the highest concentration of ER and PR in both the ovary and the uterus. In the PMS and hCG-treated group (C), the uterine and ovarian steroid receptors decreased probably because of the luteinization and the high serum level of P4. The Kd uterine PR value was less than that of ovarian PR.  相似文献   

5.
Pseudopregnancy in pigs can be induced by the administration of a single dose of hCG at Day 12 of the estrous cycle. However, the resulting length of pseudopregnancy can be extremely variable. In this study, it was investigated whether time of hCG administration (day of the cycle) and degree of follicle growth after hCG administration were related to the length of inter-estrous interval (pseudopregnancy). In the first experiment, groups of cyclic gilts were given 1500 IU hCG at either Day 11 (D 11; n=14) or Day 12 (D12; n=14) after onset of estrus, or not treated (Control; n=13). Follicle development was assessed daily using transcutaneous ultrasonography. Follicle size in the Control gilts remained relatively constant between Days 11 and 17, whereas in the treated gilts, follicle size increased (P < 0.001) within 4 days (D11) and 2 days (D12) after treatment. The inter-estrous interval was increased (P < 0.01) in the hCG-treated gilts (34.7+/-6.3 and 37.6+/-11.1 days in the D11 and D12 gilts, respectively), compared to Controls (22.3+/-5.2 d). About two-thirds of the treated gilts returned to estrus between Days 32 and 39 after onset of first estrus. No relationships were found between follicle development after treatment and length of the inter-estrous interval. In a second experiment, 16 cyclic gilts were treated with 1500 IU hCG at Day 12 and Day 15 of the estrous cycle. Follicle development was assessed at Days 12, 15 and 18. At Day 18, average follicle size was 8.4+/-2.0 mm. The inter-estrous interval was 39.7+/-5.4 days and 14 of 16 gilts returned to estrus between Days 34 and 44 after onset of first estrus. Again, no relationships were found between follicle development after treatment and the duration of the inter-estrous interval. We conclude that, based on the duration of the inter-estrous interval, administration of hCG during the luteal phase induced a short pseudopregnancy. However, the induction of accessory corpora lutea or follicular luteinization cannot be discounted.  相似文献   

6.
Ovaries were obtained from naturally cyclic pigs on Days 16-17, 18, 19, 20 and 21 of the oestrous cycle and on the basis of observed follicular characteristics were assigned as representative of the early (Group 1), mid- (Groups 2 and 3) or late (after LH; Group 4) follicular phase. Follicular development in cyclic gilts was compared with that in ovaries obtained from late prepubertal gilts 36 (Group 5) or 72 (Group 6) h after treatment with 750 i.u. PMSG alone, or with a combination of 500 i.u. hCG 72 h after PMSG and slaughter 30-40 h later (Group 7). After dissection of all follicles greater than 2 mm diameter, follicular diameter, follicular fluid volume, follicular fluid concentrations of progesterone, oestradiol and testosterone, and the stage of oocyte maturation were determined. Combined PMSG/hCG treatment of immature gilts resulted in a pattern of follicular development different from that in naturally cyclic gilts during the follicular phase. Overall exogenous gonadotrophin treatment also increased (P less than 0.001) the variability in follicular diameter and fluid volume. Comparisons between appropriate groups also established differences in the variability of both morphological (diameter and volume, Group 1 vs Group 5; P less than 0.05) and biochemical development (follicular fluid oestradiol, Group 3 vs Group 6 and Group 4 vs Group 7; both P less than 0.05). Such differences in both morphological and biochemical characteristics between cyclic and PMSG/hCG-treated gilts were particularly evident in the population of larger (greater than 6 mm) follicles. These results indicate that the pattern of follicular development in naturally cyclic and in PMSG/hCG-treated gilts is dissimilar and suggests that the ovaries of gonadotrophin-treated prepubertal gilts are functionally different from the ovaries of mature females.  相似文献   

7.
The ability of deglycosylated hCG (dghCG) prepared by deglycosylation of a clinical hCG (3000 IU/mg) preparation, to block luteal function during regular cycles as well as luteal rescue in simulated and mated cycles of female bonnet monkeys (M. radiata) has been evaluated. The cycle length (C:28 vs E:24 days) and the total progesterone produced during the luteal phase was significantly reduced (by 45%, P < .05) by injecting 450 micrograms of dghCG/day (in split doses) on days 18, 19, and 20 of cycle. At the doses tested the dghCG used did not exhibit any agonistic activity in the female monkey. In a second experiment injection of 200 micrograms of dghCG/day on days 18-20 of cycle blocked the normal response of the luteal tissue to exogenous hCG (10 micrograms of a 12,000 IU/mg preparation) injected on day 23 of cycle. In a third experiment no pregnancies occurred when a group of 5 animals were injected dghCG (450 micrograms dghCG/day) on days 18-21 of their mated cycle. Animals chosen for this study were proven fertile regularly cycling monkeys and these were cohabited with males between days 9 and 14 of cycle. Each of the monkeys was exposed to 3 consecutive treatment cycles. During post-treatment phase 2 out of 3 monkeys exposed to males became pregnant. The study clearly demonstrates that it is possible to block normal luteal function as well as luteal rescue of the female monkey by using dghCG in the right dose and mode.  相似文献   

8.
FSH is favored over chorionic gonadotropins for induction of estrus in various species, yet little data are available for its effects on follicle development and fertility for use in pigs. For Experiment 1, prepubertal gilts (n = 36) received saline, 100 mg FSH, or FSH with 0.5 mg LH. Treatments were divided into six injections given every 8 h on Days 0 and 1. Proportions of gilts developing medium follicles were increased for FSH and FSH-LH (P < 0.05) compared to saline, but follicles were not sustained and fewer hormone-treated gilts developed large follicles (P < 0.05). No gilts expressed estrus and few ovulated. Experiment 2 tested FSH preparations with greater LH content. Prepubertal gilts (n = 56) received saline, FSH-hCG (100 mg FSH with 200 IU hCG), FSH-LH5 (FSH with 5 mg LH), FSH-LH10 (FSH with 10 mg LH), or FSH-LH20 (FSH with 20 mg LH). FSH-LH was administered as previously described, while 100 IU of hCG was given at 0 h and 24 h. Hormone treated gilts showed increased (P < 0.05) medium and large follicle development, estrus (>70%), ovulation (100%), and ovulation rate (>30 CL) compared to saline. There was an increase (P < 0.05) in the proportion of hormone-treated gilts with follicular cysts at Day 5, but these did not persist to Day 22. These gilts also showed an increase in poorly formed CL (P < 0.05). FSH alone or with small amounts of LH can induce medium follicle growth but greater amounts of LH at the same time is needed to sustain medium follicles, stimulate development of large follicles and induce estrus and ovulation in prepubertal gilts.  相似文献   

9.
High- and low-affinity prostaglandin E2 (PGE2) binding sites were found on day 15 after estrus in the endometrium of cycling (Cy) and pregnant (Pr) gilts as well as gilts treated with intra-uterine Silastic beads containing estradiol-17 beta (E2) alone or in combination with PGE2 (E and PG gilts respectively) and inserted into the uterine lumen on day 10 of the cycle. The average apparent dissociation constants (Kd) and binding site concentrations (Bmax) for the high- and low-affinity sites were respectively (mean +/- SEM): 8.4 +/- 0.7 pM and 3.28 +/- 0.38 fmol/mg of protein and 5.3 +/- 0.8 nM and 71 +/- 9 fmol/mg of protein. Samples collected along the meso- and antimesometrial aspects did not differ (P greater than 0.05), although the low-affinity Bmax was higher on the antimesometrial aspect for Pr and Cy gilts only. No difference in Kd (P greater than 0.10) was found between treatments for high-affinity binding sites. For the low-affinity binding sites, Kd was higher for Pr compared to PG and E but not to Cy gilts (P less than 0.05). The high-affinity Bmax was higher (P less than 0.05) for PG, followed by E, Pr and Cy gilts (respectively: 5.50 +/- 0.26; 4.19 +/- 0.46; 1.78 +/- 0.40; 1.64 +/- 0.23 fmol/mg of protein), although Pr and Cy gilts were not different (P greater than 0.05). These results suggest that the localized presence of conceptuses in the uterus in early pregnancy does not markedly affect PGE binding sites but that intrauterine applications of Silastic beads containing E2 and PGE2 increase high-affinity Bmax and decrease low-affinity Kd.  相似文献   

10.
Prepuberal gilts were treated with 750 IU pregnant mare serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. In this model, ovulation occurred at 42 +/- 2 h post hCG treatment. When 500 mug of cloprostenol was injected at 34 and of 36 h after hCG injection, 78% of the preovulatory follicles ovulated by 38 h compared with 0% in the control gilts. In addition, plasma progesterone concentrations were significantly higher in the cloprostenol-treated group than in the control group (P<0.01) at 38 h, indicating luteinization along with premature ovulation. These results suggest that prostaglandin F(2)alpha (PGF(2)alpha) or an analog can be used to advance, synchronize or induce ovulation in gilts.  相似文献   

11.
In our previous study we have demonstrated that treatment of endometrial explants with LH increased 13,14-dihydro-15-ketoprostaglandin F(2alpha) (PGFM) accumulation in pigs. This was particularly visible on Days 14-16 of the estrous cycle. Action of gonadotropin in porcine endometrium appears to be mediated by LH/hCG receptors whose number is dependent on the day of the estrous cycle. In the current study i.v. infusion (1 hour) of hCG (200 IU) performed on Days 10 (n=4) and 12-14 (n=4) of the porcine estrous cycle did not affect plasma PGFM (ng/ml+/-SEM) concentrations. In contrast, administration of hCG on Days 15-17 produced, depending on plasma PGFM level before the infusion period, three different types of response: I. plasma PGFM surge of amplitude 0.62+/-0.15 was observed when the mean basal pre-infusion PGFM plasma level was 0.23+/-0.05 (n=6 gilts); II. the delayed PGFM surge of amplitude 0.62+/-0.15 was determined when basal pre-infusion PGFM level was 0.80+/-0.20 (n=6); and III. lack of PGFM response to hCG was found when basal pre-infusion PGFM level was 1.09+/-0.61 (n=6). Concentrations of plasma PGFM before and after saline infusion did not differ on Days 12-14 and 16 of the estrous cycle. In the next experiment blood samples were collected every 1 hour on Days 12-19 of the estrous cycle to determine concentrations of LH, PGFM and progesterone in four gilts. In particular gilts, plasma peaks of LH closely preceded surges of PGFM in 72.7, 84.6, 75.0 and 66.6 percent, respectively. The highest PGFM surges followed a decline in plasma progesterone concentration. We conclude that the increased PGF(2alpha) metabolite production after hCG infusion during the late luteal phase of the estrous cycle as well as the relationship between plasma LH and PGFM peaks suggest the LH involvement in the elevation of endometrial PGF(2alpha) secretion in pigs, and, in consequence, induction of luteolysis.  相似文献   

12.
Three studies were conducted to investigate the endocrine and ovulatory responses of the prepubertal gilt to exogenous estradiol and gonadotropins. In Study One, prepubertal gilts of 190 days of age were injected s.c. with pregnant mare's serum gonadotropin (PMSG) or physiological saline (SAL). Following PMSG injection, circulating levels of estradiol-17 beta (E2) increased. This increase was followed by a surge of luteinizing hormone (LH), estrus, a rise in progesterone (P4) levels, and ovulation. None of the gilts given SAL had increased levels of E2, LH or P4, and none ovulated. In Study Two, prepubertal gilts of 165 days of age were treated with varying doses of PMSG. A positive correlation was observed between dose of PMSG and peak levels of E2 (r = 0.83, P less than 0.001) and between dose of PMSG and number of corpora lutea (r = 0.96, P less than 0.001). In Study Three, gilts were treated at ages of 70 to 190 days with estradiol benzoate (EB), PMSG, or corn oil plus saline (CO/SAL) followed in 72 to 96 h by human chorionic gonadotropin (hCG) or SAL. All gilts treated with EB at 100 to 175 days of age had two surges of LH at an approximately 24-h interval. Gilts responding to EB at 70 and 190 days had only one surge of LH. Gilts of 100 days of age or older responded to PMSG with a single surge or two surges of LH. Ovulation in response to treatment was observed in gilts of 100 days of age or greater but not at 70 days. The conclusions drawn from these studies are that 1) PMSG-induced ovulation is preceded by an increase in circulating levels of E2 and in some gilts by a surge of LH, and 2) prepubertal gilts are able to respond to exogenous endocrine stimulation with either a single surge or multiple surges of LH at 70 to 190 days but are unable to ovulate in response to exogenous gonadotropins until 100 days of age.  相似文献   

13.
The objective of this study was to examine the response of anestrous gilts to injections of pregnant mare's serum gonadotrophin (PMSG) alone or in combination with human chorionic gonadotrophin (hCG). One hundred and eighty gilts which had failed to exhibit estrus by about 33 wk of age were given one of the following treatments: no injection, 500 IU PMSG, 1000 IU PMSG or 400 IU PMSG + 200 IU hCG. A greater number of gilts injected with 1000 IU PMSG exhibited estrus within nine days of treatment than control gilts (21/37 vs 13/41, X(2) = 5.0, P<0.05). In addition, gilts injected with 1000 IU PMSG exhibited oestrus significantly earlier than gilts receiving the other treatments. In comparisons of the proportion of gilts ovulating within 9 d of treatment and the treatment-to-ovulation interval, there were no significant differences between the three exogenous hormone treatments. There was also no significant effect of treatment on farrowing rate or subsequent litter size. The results of our study indicate that treatment of anestrous gilts with 1000 IU PMSG effectively induces ovulation and fertile estrus. Inadequate expression of estrus often accompanied the ovulation induced by the lower dosages of PMSG used with and without hCG in this experiment.  相似文献   

14.
The objective of the current study was to investigate the mechanism by which the corpus luteum (CL) of the monkey undergoes desensitization to luteinizing hormone following exposure to increasing concentration of human chorionic gonadotrophin (hCG) as it occurs in pregnancy. Female bonnet monkeys were injected (im) increasing doses of hCG or dghCG beginning from day 6 or 12 of the luteal phase for either 10 or 4 or 2 days. The day of oestrogen surge was considered as day ‘0’ of luteal phase. Luteal cells obtained from CL of these animals were incubated with hCG (2 and 200 pg/ml) or dbcAMP (2.5,25 and 100 M) for 3h at 37°C and progesterone secreted was estimated. Corpora lutea of normal cycling monkeys on day 10/16/22 of the luteal phase were used as controls. In addition thein vivo response to CG and deglycosylated hCG (dghCG) was assessed by determining serum steroid profiles following their administration. hCG (from 15–90 IU) but not dghCG (15-90 IU) treatment in vivo significantly (P < 0.05) elevated serum progesterone and oestradiol levels. Serum progesterone, however, could not be maintained at a elevated level by continuous treatment with hCG (from day 6–15), the progesterone level declining beyond day 13 of luteal phase. Administering low doses of hCG (15-90 IU/day) from day 6–9 or high doses (600 IU/day) on days 8 and 9 of the luteal phase resulted in significant increase (about 10-fold over corresponding control P < 0.005) in the ability of luteal cells to synthesize progesterone (incubated controls) in vitro. The luteal cells of the treated animals responded to dbcAMP (P < 0.05) but not to hCC added in vitro. The in vitro response of luteal cells to added hCG was inhibited by 0,50 and 100% if the animals were injected with low (15-90 IU) or medium (100 IU) between day 6–9 of luteal phase and high (600 IU on day 8 and 9 of luteal phase) doses of dghCG respectively; such treatment had no effect on responsivity of the cells to dbcAMP. The luteal cell responsiveness to dbcAMP in vitro was also blocked if hCG was administered for 10 days beginning day 6 of the luteal phase. Though short term hCG treatment during late luteal phase (from days 12—15) had no effect on luteal function, 10 day treatment beginning day 12 of luteal phase resulted in regain ofin vitro responsiveness to both hCG (P < 0.05) and dbcAMP (P < 0.05) suggesting that luteal rescue can occur even at this late stage. In conclusion, desensitization of the CL to hCG appears to be governed by the dose/period for which it is exposed to hCG/dghCG. That desensitization is due to receptor occupancy is brought out by the fact that (i) this can be achieved by giving a larger dose of hCG over a 2 day period instead of a lower dose of the hormone for a longer (4 to 10 days) period and (ii) the effect can largely be reproduced by using dghCG instead of hCG to block the receptor sites. It appears that to achieve desensitization to dbcAMP also it is necessary to expose the luteal cell to relatively high dose of hCG for more than 4 days  相似文献   

15.
Oxytocin (OT) is involved in the regulation of luteolysis in pigs. However, it is still not clear if OT is responsible for initiation of luteal regression in this species. The objectives of the study were: (1) to compare OT receptors (OTr) concentrations in endometrium and myometrium of cyclic and early pregnant pigs, (2) to examine the effect of OT on plasma PGF(2)alpha secretion during the progressive luteal regression, (3) to ascertain the effect of OT on inositol phosphates (IPs) accumulation in endometrial and myometrial cells of cyclic and early pregnant pigs. Concentrations of OTr on the endometrium and myometrium of cyclic (n = 33) (days 2-4; 11-13; 14-16; 18-20; day 21) and early pregnant (n = 4) (days 14-16) gilts were determined and they ranged from 7 +/- 3 (days 11-13) to 377 +/- 113 fmol/mg protein (day 21) in the endometrium and from 33 +/- 11 (days 2-4) to 167 +/- 28 fmol/mg protein (days 18-20) in the myometrium. In both tissues, concentrations of OTr were low during the luteal phase and increased (P < 0.01) during the follicular phase. In contrast to myometrial OTr, endometrial OTr during pregnancy were undetectable. In next experiment, mature gilts (n = 12) were injected with OT (20IU; i.v.) for three consecutive days starting on days 14 and 15 of the oestrous cycle and plasma PGF(2)alpha metabolite-13,14-dihydro-16-keto PGF(2)alpha (PGFM) concentration was determined. On days 15-16 and 16-17, OT increased plasma PGFM level. This effect was not observed on days 14-15 of the estrous cycle. A negative correlation was noticed between plasma concentrations of PGFM and progesterone (r = -0.3; P < 0.05). In last experiment, OT (100 nM) augmented (P < 0.01) an accumulation of inositol phosphates (IPs) in isolated myometrial cells on days 14-16 (n = 4) and 18-20 (n = 3) of the estrous cycle and on days 14-16 (n = 4) of pregnancy. Oxytocin-stimulated accumulation of IPs was not observed in endometrial cells. In summary: (1) concentrations of OTr on both the endometrium and myometrium were the highest during perioestrus-period in pigs, (2) myometrium of early pregnant sows possessed functional OTr, (3) oxytocin increased plasma PGFM concentration after initiation of luteolysis; and (4) OT-stimulated accumulation of IPs in myometrial, but not in endometrial cells. In conclusion, OT appears to not be involved in the initiation of luteal regression in sows and functional OTr are still present in the myometrium during early pregnancy (days 14-16).  相似文献   

16.
Zheng HL  Wen HX  Liu GY  Ni J 《生理学报》2008,60(2):275-278
本文旨在研究血小板活化因子(platelet-activating factor,PAF)对大鼠黄体细胞孕酮分泌及血管内皮生长因子(vascularendothelial growth factor,VEGF)mRNA表达的作用.将未成年(25~28 d)Sprague-Dawley雌性大鼠颈部皮下注射50 IU孕马血清促性腺激素(pregnant mare serum gonadotrophin,PMSG),48 h后注射25 IU人绒毛膜促性腺激素(human chorionicgonadotrophin.hCG)诱导卵泡发育和黄体生成,第6天(hCG注射日为第1天)收集卵巢黄体细胞,体外培养24 h后,不加或加入不同剂量(0.1 μg/mL、1 μg/mL、10 μg/mL)PAF,37℃、5%CO2培养箱内培养24 h.用放射免疫方法测定培养液中孕酮的含量,流式细胞仪和RT-PCR方法检测黄体细胞凋亡以及VEGF mRNA的表达.结果显示,PAF促进黄体细胞孕酮分泌,1 μg/mL PAF作用最强(P<0.05);PAF促进黄体细胞凋亡无明显剂量依赖性,但10 μg/mL PAF显著促进大鼠黄体细胞凋亡(P<0.05):PAF刺激黄体细胞VEGF mRNA表达,1 μg/mL PAF效果最显著(P<0.01).结果提示,PAF可通过调节黄体细胞孕酮的分泌和VEGF mRNA的表达来促进黄体形成.  相似文献   

17.
We have demonstrated specific, high affinity binding of a biologically active Tyr23-monoiodinated derivative of ACTH, [125I][Phe2,Nle4]ACTH 1-24, in rat brain homogenates. Similarly, in metabolically inhibited and noninhibited rat whole brain slices there is a specific "binding-sequestration" process that is dependent on time, protein concentration, and pH. In homogenates, binding curves were best described by a two-site model and provided the following parameters: Kd1 = 0.65 +/- 0.47 nM, Bmax1 = 21 +/- 41 fmol/mg protein; Kd2 = 97 +/- 48 nM, Bmax2 = 3.5 +/- 1.8 pmol/mg protein. In metabolically viable brain slices, concentration-competition curves of [125I][Phe2,Nle4]ACTH 1-24 binding-sequestration can be described by three components (Kd1 = 14 +/- 24 nM, Bmax1 = 50 +/- 95 fmol/mg protein; Kd2 = 2.4 +/- 1.9 microM, Bmax2 = 44 +/- 49 pmol/mg protein; Kd3 = 0.16 +/- 1.0 mM, Bmax3 = 5.3 +/- 54 nmol/mg protein). Metabolic inhibition, by removal of glucose and addition of 100 microM ouabain, abolishes the lowest affinity, highest capacity binding-sequestrian component only (Kd1 = 7.1 +/- 14 nM, Bmax1 = 8.7 +/- 16 fmol/mg protein; Kd2 = 7.4 +/- 4.49 microM, Bmax2 = 37 +/- 27 pmol/mg protein). The two binding-sequestration parameter estimates obtained from metabolically inhibited tissue slices are not significantly different from those of the two higher affinity components obtained with noninhibited tissue. Thus, metabolic inhibition permits demonstration of ACTH receptor binding only, unconfounded by sequestration or internalization of ligand:receptor complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Basal adenylate cyclase values for corpora lutea (CL) removed from cyclic gilts on Days 3, 8, 13 and 18 were 178 +/- 61, 450 +/- 46, 220 +/- 25 and 208 +/- 18 pmol cAMP formed/min/mg protein, respectively. Basal activity was significantly elevated on Day 8 (P less than 0.001). LH-stimulatable adenylate cyclase values for CL from Days 3, 8, 13 and 18 were 242 +/- 83, 598 +/- 84, 261 +/- 27 and 205 +/- 17 pmol cAMP formed/min/mg protein respectively. Serum progesterone concentrations of 12 gilts bled every 2 days through one complete oestrous cycle ranged from 1.1 to 26.9 ng/ml with highest values between Days 8 and 12. The decline in serum progesterone concentrations was coincident with the decrease in basal adenylate cyclase activity. There was no LH-stimulatable adenylate cyclase activity present in the CL at the specific times of the oestrous cycle examined. We conclude that progesterone secretion by the pig CL is apparently dependent on basal activity of adenylate cyclase.  相似文献   

19.
The objective of the present study was to determine if destruction of ovarian antral follicles by laser-cauterization affects CL lifespan during the estrous cycle of the gilt. Cyclic gilts were randomly assigned to either SHAM, laser (L) or laser-estradiol (L-E2) treatment groups, with the L-E2 group receiving a 5-mg intramuscular (i.m.) injection of estradiol-17beta cypionate at the time of the first surgery. Ovarian antral follicles were laser-cauterized on either Days 12 and 14 (L12) or Days 14 and 17 (L14) of the estrous cycle. In the L12-E2 group, 3 of 4 gilts had extended mean interestrus intervals of more than 22 days compared with 0 of 4, 0 of 6, 0 of 7 and 1 of 5 gilts in the SHAM, L12, L14 and L14-E2 groups, respectively. The L12-E2 gilts had a longer (P<0.05) mean interestrus interval (23.5+/-1.3 days) than the L12 (20.0+/-1.1 days), L14 (20.7+/-1.0 days) and SHAM (20.5+/-1.3 days). The mean interestrus interval of L14-E2 gilts (21.8+/-1.2 days) did not differ from those of the L12-E2 group or the L12, L14 and SHAM group gilts. Six additional gilts were injected with 5 mg estradiol cypionate-17beta to serve as nonsurgical controls for E2 treatment. Gilts (3 of 3) given an E2 injection on Day 12 had extended mean interestrus interval (26.0+/-2.6 days), while 2 of 3 gilts injected with E2 on day 14 had extended mean interestrus intervals (27.7+/-2.1 days). These results indicate that in cyclic gilts destruction of ovarian follicles by laser-cauterization did not affect CL lifespan, and that luteolysis is not dependent on the presence of antral follicles.  相似文献   

20.
Burke JM  Rorie RW 《Theriogenology》2002,57(6):1733-1742
The objective was to examine follicular and luteal development and function in mature, lactating beef cows grazing endophyte free (E-) or endophyte infected (E+) tall fescue during the early postpartum period. Angus, Hereford, and Angus x Hereford cows were exposed to pasture for 37-39 days before synchronized estrus. Serum concentrations of prolactin were evaluated during the luteal phase before the synchronized estrus. Every Monday, Wednesday, and Friday for one estrous cycle ovaries were monitored by transrectal ultrasonography and blood was collected for determination of serum concentrations of progesterone and estradiol in cows that responded to synchronization. Signs of fescue toxicosis in E+ cows included decreased serum concentrations of prolactin (84.9+/-13.6 pg/ml versus 32.3+/-12.0 pg/ml; P < 0.009) measured during the luteal phase (day 37 of grazing) and decreased body condition of cows and weight of cows and calves (P < 0.001). Neither serum concentrations of progesterone or estradiol, nor diameter of the CL differed between treatments. Diameter of the largest follicle tended to be smaller for cows grazing E+ fescue, especially between days 8 and 12 of the estrous cycle (P < 0.08). Numbers of class 1 (3-5 mm) and class 3 (>10 mm) follicles were similar (P > 0.05) between treatments, but number of class 2 (6-9 mm) follicles was reduced in E+ cows for most of the cycle (days 10 through 20; P < 0.03). Length of synchronized estrous cycle, days open, calving interval, and pregnancy rate at 30, 45, 60, and 90 days post-breeding was similar (P > 0.05) among treatment groups. Even though follicular dynamics (diameter of the largest follicle and number of class 2 follicles) were altered in cows grazing E+ tall fescue, follicular function was apparently not affected by ergot alkaloids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号