首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
成熟mRNA的合成是一个复杂的过程,往往会产生错误.原核和真核细胞都在多水平进化出了mRNA监视机制,以保证mRNA的质量,甚至在翻译起始之后.真核生物胞质中有4种翻译依赖性的mRNA质量监视机制:无意义介导的降解、No-go降解、Non-stop降解和核糖体延伸介导的降解.这些机制不仅可以识别并迅速降解有缺陷的mRNA,控制mRNA质量,还都在调节基因表达方面具有重要作用,而且也与一些遗传病有关.本文主要综述了真核生物4种mRNA质量监视机制的研究进展,并对相关研究的应用前景做了展望.  相似文献   

2.
The turnover of mRNA plays an important role in the regulation of gene expression. The two best understood model systems are those of the prokaryote Escherichia coli and the lower eukaryote Saccharomyces cerevisiae. Considerable progress in recent years has helped define the general pathways by which mRNA is degraded in E coli. Much less is known about the pathways of decay, or the enzymes involved, in eukaryotic cells. However, both cis-acting sequences and trans-acting factors have recently been characterized in S. cerevisiae and an indispensable role for translation has been identified. A comparison of these model species highlights both similarities and differences in mRNA turnover between prokaryotic and eukaryotic systems.  相似文献   

3.
Many recent studies have revealed exquisite subcellular localization of proteins, DNA, and other molecules within bacterial cells, giving credence to the concept of prokaryotic anatomy. Common sites for localized components are the poles of rod-shaped cells, which are dynamically modified in composition and function in order to control cellular physiology. An impressively diverse array of mechanisms underlies bacterial polarity, including oscillatory systems, phospho-signaling pathways, the sensing of membrane curvature, and the integration of cell cycle regulators with polar maturation.  相似文献   

4.
Kloc M  Foreman V  Reddy SA 《Biochimie》2011,93(11):1955-1961
Since the discovery of messenger RNA (mRNA) over half a century ago, the assumption has always been that the only function of mRNA is to make a protein. However, recent studies of prokaryotic and eukaryotic organisms unexpectedly show that some mRNAs may be functionally binary and have additional structural functions that are unrelated to their translation product. These findings imply that some of the phenotypic features of cells and organisms can also be binary, that is, they depend both on the function of a protein and the independent structural function of its mRNA. In this review, we will discuss this concept within the framework of multifunctional RNA molecules and the RNA World Hypothesis.  相似文献   

5.
Protein disulphide bonds are formed in the endoplasmic reticulum of eukaryotic cells and the periplasmic space of prokaryotic cells. The main pathways that catalyse the formation of protein disulphide bonds in prokaryotes and eukaryotes are remarkably similar, and they share several mechanistic features. The recent identification of new redox-active proteins in humans and yeast that mechanistically parallel the more established redox-active enzymes indicates that there might be further uncharacterized redox pathways throughout the cell.  相似文献   

6.
Protein secretion systems in prokaryotes are increasingly shifting from being considered as experimental models for 'more complex' processes (i.e. eukaryotes) to being a major source of key biological questions in their own right. The pathways by which proteins move between compartments or insert into membranes in prokaryotic cells are certainly less numerous than in eukaryotes (though not dramatically so). However, the quality and complexity of bacterial protein targeting systems indicate that virtually all mechanistic problems associated with protein traffic were solved very efficiently well before eukaryotes appeared on the Earth crust. Indeed, recent studies have both increased the number of known prokaryotic protein traffic systems and indicated new layers of complexity for those that were already well characterized. This report describes some recent developments in bacterial protein traffic that were presented at two meetings in the autumn of 2003.  相似文献   

7.
8.
We describe a simple strategy to control mRNA translation in both prokaryotic and eukaryotic cells which relies on a unique protein–RNA interaction. Specifically, we used the Pumilio/FBF (PUF) protein to repress translation by binding in between the ribosome binding site (RBS) and the start codon (in Escherichia coli), or by binding to the 5′ untranslated region of target mRNAs (in mammalian cells). The design principle is straightforward, the extent of translational repression can be tuned and the regulator is genetically encoded, enabling the construction of artificial signal cascades. We demonstrate that this approach can also be used to regulate polycistronic mRNAs; such regulation has rarely been achieved in previous reports. Since the regulator used in this study is a modular RNA-binding protein, which can be engineered to target different 8-nucleotide RNA sequences, our strategy could be used in the future to target endogenous mRNAs for regulating metabolic flows and signaling pathways in both prokaryotic and eukaryotic cells.  相似文献   

9.
10.
11.
P rokaryotic u biquitin‐like p rotein (Pup) is the first identified prokaryotic protein that is functionally analogous to ubiquitin. Despite using the proteasome as the end‐point for proteolysis, Pup differs from ubiquitin both biochemically and structurally. We will discuss these differences that have been highlighted by several recent studies. Finally, we will speculate on the possible interactions between the two analogous pathways in pathogen and host.  相似文献   

12.
13.
Obtaining information on the genetic capabilities and phylogenetic affinities of individual prokaryotic cells within natural communities is a high priority in the fields of microbial ecology, microbial biogeochemistry, and applied microbiology, among others. A method for prokaryotic in situ PCR (PI-PCR), a technique which will allow single cells within complex mixtures to be identified and characterized genetically, is presented here. The method involves amplification of specific nuclei acid sequences inside intact prokaryotic cells followed by color or fluorescence detection of the localized PCR product via bright-field or epifluorescence microscopy. Prokaryotic DNA and mRNA were both used successfully as targets for PI-PCR. We demonstrate the use of PI-PCR to identify nahA-positive cells in mixtures of bacterial isolates and in model marine bacterial communities.  相似文献   

14.
15.
Secretion across the bacterial outer membrane.   总被引:28,自引:0,他引:28  
Many bacteria secrete extracellular proteins such as hydrolytic enzymes or toxins. In Gram-negative bacteria, secreted proteins must cross the two membranes that constitute the cell envelope. Recent studies have identified several specific secretion systems that can be classified in three distinct pathways, and related systems have been discovered in a wide range of prokaryotic and eukaryotic cells.  相似文献   

16.
Mounting evidence in recent years has challenged the dogma that prokaryotes are simple and undefined cells devoid of an organized subcellular architecture. In fact, proteins once thought to be the purely eukaryotic inventions, including relatives of actin and tubulin control prokaryotic cell shape, DNA segregation, and cytokinesis. Similarly, compartmentalization, commonly noted as a distinguishing feature of eukaryotic cells, is also prevalent in the prokaryotic world in the form of protein-bounded and lipid-bounded organelles. In this article we highlight some of these prokaryotic organelles and discuss the current knowledge on their ultrastructure and the molecular mechanisms of their biogenesis and maintenance.The emergence of eukaryotes in a world dominated by prokaryotes is one of the defining moments in the evolution of modern day organisms. Although it is clear that the central metabolic and information processing machineries of eukaryotes and prokaryotes share a common ancestry, the origins of the complex eukaryotic cell plan remain mysterious. Eukaryotic cells are typified by the presence of intracellular organelles that compartmentalize essential biochemical reactions whereas their prokaryotic counterparts generally lack such sophisticated subspecialization of the cytoplasmic space. In most cases, this textbook categorization of eukaryotes and prokaryotes holds true. However, decades of research have shown that a number of unique and diverse organelles can be found in the prokaryotic world raising the possibility that the ability to form organelles may have existed before the divergence of eukaryotes from prokaryotes (Shively 2006).Skeptical readers might wonder if a prokaryotic structure can really be defined as an organelle. Here we categorize any compartment bounded by a biological membrane with a dedicated biochemical function as an organelle. This simple and broad definition presents cells, be they eukaryotes or prokaryotes, with a similar set of challenges that need to be addressed to successfully build an intracellular compartment. First, an organism needs to mold a cellular membrane into a desired shape and size. Next, the compartment must be populated with the proper set of proteins that carry out the activity of the organelle. Finally, the cell must ensure the proper localization, maintenance and segregation of these compartments across the cell cycle. Eukaryotic cells perform these difficult mechanistic steps using dedicated molecular pathways. Thus, if connections exist between prokaryotic and eukaryotic organelles it seems likely that relatives of these molecules may be involved in the biogenesis and maintenance of prokaryotic organelles as well.Prokaryotic organelles can be generally divided into two major groups based on the composition of the membrane layer surrounding them. First are the cellular structures bounded by a nonunit membrane such a protein shell or a lipid monolayer (Shively 2006). Well-known examples of these compartments include lipid bodies, polyhydroxy butyrate granules, carboxysomes, and gas vacuoles. The second class consists of those organelles that are surrounded by a lipid-bilayer membrane, an arrangement that is reminiscent of the canonical organelles of the eukaryotic endomembrane system. Therefore, this article is dedicated to a detailed exploration of three prokaryotic lipid-bilayer bounded organelle systems: the magnetosomes of magnetotactic bacteria, photosynthetic membranes, and the internal membrane structures of the Planctomycetes. In each case, we present the most recent findings on the ultrastructure of these organelles and highlight the molecular mechanisms that control their formation, dynamics, and segregation. We also highlight some protein-bounded compartments to present the reader with a more complete view of prokaryotic compartmentalization.  相似文献   

17.
Cells make decisions to differentiate, divide, or apoptose based on multiple signals of internal and external origin. These decisions are discrete outputs from dynamic networks comprised of signaling pathways. Yet the validity of this decomposition of regulatory proteins into distinct pathways is unclear because many regulatory proteins are pleiotropic and interact through cross-talk with components of other pathways. In addition to the deterministic complexity of interconnected networks, there is stochastic complexity arising from the fluctuations in concentrations of regulatory molecules. Even within a genetically identical population of cells grown in the same environment, cell-to-cell variations in mRNA and protein concentrations can be as high as 50% in yeast and even higher in mammalian cells. Thus, if everything is connected and stochastic, what hope could we have for a quantitative understanding of cellular decisions? Here we discuss the implications of recent advances in genomics, single-cell, and single-cell genomics technology for network modularity and cellular decisions. On the basis of these recent advances, we argue that most gene expression stochasticity and pathway interconnectivity is nonfunctional and that cellular decisions are likely much more predictable than previously expected.  相似文献   

18.
19.
One principal function of biological molecules in bacteria is to recognize other molecules. This allows cells to assemble for regulated enzymatic catalysis and the integration of biochemical pathways. Recognition is also an essential and a specific property in base pairing of DNA in the double helix. Therefore, recognition events must have been central to early self-assembly of primitive genetic material, genomes, cells, genetic recombination and especially in enzyme-substrate-product recognition events. Molecular recognition events are examined with an emphasis on their central role in early prokaryotic evolution.  相似文献   

20.
由于原核细胞mRNA3'端不存在ploy(A)结构,因而原核细胞DDRT-PCR引物设计不同于真核细胞。尽管不能根据oligo(dT)设计引物,但利用全基因中高度分散重复的短序列或回文序列却能有效克服mRNA分子结构的影响,最大限度地扩增全长cDNA;并且这2种引物设计方法还可以提高RNA指纹图谱的重复性,降低反应的假阳性,从而为原核细胞DDRT-PCR引物设计提供新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号