共查询到20条相似文献,搜索用时 15 毫秒
1.
The rad16 gene of Schizosaccharomyces pombe: a homolog of the RAD1 gene of Saccharomyces cerevisiae. 总被引:4,自引:2,他引:4 下载免费PDF全文
A M Carr H Schmidt S Kirchhoff W J Muriel K S Sheldrick D J Griffiths C N Basmacioglu S Subramani M Clegg A Nasim et al. 《Molecular and cellular biology》1994,14(3):2029-2040
The rad10, rad16, rad20, and swi9 mutants of the fission yeast Schizosaccharomyces pombe, isolated by their radiation sensitivity or abnormal mating-type switching, have been shown previously to be allelic. We have cloned DNA correcting the UV sensitivity or mating-type switching phenotype of these mutants and shown that the correcting DNA is encompassed in a single open reading frame. The gene, which we will refer to as rad16, is approximately 3 kb in length, contains seven introns, and encodes a protein of 892 amino acids. It is not essential for viability of S. pombe. The predicted protein is the homolog of the Saccharomyces cerevisiae RAD1 protein, which is involved in an early step in excision-repair of UV damage from DNA. The approximately 30% sequence identity between the predicted proteins from the two yeasts is distributed throughout the protein. Two-hybrid experiments indicate a strong protein-protein interaction between the products of the rad16 and swi10 genes of S. pombe, which mirrors that reported for RAD1 and RAD10 in S. cerevisiae. We have identified the mutations in the four alleles of rad16. They mapped to the N-terminal (rad10), central (rad20), and C-terminal (rad16 and swi9) regions. The rad10 and rad20 mutations are in the splice donor sequences of introns 2 and 4, respectively. The plasmid correcting the UV sensitivity of the rad20 mutation was missing the sequence corresponding to the 335 N-terminal amino acids of the predicted protein. Neither smaller nor larger truncations were, however, able to correct its UV sensitivity. 相似文献
2.
The Schizosaccharomyces pombe rad11+ gene encodes the large subunit of replication protein A. 下载免费PDF全文
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein present in all eukaryotes. In vitro studies have implicated RPA in simian virus 40 DNA synthesis and nucleotide excision repair, but little direct information is available about the in vivo roles of the protein. We report here the cloning of the largest subunit of RPA (rpa1+) from the fission yeast Schizosaccharomyces pombe. The rpa1+ gene is essential for viability and is expressed specifically at S phase of the cell cycle. Genetic analysis revealed that rpa1+ is the locus of the S. pombe radiation-sensitive mutation rad11. The rad11 allele exhibits pleiotropic effects consistent with an in vivo role for RPA in both DNA repair and DNA synthesis. The mutant is sensitive to both UV and ionizing radiation but is not defective in the DNA damage-dependent checkpoint, consistent with the hypothesis that RPA is part of the enzymatic machinery of DNA repair. When incubated in hydroxyurea, rad11 cells initially arrest with a 1C DNA content but then lose viability coincident with reentry into S phase, suggesting that DNA synthesis is aberrant under these conditions. A significant fraction of the mutant cells subsequently undergo inappropriate mitosis in the presence of hydroxyurea, indicating that RPA also plays a role in the checkpoint mechanism that monitors the completion of S phase. We propose that RPA is required to maintain the integrity of replication complexes when DNA replication is blocked. We further suggest that the rad11 mutation leads to the premature breakdown of such complexes, thereby preventing recovery from the hydroxyurea arrest and eliminating a signal recognized by the S-phase checkpoint mechanism. 相似文献
3.
The SpGAR1 gene of Schizosaccharomyces pombe encodes the functional homologue of the snoRNP protein GAR1 of Saccharomyces cerevisiae. 总被引:2,自引:2,他引:0 下载免费PDF全文
GAR1 is a nucleolar protein which is associated with small nucleolar RNAs (snoRNAs) and which is required for pre-ribosomal RNA processing. In Saccharomyces cerevisiae, the GAR1 gene is essential for cell viability. We have cloned and sequenced the GAR1 gene from the distantly related yeast Schizosaccharomyces pombe. The SpGAR1 gene, which contains two small introns, codes for a 194 amino-acid protein of 20 kDa. A protein sequence comparison indicates that SpGAR1 is 65% identical to ScGAR1. Anti-ScGAR1 antibodies recognize SpGAR1, emphasizing the structural conservation of the protein. Immunostaining of S.pombe cells with these antibodies reveals that SpGAR1 is localized in the nucleolus, as is the case in S.cerevisiae. Moreover, SpGAR1 can substitute for GAR1 in S.cerevisiae, indicating that the two proteins are functionally equivalent. These results suggest a parallel evolutionary conservation of proteins and RNAs with which GAR1 interacts in mediating its pre-rRNA processing and viability functions. After fibrillarin, GAR1 is the second protein of the snoRNPs shown to have been conserved throughout evolution. 相似文献
4.
The isolation of mutants of Schizosaccharomyces pombe defective in the synthesis of phosphatidylcholine via the methylation of phosphatidylethanolamine is reported. These mutants are choline auxotrophs and fall into two unlinked complementation groups, cho1 and cho2. We also report the analysis of the cho1+ gene, the first structural gene encoding a phospholipid biosynthetic enzyme from S. pombe to be cloned and characterized. The cho1+ gene disruption mutant (cho1Delta) is viable if choline is supplied and resembles the cho1 mutants isolated after mutagenesis. Sequence analysis of the cho1+ gene indicates that it encodes a protein closely related to phospholipid methyltransferases from Saccharomyces cerevisiae and rat. Phospholipid methyltransferases encoded by a rat liver cDNA and the S. cerevisiae OPI3 gene are both able to complement the choline auxotrophy of the S. pombe cho1 mutants. These results suggest that both the structure and function of the phospholipid N-methyltransferases are broadly conserved among eukaryotic organisms. 相似文献
5.
The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. 总被引:5,自引:0,他引:5 下载免费PDF全文
Normal cell multiplication requires that the events of mitosis occur in a carefully ordered fashion. Cells employ checkpoints to prevent cycle progression until some prerequisite step has been completed. To explore the mechanisms of checkpoint enforcement, we previously screened for mutants of Saccharomyces cerevisiae which are unable to recover from a transient treatment with a benzimidazole-related microtubule inhibitor because they fail to inhibit subsequent cell cycle steps. Two of the identified genes, BUB2 and BUB3, have been cloned and described (M. A. Hoyt, L. Totis, and B. T. Roberts, Cell 66:507-517, 1991). Here we present the characterization of the BUB1 gene and its product. Genetic evidence was obtained suggesting that Bub1 and Bub3 are mutually dependent for function, and immunoprecipitation experiments demonstrated a physical association between the two. Sequence analysis of BUB1 revealed a domain with similarity to protein kinases. In vitro experiments confirmed that Bub1 possesses kinase activity; Bub1 was able to autophosphorylate and to catalyze phosphorylation of Bub3. In addition, overproduced Bub1 was found to localize to the cell nucleus. 相似文献
6.
The phosphorylation level of the Saccharomyces cerevisiae Cdc28 protein remained invariant under conditions that resulted in cell cycle arrest in the G1 phase and loss of Cdc28-specific protein kinase activity when the activity was assayed in vitro. These results are in contrast to the proposed regulation of the homologous Cdc2 protein kinase of Schizosaccharomyces pombe. 相似文献
7.
8.
9.
The Schizosaccharomyces pombe pla1 gene encodes a poly(A) polymerase and can functionally replace its Saccharomyces cerevisiae homologue. 总被引:2,自引:0,他引:2 下载免费PDF全文
We have isolated the poly(A) polymerase (PAP) encoding gene pla1 [for poly(A) polymerase] from the fission yeast Schizosaccharomyces pombe. Protein sequence alignments with other poly(A) polymerases reveal that pla1 is more closely related to Saccharomyces cerevisiae PAP than to bovine PAP. The two yeast poly(A) polymerases share significant sequence homology not only in the generally conserved N-terminal part but also in the C-terminus. Furthermore, pla1 rescues a S. cerevisiae PAP1 disruption mutant. An extract from the complemented strain is active in the specific in vitro polyadenylation assay. In contrast, recombinant PLA1 protein can not replace bovine PAP in the mammalian in vitro polyadenylation assay. These results indicate a high degree of conservation of the polyadenylation machinery among the evolutionary diverged budding and fission yeasts. 相似文献
10.
Cell cycle checkpoints are regulatory mechanisms that arrest the cell cycle or initiate programmed cell death when critical events such as DNA replication fail to be completed or when DNA or spindle damage occurs. In fission yeast, cell cycle checkpoint responses to DNA replication blocks and DNA damage require the hus1+ gene. Mammalian homologs of hus1+ were recently identified, and here we report a detailed analysis of mouse Hus1. An approximately 4.2-kb full-length cDNA encoding the 32-kDa mouse Hus1 protein was isolated. The genomic structure and exon-intron boundary sequences of the gene were determined, and mouse Hus1 was found to consist of nine exons. Mouse Hus1 was mapped to the proximal end of chromosome 11 and is therefore a candidate gene for the mouse mutation germ cell deficient, which maps to the same genomic region. Finally, mouse Hus1 was found to be expressed in a variety of adult tissues and at several stages of embryonic development. 相似文献
11.
The rhp6+ gene of Schizosaccharomyces pombe: a structural and functional homolog of the RAD6 gene from the distantly related yeast Saccharomyces cerevisiae. 总被引:12,自引:3,他引:12 下载免费PDF全文
The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin conjugating enzyme and is required for DNA repair, DNA-damage-induced mutagenesis and sporulation. Here, we show that RAD6 and the rhp6+ gene from the distantly related yeast Schizosaccharomyces pombe share a high degree of structural and functional homology. The predominantly acidic carboxyl-terminal 21 amino acids present in the RAD6 protein are absent in the rhp6(+)-encoded protein; otherwise, the two proteins are very similar, with 77% identical residues. Like rad6, null mutations of the rhp6+ gene confer a defect in DNA repair, UV mutagenesis and sporulation, and the RAD6 and rhp6+ genes can functionally substitute for one another. These observations suggest that functional interactions between RAD6 (rhp6+) protein and other components of the DNA repair complex have been conserved among eukaryotes. 相似文献
12.
《The Journal of cell biology》1995,130(3):651-660
Schizosaccharomyces pombe cells divide by medial fission. One class of cell division mutants (cdc), the late septation mutants, defines four genes: cdc3, cdc4, cdc8, and cdc12 (Nurse, P., P. Thuriaux, and K. Nasmyth. 1976. Mol. & Gen. Genet. 146:167-178). We have cloned and characterized the cdc4 gene and show that the predicted gene product. Cdc4p, is a 141-amino acid polypeptide that is similar in sequence to EF-hand proteins including myosin light chains, calmodulin, and troponin C. Two temperature-sensitive lethal alleles, cdc4-8 and cdc4- 31, accumulate multiple nuclei and multiple improper F-actin rings and septa but fail to complete cytokinesis. Deletion of cdc4 also results in a lethal terminal phenotype characterized by multinucleate, elongated cells that fail to complete cytokinesis. Sequence comparisons suggest that Cdc4p may be a member of a new class of EF-hand proteins. Cdc4p localizes to a ringlike structure in the medial region of cells undergoing cytokinesis. Thus, Cdc4p appears to be an essential component of the F-actin contractile ring. We find that Cdc4 protein forms a complex with a 200-kD protein which can be cross-linked to UTP, a property common to myosin heavy chains. Together these results suggest that Cdc4p may be a novel myosin light chain. 相似文献
13.
14.
The Schizosaccharomyces pombe Cdc7 protein kinase required for septum formation is a client protein of Cdc37 下载免费PDF全文
Cdc37 is an essential molecular chaperone found in fungi and metazoa whose main specificity is for certain protein kinases. Cdc37 can act as an Hsp90 cochaperone or alone; in yeasts, the interaction with Hsp90 is weak and appears not to be essential for Cdc37 function. Numerous genetic interactions between Cdc37 and likely client proteins have been observed in yeasts, but biochemical confirmation has been reported in only a few cases. We and others have generated and characterized temperature-sensitive cdc37 alleles in S. pombe and have used them to investigate the cellular roles of Cdc37: previous work has shown that mitotic Cdc2 is a major client. In this paper, we describe a screen for mutations synthetically lethal with a cdc37ts mutant with the aim of identifying genes encoding further client proteins of Cdc37. Ten such strains were isolated, and genomic libraries were screened for rescuing plasmids. In one case, a truncated cdc7 gene was identified. Further experiments showed that the mutation in this strain was indeed in cdc7. Cdc7 is a protein kinase required for septum initiation, and we show that its kinase activity is greatly reduced when Cdc37 function is impaired. Cdc7 normally locates to the spindle pole body during mitosis, and this appears to be unaffected in the cdc37ts mutant. Other evidence suggests that, in addition to mitosis and septum initiation, Cdc37 may also be required for septum cleavage. 相似文献
15.
The Saccharomyces cerevisiae APS1 gene encodes a homolog of the small subunit of the mammalian clathrin AP-1 complex: evidence for functional interaction with clathrin at the Golgi complex. 总被引:2,自引:1,他引:2 下载免费PDF全文
Clathrin-associated protein (AP) complexes have been implicated in the assembly of clathrin coats and the selectivity of clathrin-mediated protein transport processes. We have identified a yeast gene, APS1, encoding a homolog of the small (referred to herein as sigma) subunits of the mammalian AP-1 complex. Sequence comparisons have shown that Aps1p is more similar to the sigma subunit of the Golgi-localized mammalian AP-1 complex than Aps2p, which is more related to the plasma membrane AP-2 sigma subunit. Like their mammalian counterparts, Aps1p and Aps2p are components of distinct, large (> 200 kDa) complexes and a significant portion of the Aps proteins co-fractionate with clathrin-coated vesicles during gel filtration chromatography. Unexpectedly, even though the evolutionary conservation of AP small subunits is substantial (50% identity between mammalian and yeast proteins), disruptions of APS1 (aps1 delta) and APS2 (aps2 delta), individually or in combination, elicit no detectable mutant phenotypes. These data indicate that the Aps proteins are not absolutely required for clathrin-mediated selective protein transport in cells expressing wild type clathrin. However, aps1 delta accentuated the slow growth and alpha-factor pheromone maturation defect of cells carrying a temperature-sensitive allele of clathrin heavy chain (Chc) (chc1-ts). In contrast, aps1 delta did not influence the effects of chc1-ts on vacuolar protein sorting or receptor-mediated endocytosis. The aps2 delta mutation resulted in a slight effect on chc1-ts cell growth but had no additional effects. The growth defect of cells completely lacking Chc was compounded by aps1 delta but not aps2 delta. These results comprise evidence that Aps1p is involved in a subset of clathrin functions at the Golgi apparatus. The effect of aps1 delta on cells devoid of clathrin function suggests that Aps1p also participates in clathrin-independent processes. 相似文献
16.
《The Journal of cell biology》1994,125(6):1289-1301
The fission yeast Schizosaccharomyces pombe divides by medial fission and, like many higher eukaryotic cells, requires the function of an F- actin contractile ring for cytokinesis. In S. pombe, a class of cdc- mutants defective for cytokinesis, but not for DNA replication, mitosis, or septum synthesis, have been identified. In this paper, we present the characterization of one of these mutants, cdc3-124. Temperature shift experiments reveal that mutants in cdc3 are incapable of forming an F-actin contractile ring. We have molecularly cloned cdc3 and used the cdc3+ genomic DNA to create a strain carrying a cdc3 null mutation by homologous recombination in vivo. Cells bearing a cdc3-null allele are inviable. They arrest the cell cycle at cytokinesis without forming a contractile ring. DNA sequence analysis of the cdc3+ gene reveals that it encodes profilin, an actin-monomer-binding protein. In light of recent studies with profilins, we propose that Cdc3-profilin plays an essential role in cytokinesis by catalyzing the formation of the F-actin contractile ring. Consistent with this proposal are our observations that Cdc3-profilin localizes to the medial region of the cell where the F-actin contractile ring forms, and that it is essential for F-actin ring formation. Cells overproducing Cdc3-profilin become elongated, dumbbell shaped, and arrest at cytokinesis without any detectable F-actin staining. This effect of Cdc3-profilin overproduction is relieved by introduction of a multicopy plasmid carrying the actin encoding gene, act1+. We attribute these effects to potential sequestration of actin monomers by profilin, when present in excess. 相似文献
17.
Cloning and expression of a Saccharomyces diastaticus glucoamylase gene in Saccharomyces cerevisiae and Schizosaccharomyces pombe. 总被引:1,自引:2,他引:1 下载免费PDF全文
A recombinant plasmid pool of the Saccharomyces diastaticus genome was constructed in plasmid YEp13 and used to transform a strain of Saccharomyces cerevisiae. Six transformants were obtained which expressed amylolytic activity. The plasmids each contained a 3.9-kilobase (kb) BamHI fragment, and all of these fragments were cloned in the same orientations and had identical restriction maps, which differed from the map of the STA1 gene (I. Yamashita and S. Fukui, Agric. Biol. Chem. 47:2689-2692, 1983). The glucoamylase activity exhibited by all S. cerevisiae transformants was approximately 100 times less than that of the donor strain. An even lower level of activity was obtained when the recombinant plasmid was introduced into Schizosaccharomyces pombe. No expression was observed in Escherichia coli. The 3.9-kb BamHI fragment hybridized to two sequences (4.4 and 3.9 kb) in BamHI-digested S. diastaticus DNA, regardless of which DEX (STA) gene S. diastaticus contained, and one sequence (3.9 kb) in BamHI-digested S. cerevisiae DNA. Tetrad analysis of crosses involving untransformed S. cerevisiae and S. diastaticus indicated that the 4.4-kb homologous sequence cosegregated with the glucoamylase activity, whereas the 3.9-kb fragment was present in each of the meiotic products. Poly(A)+ RNA fractions from vegetative and sporulating diploid cultures of S. cerevisiae and S. diastaticus were probed with the 3.9-kb BamHI fragment. Two RNA species, measuring 2.1 and 1.5 kb, were found in both the vegetative and sporulating cultures of S. diastaticus, whereas one 1.5-kb species was present only in the RNA from sporulating cultures of S. cerevisiae. 相似文献
18.
We have isolated a cDNA that encodes a 142-kDa protein by immunoscreening of a Schizosaccharomyces pombe expression library with a new antibody, mAb8, that reveals spindle poles and equatorial ring-like structures in several organisms.
This cDNA encodes a putative protein which we termed Alm (for abnormal long morphology). The protein is predicted to be a
coiled-coil protein, containing a central α-helical domain flanked by non-helical terminal domains. Immunofluorescence analysis showed that Alm1 is localized in the
medial region of the cell from anaphase to the end of cytokinesis. Cells carrying an alm1::ura4
+
disruption are viable and exhibit an elongated morphology. Homozygous alm1::ura4
+
diploids sporulated normally but the spores did not germinate. Spores that have inherited the disruption allele from a heterozygous
alm1
+
/ alm1::ura4
+
diploid germinated but generated smaller colonies. We propose that Alm1 participates in the structural organization of the
medial region in S. pombe.
Received: 9 April 1999 / Accepted: 22 October 1999 相似文献
19.
ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase 总被引:1,自引:0,他引:1
Mayer FV Heath R Underwood E Sanders MJ Carmena D McCartney RR Leiper FC Xiao B Jing C Walker PA Haire LF Ogrodowicz R Martin SR Schmidt MC Gamblin SJ Carling D 《Cell metabolism》2011,14(5):707-714
The SNF1 protein kinase complex plays an essential role in regulating gene expression in response to the level of extracellular glucose in budding yeast. SNF1 shares structural and functional similarities with mammalian AMP-activated protein kinase. Both kinases are activated by phosphorylation on a threonine residue within the activation loop segment of the catalytic subunit. Here we show that ADP is the long-sought metabolite that activates SNF1 in response to glucose limitation by protecting the enzyme against dephosphorylation by Glc7, its physiologically relevant protein phosphatase. We also show that the regulatory subunit of SNF1 has two ADP binding sites. The tighter site binds AMP, ADP, and ATP competitively with NADH, whereas the weaker site does not bind NADH, but is responsible for mediating the protective effect of ADP on dephosphorylation. Mutagenesis experiments suggest that the general mechanism by which ADP protects against dephosphorylation is strongly conserved between SNF1 and AMPK. 相似文献
20.
Identification of a GTPase-activating protein homolog in Schizosaccharomyces pombe. 总被引:4,自引:6,他引:4 下载免费PDF全文
Loss of function of the Schizosaccharomyces pombe gap1 gene results in the same phenotypes as those caused by an activated ras1 mutation, i.e., hypersensitivity to the mating factor and inability to perform efficient mating. Sequence analysis of gap1 indicates that it encodes a homolog of the mammalian Ras GTPase-activating protein (GAP). The predicted gap1 gene product has 766 amino acids with relatively short N- and C-terminal regions flanking the conserved core sequence of GAP. Genetic analysis suggests that S. pombe Gap1 functions primarily as a negative regulator of Ras1, like S. cerevisiae GAP homologs encoded by IRA1 and IRA2, but is unlikely to be a downstream effector of the Ras protein, a role proposed for mammalian GAP. Thus, Gap1 and Ste6, a putative GDP-GTP-exchanging protein for Ras1 previously identified, appear to play antagonistic roles in the Ras-GTPase cycle in S. pombe. Furthermore, we suggest that this Ras-GTPase cycle involves the ra12 gene product, another positive regulator of Ras1 whose homologs have not been identified in other organisms, which could function either as a second GDP-GTP-exchanging protein or as a factor that negatively regulates Gap1 activity. 相似文献