首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ploidy levels of the cells in different organs (leaves, petioles and roots) of red beet (Beta vulgaris L.) plants of different ages, as well as of different in vitro systems (transformed hairy roots, calli derived from leaves and rhizogenic calli), were investigated using flow cytometry. Two callus lines with red and yellow phenotypes, derived by mechanical separation of the morphologically heterogeneous rhizogenic callus, were also examined. All investigated samples experienced several cycles of endoreduplication. The older organs exhibited higher levels of polysomaty than the young ones. The highest degree of endoreduplication was found in old petiole tissue and the lowest in the red callus line (cycle values of 1.81 and 0.55, respectively). Interestingly, the callus derived from leaves did not exhibit a 2Cx peak, but was tetraploid, probably due to genetic instability, which may have been caused by prolonged cultivation under in vitro conditions. Red and yellow calli showed significantly lower polysomaty (cycle values of 0.55 and 0.59, respectively) than the primary rhizogenic callus (cycle value of 1.09). The DNA profiles of the two phenotypes differed, possibly reflecting differences in their metabolism.  相似文献   

2.
Plant cells have been demonstrated to be an attractive heterologous expression host (using whole plants and in vitro plant cell cultures) for foreign protein production in the past 20years. In recent years in vitro liquid cultures of plant cells in a fully contained bioreactor have become promising alternatives to traditional microbial fermentation and mammalian cell cultures as a foreign protein expression platform, due to the unique features of plant cells as a production host including product safety, cost-effective biomanufacturing, and the capacity for complex protein post-translational modifications. Heterologous proteins such as therapeutics, antibodies, vaccines and enzymes for pharmaceutical and industrial applications have been successfully expressed in plant cell culture-based bioreactor systems including suspended dedifferentiated plant cells, moss, and hairy roots, etc. In this article, the current status and emerging trends of plant cell culture for in vitro production of foreign proteins will be discussed with emphasis on the technological progress that has been made in plant cell culture bioreactor systems.  相似文献   

3.
Hairy root type plant in vitro systems as sources of bioactive substances   总被引:6,自引:0,他引:6  
“Hairy root” systems, obtained by transforming plant tissues with the “natural genetic engineer” Agrobacterium rhizogenes, have been known for more than three decades. To date, hairy root cultures have been obtained from more than 100 plant species, including several endangered medicinal plants, affording opportunities to produce important phytochemicals and proteins in eco-friendly conditions. Diverse strategies can be applied to improve the yields of desired metabolites and to produce recombinant proteins. Furthermore, recent advances in bioreactor design and construction allow hairy root-based technologies to be scaled up while maintaining their biosynthetic potential. This review highlights recent progress in the field and outlines future prospects for exploiting the potential utility of hairy root cultures as “chemical factories” for producing bioactive substances.  相似文献   

4.
In vitro plant regeneration in Melia azedarach L.   总被引:1,自引:0,他引:1  
Nodal explants of 3- 6-week-old seedlings cultured on Murashige and Skoog (MS) medium supplemented with 6-benzyladenine (BA) (17.75 μm) produced multiple shoots. Shoots were isolated and induced to root on 1/2-strength MS medium supplemented with indole-3-butyric acid (4.92 μm). In-vitro-rooted shoots resumed growth after a short period of acclimatization and resulted in plantlets which were successfully established in soil. In vitro flowering was observed in some of the nodal explants in the above medium, and also in cotyledonary leaves and internodal explants on MS medium supplemented with a combination of indole-3-acetic acid (IAA) (0.06 μm)+BA (4.44 μm) and IAA (0.06 μm)+kinetin (4.65 μm). Received: 25 October 1997 / Revision received: 1 May 1998 / Accepted: 15 May 1998  相似文献   

5.
植物离体培养过程中DNA甲基化变异研究进展   总被引:1,自引:0,他引:1  
表现遗传变异对于植物的生长发育起着重要作用,主要包括DNA甲基化、组蛋白修饰、染色体重塑和RNA干涉等.DNA甲基化是一种最重要的表现遗传机制,在植物离体培养过程中广泛存在,本文对植物离体培养过程的DNA甲基化变异现象、影响因素及机理等情况进行综述.  相似文献   

6.
Biological networks in metabolic P systems   总被引:4,自引:0,他引:4  
Manca V  Bianco L 《Bio Systems》2008,91(3):489-498
  相似文献   

7.
To date, boron (B) essentiality has not been conclusively shown in mammals. This article summarizes the results of a series of in vitro and in vivo experiments designed to investigate the role of B in mammalian reproduction. In the first study, rat dams were fed either a low (0.04 μg B/g) or an adequate (2.00 μg B/g) B diet for 6 wk before breeding and through pregnancy; reproductive outcome was monitored on gestation day 20. Although low dietary B significantly lowered maternal blood, liver, and bone B concentrations, it had no marked effects on fetal growth or development. The goal of the second study was to assess the effects of B on the in vitro development of rat postimplantation embryos. Day 10 embryos collected from dams fed either the low or adequate B diets for at least 12 wk were cultured in serum collected from male rats exposed to one of the two dietary B treatments. Dams fed the low B diet had a significantly reduced number of implantation sites compared to dams fed the B-adequate diet. However, embryonic growth in vitro was not affected by B treatment. The aim of study 3 was to define the limits of boric acid (BA) toxicity on mouse preimplantation development in vitro. Two-cell mouse embryos were cultured in media containing graded levels of BA (from 6 to 10,000 μM). Impaired embryonic differentiation and proliferation were observed only when embryos were exposed to high levels of BA (>2000 μM), reflecting a very low level of toxicity of BA on early mouse embryonic development. Study 4 tested the effects of low (0.04 μg B/g) and adequate (2.00 μg B/g) dietary B on the in vitro development of mouse preimplantation embryos. Two-cell embryos obtained from the dams were cultured in vitro for 72 h. Maternal exposure to the low B diet for 10, 12, and 16 wk was associated with a reduction in blastocyst formation, a reduction in blastocyst cell number, and an increased number of degenerates. Collectively, these studies support the concept that B deficiency impairs early embryonic development in rodents.  相似文献   

8.
RNA editing in flowering plant mitochondria is investigated by in vitro assays. These cauliflower mitochondrial lysates require added NTP or dNTP. We have now resolved the reason for this requirement to be the inhibition of the RNA binding activity of the glutamate dehydrogenases (GDH). Both GDH1 and GDH2 were identified in RNA-protein cross-links. The inhibition of in vitro RNA editing by GDH is confirmed by the ability of the GDH-specific herbicide phosphinothricin to substitute for NTP. NADH and NADPH, but not NAD or NADP, can also replace NTP, suggesting that the NAD(P)H-binding-pocket configuration of the GDH contacts the RNA. RNA editing in plant mitochondria is thus intrinsically independent of added energy in the form of NTP.  相似文献   

9.
The effects of two synthetic auxins, BOA and BIA, on plant regeneration in vitro have been studied on explants of tomato cotyledons. The activity of these substances on cell elongation has also been tested on pea stem segments. It has been found that BOA is particularly effective in inducing the formation of shoots but has a weak activity on cell elongation, while BIA, which is more effective in inducing cell elongation, is less active in morphogenesis. It is concluded that (1) the two activities are not related to each other, (2) the receptors involved in the two processes are probably different, (3) thechemical structure of the auxin may be an important factor in organogenetic processes.Abbreviations BIA 1,2-benzisothiazole-3-acetic acid - BOA 1,2-benzisoxazole-3-acetic acid - IAA indoleacetic acid - MS Murashige & Skoog medium  相似文献   

10.
Withania ashwagandha, belonging to the family Solanaceae, is an important medicinal herb of India with restricted geographic distribution. It is a rich source of withaferin A (WA) and other bioactive withanolides. In the present study a rapid in vitro mass propagation protocol of W. ashwagandha was developed from nodal explants. Nodal explants were cultured on MS medium supplemented with various concentrations and combinations of plant growth regulators (PGRs). The highest number of regenerated shoots per ex-plant (33 ± 2.7) and highest WA (13.4 ± 1.15 mg/g of DW) production was obtained on MS medium supplemented with 5.0 μM 6-benzyladenine (BA) and 1.0 μM Kinetin (Kn). In vitro raised shoots were further rooted on half-strength MS medium containing 2.0 μM Indole-3-butyric acid (IBA) and analyzed for WA production. The rooted plantlets when transferred to poly bags in the greenhouse showed 90 % survival frequency. Levels of WA were higher in the in vitro and ex vitro derived shoot and root tissues as compared to field grown mother plants. In an attempt to further maximize WA production, shoot cultures were further grown in liquid MS medium supplemented with 5.0 μM 6-benzyladenine (BA) and 1.0 μM Kinetin (Kn). Root cultures were grown on half strength MS liquid medium fortified with 2.0 μM of IBA. WA production in the liquid cultures was significantly higher compared to the static composition of the same media. This protocol, first of its kind in this plant, can be successfully employed for conservation, proliferation and large-scale production of WA. The regenerated plants can also be used in traditional medicine as an alternative to naturally collected plants.  相似文献   

11.
The fine structure of the nuclear lamina (NL) in sperm cells ofGinkgo biloba was visualised using high resolution low-voltage scanning electron microscopy (LVSEM). It was shown that the nuclear lamina was composed of 10 nm filaments which formed a fine network. Lamins were purified from cultured carrot suspension cells and assembledin vitro. Long 8–12 nm diameter filaments were seen and sometimes subfilaments could be distinguished. Western blot of filament preparations showed that these contained the 66 and 84 ku lamins. These data demonstrate that plant lamins are capable of assembling into filamentsin vitro. Project supported by the National Natural Science Foundation of China (Grant No. 3500073).  相似文献   

12.
A mathematical model for plant communities in water-limited systems is introduced and applied to a mixed woody-herbaceous community. Two feedbacks between biomass and water are found to be of crucial importance for understanding woody-herbaceous interactions: water uptake by plants' roots and increased water infiltration at vegetation patches. The former acts to increase interspecific competition while the latter favors facilitation. The net interspecific interaction is determined by the relative strength of the two feedbacks. The model is used to highlight new mechanisms of plant-interaction change by studying factors that tilt the balance between the two feedbacks. Factors addressed in this study include environmental stresses and patch dynamics of the woody species. The model is further used to study mechanisms of species-diversity change by taking into consideration tradeoffs in species traits and conditions giving rise to irregular patch patterns.  相似文献   

13.
Ferritin is a class of iron storage protein composed of 24 subunits. Although many studies on gene expression analyses of plant ferritin have been conducted, the functions and oligomeric assembly of plant ferritin subunits are still largely unknown. In order to characterize the ability to form multimeric protein shells and determine the iron incorporating activity, we produced ferritin homo- and heteropolymers by expressing four cDNAs of ferritin subunits from soybean, sfer1, sfer2, sfer3, and sfer4, using an in vitro protein expression system. Using SDS-PAGE analysis followed by Prussian blue stain, homopolymers of SFER1, SFER2, and SFER3, and heteropolymers of SFER1/SFER2 and SFER1/SFER3 were detected as assembled polymers with iron incorporating activity, whereas only a small amount of SFER4 related homo- and heteropolymer was detected, suggesting that the SFER4 was not competent for oligomeric assembly, unlike every other ferritin. We conclude that certain combinations of plant ferritin subunits can form heteropolymers and that their iron incorporating activities depend on the formation of multimeric protein.  相似文献   

14.
After selective extraction and purification, plant keratin intermediate filaments were reassembled in vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filaments in vitro. In higher magnification images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24—25 nm periodic structural repeat alone the axis of beth the 10 nm filaments and protofilaments. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.  相似文献   

15.
Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as “Indian Ginseng”, is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and the secondary metabolites produced by this plant can be exploited further for the benefit of human health in a sustainable way.  相似文献   

16.
植物不定芽离体再生分子调控的评述   总被引:2,自引:0,他引:2  
黄剑  沈海龙  刘长莉  李玉花 《遗传》2007,29(5):528-536
植物的不定芽再生过程涉及众多基因及其互作。细胞分裂素诱导体细胞启动、启动的体细胞进行分裂和由此引发的茎分生组织发育是这一过程中的3个重要步骤。探讨这3个步骤的相关基因表达及其关系, 有助于揭示植物不定芽再生的分子调节机制。文章就这些步骤所涉及的分子调节过程的研究成果作一评述。  相似文献   

17.
Summary The production ofPseudomonas aeruginosa MB 5001 extracellular lipase was optimized by batch cultivation employing shake flasks and 23-L bioreactors. This enzyme efficiently and selectively bioconverts dimethyl 5-(3-(2-(7-chloroquinolin-2-yl)ethyl)phenyl)4,6-dithianonanedioate (diester) to its (S)-ester acid. Process development studies focused on the identification and optimization of the physicochemical parameters required to achieve maximum lipase production. Of the media evaluated, a peptonized milk-based medium was found to support excellent lipase production and stability. Medium composition and process parameters that supported optimal lipase production were different from those supporting maximum biomass formation. Of the parameters investigated, dissolved oxygen tension had the most significant and unexpected impact on lipase production. Elevated lipase production was achieved whenP. aeruginosa MB 5001 was cultivated in a dissolved oxygen limited environment. Overall, these process development studies resulted in a 100% increase in lipase production when compared to the original shake flask process employing skim milk.  相似文献   

18.
19.
Bovine oocytes were matured, fertilized, and cultured (TCM 199 with serum and co-culture) in vitro (IVMFC) with addition, during different phases of the procedure, of antioxidants: superoxide dismutase (SOD) and reduced glutathione (GSH). The addition of SOD (1,500 or 3,000 IU/ml) did not improve proportions of oocytes undergoing cleavage or the development of embryos to morula and blastocyst stages. The cleavage rates were significantly lower than in the control group (CTR 57.5%) when SOD was present during the insemination interval (IVF) or throughout the entire procedure (IVMFC). Thus when the lower concentration was present for IVF and IVMFC, 35.1% and 36.4% of inseminated oocytes cleaved (P < 0.01 compared to CTR) and cleavage results with the higher concentration during IVF and IVMFC were 38.5% and 29.2% (P < 0.025 and P < 0.001 compared to CTR, respectively). Significant improvements in proportions of oocytes undergoing cleavage (84.5% vs. 57.0%, P < 0.001) and morula/blastocyst development (33.3% vs. 13.9%, P < 0.005) were achieved when GSH (1 mM) was added to the culture medium. In a defined medium for culture (mSOF and BSA) the presence of SOD (3,000 IU/ml) was ineffective, but in a defined medium supplemented with GSH (1 mM) at day 6 postinsemination (i.e., when 90% of developing embryos were in 8–16 cell stages), development to the morula and blastocyst stages was supported for 35.5% of cultured oocytes (P < 0.005 compared to 19.2% for CTR). These data suggest that bovine embryos are sensitive to oxidative stress and that medium supplementation with the radical scavenger glutathione can improve embryo development in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

20.
植物离体培养中微生物污染的鉴定与控制(综述)   总被引:1,自引:0,他引:1  
本文综述植物离体培养过程中微生物污染的鉴定与控制的研究进展,包括通过指示培养和菌种鉴别以鉴定污染菌;从保护条件下生长的植株上取材以及材料的预处理,以便有效地控制附生菌和应用抗生素控制内生菌.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号